副研究员 博士生导师 硕士生导师
电子邮箱:
所在单位:航空发动机研究院
学历:博士研究生
办公地点:北航沙河校区主楼B1001
在职信息:在职
学术成果列表
代表作:
[1] Han X, Laera D, Yang D, et al. Flame interactions in a stratified swirl burner: Flame stabilization, combustion instabilities and beating oscillations[J]. Combustion and Flame, 2020, 212: 500-509.
[2] Han X; Laera, D; Morgans, A S; Sung, C J; Hui, X; Lin, Y Z*; Flame macrostructures and thermoacoustic instabilities in stratified swirling flames , Proceedings of the Combustion Institute, 2019, 37(4): 5377-5384.
[3] Han X, Yang D, Wang J*, et al. The effect of inlet boundaries on combustion instability in a pressure-elevated combustor[J]. Aerospace Science and Technology, 2021, 111: 106517.
[4] Han X, Laera D, Morgans A S, et al. Inlet temperature driven supercritical bifurcation of combustion instabilities in a lean premixed prevaporized combustor[J]. Experimental Thermal and Fluid Science, 2019, 109: 109857.
[5] Wang X, Han X*, Song H, et al. Multi-bifurcation behaviors of stability regimes in a centrally staged swirl burner[J]. Physics of Fluids, 2021, 33(9): 095121.
SCI:
[1] Ma J, Hui X, Han M, Han X, et al. Influence of the co-and counter-swirl on combustion instability of the centrally staged combustor[J]. Physics of Fluids, 2023, 35(8).
[2] Zhang J, Hui X, An Q, Han X, et al. Absolute instabilities and dynamics of helical vortices in twin annular swirling jets[J]. Physics of Fluids, 2023, 35(5).
[3] Zhang C, Tao C, Song H, Han X, et al. Experimental investigations on central vortex core in swirl spray flames using high-speed laser diagnostics[J]. Physics of Fluids, 2023, 35(3).
[4] Qin Z, Wang X, Han X, et al. Pre-trained combustion model and transfer learning in thermoacoustic instability[J]. Physics of Fluids, 2023, 35(3).
[5] Ma J, Hui X, Han X*, et al. The effect and mechanism of the flow deflector on ignition performance of the centrally-staged combustor[J]. Physics of Fluids, 2023.
[6] Wang X, Han X, Sung C J. Transitions of thermoacoustic modes and flame dynamics in a centrally-staged swirl combustor[J]. Energy, 2023, 263: 125813.
[7] Han M, Han X*, Wang X, et al. Thermoacoustic instabilities with varying geometries of the main-stage exit in a centrally staged burner[J]. Physics of Fluids, 2022, 34(12): 125112.
[8] Wang X, Han X, Wang J, et al. Flame stabilization and thermoacoustic instability during operating condition modulations: Roles of pilot and main flames[J]. Physics of Fluids, 2022, 34(12): 125102.
[9] Wang S, Zheng J, Xu L, An Q, Han X, et al. Experimental investigation of the helical mode in a stratified swirling flame[J]. Combustion and Flame, 2022, 244: 112268.
[10] Han M, Han X, Wang J, et al. Experimental study of the effect of air split ratio on thermoacoustic instability in a centrally-staged swirl burner[J]. Physics of Fluids, 2022.
[11] Wang S, Zheng J, Li L, Xia X, Han X, et al. Extensional study of optical flow enhanced hybrid PIV method for dual-plane stereoscopic PIV measurement[J]. Measurement Science and Technology, 2022.
[12] Wang S, Zheng J, Li L, Yang Z, Xia X, Fu C, Gao Y, Liu X, Han X*, et al. Evolution characteristics of 3D vortex structures in stratified swirling flames studied by dual-plane stereoscopic PIV[J]. Combustion and Flame, 2022, 237: 111874.
[13] Zhou Y, Zhang C, Han X*, et al. Monitoring combustion instabilities of stratified swirl flames by feature extractions of time-averaged flame images using deep learning method[J]. Aerospace Science and Technology, 2021, 109: 106443.
[14] Wang X, Han M, Han X*, et al. Flame structures and thermoacoustic instabilities of centrally-staged swirl flames operating in different partially-premixed modes[J]. Energy, 2021, 236: 121512.
