扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 苑海涛 ( 副教授 )

    的个人主页 http://shi.buaa.edu.cn/yuanhaitao/zh_CN/index.htm

  •   副教授   硕士生导师
  • 主要任职:工业互联网与建模仿真系副主任
  • 其他任职:IEEE Senior Member、中国体视学学会理事、《Expert System Applications 》期刊(中科院JCR分区1区,影响因子8.665)副主编、系统仿真学报青年编委
论文 当前位置: 中文主页 >> 论文
Time-Dependent Cloud Workload Forecasting via Multi-Task Learning
点击次数:
发表刊物:IEEE Robotics and Automation Letters
刊物所在地:美国
关键字:Cloud data centers, Stochastic configuration networks, Wavelet decomposition, Workload forecasting,
摘要:Cloud services have rapidly grown in cloud data centers (CDCs). Accurate workload prediction benefits CDCs since appropriate resource provisioning can be performed for their providers to ensure the full satisfaction of service-level agreement (SLA) requirements from users. Yet these providers face some challenging issues in accurate workload prediction, i.e., how to achieve high accuracy and fast learning of prediction models. Consistent efforts have been made to address them. This letter proposes an innovative integrated forecasting method that combines stochastic configuration networks with
论文类型:基础研究
论文编号:DOI: 10.1109/LRA.2019.2899224
一级学科:计算机科学与技术
文献类型:期刊
卷号:4
期号:3
页面范围:2401-2406
ISSN号:2377-3766
是否译文:否
CN号:null
发表时间:2019-07-01
收录刊物:SCI
发布期刊链接:https://ieeexplore-ieee-org-s.vpn.buaa.edu.cn:8118/document/8641310
版权所有 2014-2022 北京航空航天大学  京ICP备05004617-3  文保网安备案号1101080018
地址:北京市海淀区学院路37号  邮编:100191  电话:82317114