扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 苑海涛 ( 副教授 )

    的个人主页 http://shi.buaa.edu.cn/yuanhaitao/zh_CN/index.htm

  •   副教授   硕士生导师
  • 主要任职:工业互联网与建模仿真系副主任
  • 其他任职:IEEE Senior Member、中国体视学学会理事、《Expert System Applications 》期刊(中科院JCR分区1区,影响因子8.665)副主编、系统仿真学报青年编委
论文 当前位置: 中文主页 >> 论文
Integrated deep learning method for workload and resource prediction in cloud systems
点击次数:
发表刊物:Neurocomputing
刊物所在地:荷兰
关键字:Cloud data centers, BG-LSTM, Hybrid prediction, Savitzky–Golay filter, Deep learning
摘要:Cloud computing providers face several challenges in precisely forecasting large-scale workload and resource time series. Such prediction can help them to achieve intelligent resource allocation for guaranteeing that users’ performance needs are strictly met with no waste of computing, network and storage resources. This work applies a logarithmic operation to reduce the standard deviation before smoothing workload and resource sequences. Then, noise interference and extreme points are removed via a powerful filter. A Min–Max scaler is adopted to standardize the data. An integrated method of d
论文类型:基础研究
论文编号:DOI: 10.1016/j.neucom.2020.11.011
一级学科:计算机科学与技术
文献类型:期刊
卷号:424
页面范围:35-48
ISSN号:0925-2312
是否译文:否
CN号:null
发表时间:2021-02-01
收录刊物:SCI
发布期刊链接:https://www-sciencedirect-com-s.vpn.buaa.edu.cn:8118/science/article/pii/S0925231220317884
版权所有 2014-2022 北京航空航天大学  京ICP备05004617-3  文保网安备案号1101080018
地址:北京市海淀区学院路37号  邮编:100191  电话:82317114