[1] Q. Zhang, X. Yu, Y. Xia, D. Zhang, F. Scarpa*, et al. The shear performance of uniaxially thermoformed auxetic polymer foams. Composites Part B: Engineering, 286: 111791, 2024 (SCI, IF 12.7 Q1)
[2] Q. Zhang, J. Shen, M. Garrad, F. Scarpa. A. Pirrera, R. Groh. Quantifying efficient shape-shifting: Energy barrier measurement in multi-stable lattice metamaterials. Thin-Walled Structures, 112222-112230, 2024 (SCI, IF 5.7 Q1)
[3] Q. Zhang, X. Yu, F. Scarpa*, D. Barton, et al. Anisotropy in conventional and uniaxially thermoformed auxetic polymer foams. Composites Part B: Engineering, 237: 109849-109862, 2022. (SCI, IF 11.3, Q1)
[4] Q. Zhang, X. Yu, F. Scarpa*, D. Barton, et al. A dynamic poroelastic model for auxetic polyurethane foams involving viscoelasticity and pneumatic damping effects in the linear regime. Mechanical Systems and Signal Processing, 179: 109375-109395, 2022. (SCI, IF 8.9, Q1)
[5] Q. Zhang, X. Yu, F. Scarpa*, D. Barton, et al. Hysteretic behaviour of uniaxially thermoformed auxetic foams under 3-point bending low-frequency vibration. Nonlinear Dynamics, 2022: 1-27. (SCI, IF 5.7, Q1)
[6] Q. Zhang, F. Scarpa*, D. Barton, Y. Zhu, Z.Q. Lang, D. Zhang, and H.X. Peng. Impact properties of uniaxially thermoformed auxetic foams. International Journal of Impact Engineering, 2022, 163: 104176-104192. (SCI, IF 4.6, Q1)
[7] Q. Zhang, W. Lu, F. Scarpa, D. Barton, K. Rankin, Y. Zhu, Z. Lang. and H. X. Peng. Topological characteristics and mechanical properties of uniaxially thermoformed auxetic foam. Materials & Design. 211: 110139-110155, 2021. (SCI, IF 9.4, Q1,)
[8] Q. Zhang, W. Lu, F. Scarpa, D. Barton, et al. Large stiffness thermoformed open cell foams with auxeticity. Applied Materials Today. 20: 100775-100788, 2020 (SCI, IF 8.7, Q1)
[9] Q. Zhang, D. Zhang, Y. Dobah, F. Scarpa, et al. Tensegrity cell mechanical metamaterial with metal rubber. Applied Physics Letters. 113(3): 031906-31910, 2018 (SCI, IF 3.9, Q2)
[10] W. Lu, Q. Zhang(共同一作), F. Qin, P. Xu, et al. Hierarchical Network Structural Composites for Extraordinary Energy Dissipation Inspired by the Cat Paw. Applied Materials Today. 25: 101222-101232, 2021 (SCI, IF 8.7, Q1)
[11] J. Li, D. Zhang, Q. Zhang*(通讯), B. Huo, X. Wang. Structural identification based on substructure decoupling technique considering uncertain dynamic model. Mechanical Systems and Signal Processing, 224, 111957, 2025. (SCI, IF 8.9, Q1)
[12] W. Ji, Q. Zhang*(通讯), F. Alvarez-Borges, et al. Composite sepiolite/chitosan layer-by-layer coated flexible polyurethane foams with superior mechanical properties and energy absorption. Compos. Struct., 322, 117419, 2023 (SCI, IF 6.6, Q1)
[13] S. Xiao, P. Yu*, Z. Jiang, C. Wang, J. Chen, Q. Zhang*(通讯). Nonlinear Modeling and Vibration Response Analysis of a Dual-Rotor System with an Inter-Shaft Graphite Seal. Mathematics. 12(3), 454, 2024 (SCI, IF 2.4, Q1)
[14] C. Yang, D. Zhang, F. Scarpa, Q. Zhang*(通讯), et al. A polynomial constitutive model of shape memory alloys based on kinematic hardening. Smart Materials and Structure., 32(7), 075016. 2023 (SCI, IF 4.1, Q2)
