扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 苑海涛 ( 副教授 )

    的个人主页 http://shi.buaa.edu.cn/yuanhaitao/zh_CN/index.htm

  •   副教授   硕士生导师
  • 主要任职:工业互联网与建模仿真系副主任
  • 其他任职:IEEE Senior Member、中国体视学学会理事、《Expert System Applications 》期刊(中科院JCR分区1区,影响因子8.665)副主编、系统仿真学报青年编委
论文 当前位置: 中文主页 >> 论文
A Hybrid Prediction Method for Realistic Network Traffic With Temporal Convolutional Network and LSTM
点击次数:
所属单位:自动化科学与电气工程学院
发表刊物:IEEE Transactions on Automation Science and Engineering
刊物所在地:美国
关键字:Long short-term memory (LSTM), machine learning, network traffic prediction, Savitzky-Golay (SG)
摘要:Accurate and real-time prediction of network traffic can not only help system operators allocate resources rationally according to their actual business needs but also help them assess the performance of a network and analyze its health status. In recent years, neural networks have been proved suitable to predict time series data, represented by the model of a long short-term memory (LSTM) neural network and a temporal convolutional network (TCN). This article proposes a novel hybrid prediction method named SG and TCN-based LSTM (ST-LSTM) for such network traffic prediction, which synergistica
论文类型:基础研究
论文编号:DOI: 10.1109/TASE.2021.3077537
一级学科:计算机科学与技术
文献类型:期刊
卷号:PP
期号:99
页面范围:1-11
ISSN号:1545-5955
是否译文:否
CN号:null
发表时间:2021-05-21
收录刊物:SCI
发布期刊链接:https://ieeexplore-ieee-org-s.vpn.buaa.edu.cn:8118/document/9439149
版权所有 2014-2022 北京航空航天大学  京ICP备05004617-3  文保网安备案号1101080018
地址:北京市海淀区学院路37号  邮编:100191  电话:82317114