扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 苑海涛 ( 副教授 )

    的个人主页 http://shi.buaa.edu.cn/yuanhaitao/zh_CN/index.htm

  •   副教授   硕士生导师
  • 主要任职:工业互联网与建模仿真系副主任
  • 其他任职:IEEE Senior Member、中国体视学学会理事、《Expert System Applications 》期刊(中科院JCR分区1区,影响因子8.665)副主编、系统仿真学报青年编委
论文 当前位置: 中文主页 >> 论文
SGW-SCN: An integrated machine learning approach for workload forecasting in geo-distributed cloud data centers
点击次数:
发表刊物:Information Science
刊物所在地:荷兰
关键字:Geo-distributed cloud data centers, Stochastic configuration networks, Wavelet decomposition, Worklo
摘要:Nowadays, a large number of cloud services have been published and hosted by geo-distributed cloud data centers (Geo-2DCs). In spite of numerous benefits, those Geo-2DCs face significant challenges such as dynamic resource scaling where workload forecasting plays a crucial role in addressing such a challenge. High accuracy and fast learning are key indicators for workload forecasting and the literature has witnessed a lot of efforts. This work proposes an integrated forecasting method, equipped with noise filtering and data frequency representation, named Savitzky-Golay and Wavelet-supported S
论文类型:基础研究
论文编号:DOI: 10.1016/j.ins.2018.12.027
一级学科:计算机科学与技术
文献类型:期刊
卷号:481
页面范围:57-68
ISSN号:0020-0255
是否译文:否
CN号:null
发表时间:2019-05-01
收录刊物:SCI
发布期刊链接:https://www-sciencedirect-com-s.vpn.buaa.edu.cn:8118/science/article/pii/S0020025518309642
版权所有 2014-2022 北京航空航天大学  京ICP备05004617-3  文保网安备案号1101080018
地址:北京市海淀区学院路37号  邮编:100191  电话:82317114