[15] Song H, Han X*, Su T, et al. Parametric study of the slope confinement for passive control in a centrally-staged swirl burner[J]. Energy, 2021, 233: 121188.
[16] Han M, Xu Q, Han X*, et al. Dynamics of stratified swirl flame near lean blow out[J]. Propulsion and Power Research, 2021, 10(3): 235-246.
[17] Song H, Lin Y, Han X, et al. The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement[J]. Energy, 2020, 195(C).
[18] Wang X, Han X, Song H, et al. Combustion instabilities with different degrees of premixedness in a separated dual-swirl burner[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(6): 061012.
[19] Han X, Laera D, Morgans A S, et al. The effect of stratification ratio on the macrostructure of stratified swirl flames: experimental and numerical study[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(12).
会议论文:
[1] Su T, Lin Y, Zhang C, Han X*, et al. Flow Fields, Emission and Stabilization in Premixed Centrally-Staged Swirl Flames With Different Air Split Ratios[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2021. (GT2021-59061)
[2] Wang Y, Han X, Lin Y. Prompt Atomization Mechanism of the Tangentially Injected Prefilming (TIP) LDI Injector[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2020. (GT2020-16302).
[3] Wang X, Han X*, Hui X, et al. Combustion instabilities of separated stratified swirling flames with different degrees of premixedness[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2019. (GT2019-90852)
[4] Song H, Han X*, Lin Y, et al. The effect of the corner recirculation zone on separated stratified swirling flames and combustion instabilities[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2019. (GT2019-90436)
[5] Han X, Laera D, Morgans A S, et al. The Effect of Stratification Ratio on the Macrostructure of Stratified Swirl Flames: Experimental and Numerical Study[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2018.(GT2018-77155)
[6] Han X, Hui X, Zhang C, et al. Combustion instabilities in a lean premixed pre-vaporized combustor at high-pressure high-temperature[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2017.(GT2017-65190)
[7] Han X, Hui X, Qin H, et al. Effect of the diffuser on the inlet acoustic boundary in combustion-acoustic coupled oscillation[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2016.(GT2016-57046)
中文论文:
[1] 莫妲,林宇震,马宏宇等.基于钝体扰流的氢气微混扩散燃烧组织研究[J/OL].航空学报:1-15[2023-07-11]
[2] 覃子宇,韩啸,李磊等.斜壁限制域台阶对火焰宏观结构的影响[J/OL].航空动力学报:1-9[2023-07-11].
[3] 严熙成,韩猛,韩啸等.基于亥姆霍兹共振器的中心分级燃烧室燃烧振荡控制研究[J/OL].北京航空航天大学学报:1-12[2023-07-11].
[4] 罗守博,张耀恒,韩啸等.中心分级预混旋流火焰燃烧噪声的实验研究[J].推进技术,2023,44(05):194-202.
[5] 昌运鑫,宋恒,韩猛等.掺氢功率比对富氢甲烷燃烧振荡特性的影响[J].推进技术,2023,44(01):187-200.
[6] 魏为,许全宏,苏童等.不同气量分配下声激励对中心分级旋流火焰动力学的影响[J].航空动力学报,2022,37(08):1607-1619.
[7] 何涛,王思睿,卫思霁等.基于深度学习的贫燃熄火预测方法和实验研究[J].燃烧科学与技术,2022,28(03):304-312.
[8] 昌运鑫,宋恒,韩猛,刘玉治,韩啸,林宇震.掺氢功率比对富氢甲烷燃烧振荡特性的影响[J/OL].推进技术:1-18
[9] 覃子宇,郑东生,周宇晨,韩啸*,惠鑫,王作侠,刘翔,张弛.基于深度学习的PIV流场图像修复技术[J/OL].推进技术,2022(网络首发)
[10] 孙彬,韩啸,蔡伟伟,张弛.模型燃烧室壁面与火焰温度光学测量方法研究[J].热能动力工程,2022,37(01):89-95.
[11] 宋恒,刘玉治,王欣尧,韩啸*,林宇震.限制域形状对分层火焰和燃烧不稳定性的影响[J/OL].推进技术2022(网络首发)
[12] 王欣尧,韩啸*,林宇震,张弛,宋知人.中心分级旋流火焰中热声不稳定分岔现象研究[J].燃烧科学与技术,2021,27(04):382-387.
