的个人主页 http://shi.buaa.edu.cn/junzhang/zh_CN/index.htm
1. 高超声速多尺度流动模拟
近年来,新型高超声速飞行器不断涌现,飞行高度突破了传统航空领域的范围,空天一体化趋势明显。跨流域飞行带来的稀薄气体效应不可忽略,对于这类多尺度流场的模拟和气动特性分析,单一尺度的计算方法,如基于NS方程的计算流体力学(CFD)和基于分子的直接模拟蒙特卡洛(DSMC)方法,均不能同时满足精度和效率的要求。课题组与合作者发展了耦合分子运动和碰撞的统一随机粒子(USP)方法[1, 2],如图1所示,突破了传统粒子方法的时空步长限制,将粒子方法在近连续流域的计算效率提高了几个数量级,并发布了基于USP方法的开源求解器SPARTACUS[3],可高效模拟三维高超声速跨流域流动, 如图2所示。我们已应用SPARTACUS软件成功模拟了多种高速气体流动,包括多原子气体分子的内能激发等效应[4]。
图1 DSMC和USP方法对比示意图
图2 SPARTACUS算例示意图和结果对比
[1] F. Fei, J. Zhang*, J. Li, and Z. H. Liu*, "A unified stochastic particle Bhatnagar-Gross-Krook method for multiscale gas flows," Journal of Computational Physics 400, 108972 (2020).
[2] K. Feng, Z. Cui, P. Tian, and J. Zhang*, "A unified stochastic particle method with spatiotemporal adaptation for simulating multiscale gas flows," Journal of Computational Physics 505, 112915 (2024).
[3] K. Feng, P. Tian, J. Zhang*, F. Fei, and D. Wen, "SPARTACUS: An open-source unified stochastic particle solver for the simulation of multiscale nonequilibrium gas flows," Comput. Phys. Commun. 108607 (2023).
[4] P. Tian, K. Feng, Q. Ma, Z. Li, J. Zhang*, "Unified stochastic particle simulation of polyatomic gas flows using SPARTACUS," Computers & Fluids 265, 105987 (2023).
2. 空天飞行的界面动力学
空天飞行的非平衡效应不仅存在于气体流动过程,也存在于界面多相作用过程,如壁面滑移和催化复合等。针对高超声速条件下气固相互作用的复杂物理化学过程,课题组采用多尺度研究策略,从微观层次的分子动力学(MD)计算出发,再经过介观层次的分子动理论分析,可从理论上得到宏观层次的滑移边界条件[5,7],如图3所示,为气固相互作用模型的构建提供了完整的思路。针对航空飞行的结冰问题,课题组发展了CFD和MD耦合的多尺度计算方法[7, 8],如图4所示,可精确预测气液固移动接触线的动力学行为。
图3 气固相互作用的多尺度计算与建模
图4 气液固三相界面的多尺度耦合计算
[5] J. Zhang*, P. Luan, J. Deng, P. Tian, and T. Liang, "Theoretical derivation of slip boundary conditions for single-species gas and binary gas mixture," Physical Review E 104, 055103 (2021).
[6] J. Deng, J. Zhang*, T. Liang, J. Zhao, Z. Li, and D. Wen, "A modified Cercignani–Lampis model with independent momentum and thermal accommodation coefficients for gas molecules scattering on surfaces," Physics of Fluids 34, 107108 (2022).
[7] J. Zhang*, M. K. Borg, and J. M. Reese, "Multiscale simulation of dynamic wetting," International Journal of Heat and Mass Transfer 115, 886 (2017).
[8] H. Liu, J. Zhang*, P. Capobianchi, M. K. Borg, Y. Zhang, and D. Wen, "A multiscale volume of fluid method with self-consistent boundary conditions derived from molecular dynamics," Physics of Fluids 33, 062004 (2021).
3. 多尺度计算和机器学习耦合
在非平衡流动中存在复杂的物理化学过程,导致NS方程中基于经验假设的应力和热流本构关系失效,如何构建非平衡条件下的本构关系和控制方程,是有挑战性的工作。课题组将基于物理的分子模拟和基于数据的机器学习方法相结合,通过数据驱动发现隐藏在分子模拟背后的流体力学控制方程,如图5所示,为微观和宏观耦合提供了新思路[9]。近年来,课题组发展了满足量纲齐次性约束的基因表达式编程算法,结合分子模拟产生的数据,可用于非平衡条件下的本构关系和宏观方程预测,显著提升了宏观方程描述非平衡特征的能力[10]。
图5 基于分子模拟的数据驱动发现宏观方程
[9] J. Zhang*, and W. Ma, "Data-driven discovery of governing equations for fluid dynamics based on molecular simulation," Journal of Fluid Mechanics 892, A5 (2020).
[10] W. Ma, J. Zhang*, et al., "Dimensional homogeneity constrained gene expression programming for discovering governing equations," Journal of Fluid Mechanics 985, A12 (2024).