[13] 周宇晨,张弛,韩啸*,林宇震.基于全连接神经网络的分层旋流火焰燃烧振荡预报[J].推进技术,2021,42(09):2038-2044.
[14] 张弛,陶超,韩啸*,周宇晨,林宇震.速度脉动下分层旋流火焰动态传播结构提取[J].推进技术,2021,42(01):173-184.
[15] 宋恒,林宇震,韩啸,张弛*,王欣尧,韩猛.出口收缩对分层旋流火焰和热声振荡的影响[J].工程热物理学报,2020,41(09):2279-2284.
[16] 韩啸,张弛*,韩猛,林宇震.基于LES的分层旋流火焰流场结构与火焰响应研究[J].工程热物理学报,2020,41(06):1535-1543.
[17] 王思睿,刘训臣,李磊,韩啸,张弛,齐飞.分层比对分层旋流火焰稳定模式及流动结构的影响[J].空气动力学学报,2020,38(03):619-628.
[18] 张弛*,周宇晨,韩啸,林宇震.同心旋流分层预混火焰的动力学模态分析[J].推进技术,2020,41(03):595-604.
[19] 刘泽宇, 张弛, 韩啸,等. 分层比对分开分层旋流预混火焰结构的影响[J]. 航空学报, 2018(3).
[20] 吕丽君, 林宇震, 韩啸, 等. 外激作用下自激热声系统的非线性动力学响应[J]. 航空动力学报, 2018, 33(10):109-118.
[21] 王智勇, 王波, 韩啸,等. TeLESSⅡ低排放燃烧室预燃级设计对排放的影响[J]. 航空动力学报, 2017, 32(7):1561-1568.
[22] 韩啸, 林宇震*, 张弛,等. 壁面喷射当量比对支板凹腔耦合燃烧的影响[J]. 北京航空航天大学学报, 2017, 43(5):969-974.
[23] 王建臣, 林宇震, 刘伟, 赵永胜, 韩啸. 蓄热式加热纯净空气直连台试验能力研究[J]. 推进技术, 2014, 35(10):1392-1397.
专利:
[1] 张弛,韩啸,林宇震,王建臣.一种宽稳定工作范围的低排放天然气燃烧室.申请号CN201510235769.6
[2] 林宇震,韩啸,张弛,王建臣.一种出口带旋流叶片的液化气燃烧室.申请号CN201510234100.5
[3] 林宇震,韩啸,王建臣,张弛. 一种主燃级采用喷油管供油的低排放燃烧室.申请号CN201610545385.9
[4] 林宇震,韩啸,王建臣,张弛.一种采用主燃级叶片开孔喷油的低排放燃烧室.申请号CN201610547978.9
[5] 林宇震, 韩啸, 张弛,王波, 陈盼, 何沛等. 一种采用叶片前缘轴向喷射的低排放燃烧室[P]. 申请号: CN 201610970726.7
[6] 张弛, 王波, 林宇震, 韩啸, 何沛, 徐榕等. 主燃级出口采用强制导流的低污染燃烧室[P]. 申请号: 201610860748.8
[7] 张弛, 王波, 林宇震, 韩啸, 陈伟, 何沛等. 主燃级采用单层预膜径向两级反向旋流的低污染燃烧室[P]. 申请号: 201621089663.6
[8] 林宇震, 韩啸, 张弛, 王波, 何沛, 徐榕等. 预燃级采用双层轴向旋流器的低排放燃烧室[P]. 申请号: 201621089424.0
[9] 张弛,王波 ,林宇震,韩啸.一种主燃级采用轴向两级分布式旋流器的低污染燃烧室.申请号CN201510673156.0
[10] 王建臣,王志超,韩啸,林宇震,张弛.一种预混分级强旋流低污染液化气燃烧器.申请号CN201610543571.9
[11] 林宇震,王志超,王建臣,张弛,韩啸.一种小管预混旋流低污染液化气燃烧器.申请号CN201610567088.4
[12] 林宇震,韩啸,张弛,王建臣,韩猛,王欣尧. 双旋流低排放燃烧室. 申请号201811510109.4
[13] 林宇震,韩啸,张弛,王建臣,宋恒. 燃烧室燃烧振荡控制装置及燃烧室燃烧振荡控制方法. 申请号201811509406.7