[15] S. E. Williams, Q. Zhang*(通讯), C. de Kergariou, F. Scarpa. Investigating the effect of the relative humidity on the mechanics and dynamics of open cell polyurethane auxetic foams. Physica Status Solidi (B): basic solid state physics. 259(12): 2200442, 2022 (SCI, IF 1.8, Q3)
[16] Y. Ma, Q. Zhang, D. Zhang, F. Scarpa, et al. The mechanics of shape memory alloy metal rubber. Acta Materialia. 96: 89-100. (SCI, IF 9.2, Q1)
[17] Y. Ma, Q. Zhang, Y. Wang, J. Hong, et al. Topology and mechanics of metal rubber via X-ray tomography. Materials & Design. 181: 108067, 2019 (SCI, IF 9.4, Q1)
[18] Y. Ma, Q. Zhang, Y. Dobah, F. Scarpa, et al. Meta-tensegrity: Design of a tensegrity prism with metal rubber. Composite Structures. 206: 644, 2018 (SCI, IF 6.6, Q1)
[19] Y. Ma, Q. Zhang, D. Zhang, W. Hu, et al. Experimental investigation on the dynamic mechanical properties of soft magnetic entangled metallic wire material. Smart Materials and Structure. 26: 055019-055026, 2017 (SCI, IF 4.1, Q2)
[20] Y. Ma, Q. Zhang, D. Zhang, F. Scarpa, et al. Size-dependent mechanical behavior and boundary layer effects in entangled metallic wire material systems. Journal of Materials Science. 52: 3741, 2017 (SCI, IF 4.7, Q2)
[21] Y. Ma, Q. Zhang, D. Zhang, F. Scarpa, et al. Tuning the vibration of a rotor with shape memory alloy metal rubber supports. Journal of Sound and Vibration. 351: 1-16, 2015 (SCI, IF 4.8, Q1)
[22] Y. Ma, Q. Zhang, D. Zhang, F. Scarpa, et al. A novel smart rotor support with shape memory alloy metal rubber for high temperatures and variable amplitude vibrations. Smart Materials and Structure. 23:(12): 125016, 2014 (SCI, IF 4.1, Q2)
[23] X. Yu, Q. Zhang, M. Schenk, F. Scarpa. Out-of-plane engineering constants of beetle elytra inspired sandwich cores. Thin-Walled Structures. 197, 111571, 2024 (SCI, IF 6.4, Q1)
[24] X. Yu, Q. Zhang, M. Schenk, F. Scarpa. The engineering elastic constants of bio-inspired sandwich cores with wavy cylinders. Composites Communications, 101893, 2024 (SCI, IF 8.0, Q2)
[25] J. Lavazza J, Q. Zhang, C. de Kergariou, et al. Rigid polyurethane foams from commercial castor oil resins[J]. Polymer Testing, 135: 108457, 2024. (SCI, IF 5 Q1)
[26] W. Ji, Q. Zhang, J. S. van Duijneveldt, et al. Giant Cushioning Effect in Facile Polymer/Nanoclay-Coated Flexible Polyurethane Foams[J]. ACS Applied Polymer Materials, 2024. (SCI, IF 4.4, Q1)
[27] J. Shen, M. Garrad, Q. Zhang, et al. rapid-response soft end effector inspired by the hummingbird beak. Journal of the Royal Society Interface, 21(218): 20240148, 2024. (SCI, IF 3.7, Q1)
[28] M. Zou, H. Guo, Q. Zhang, et al. Elastic shear-stiffening composites with locally tunable mechanics for protection and damping[J]. Applied Materials Today, 40: 102396, 2024. (SCI, IF 8.7, Q1)
[29] H. Ramezani, F. Scarpa, Q. Zhang, et al. Green and sustainable devulcanization of ground tire rubber using choline chloride–urea deep eutectic solvent[J]. RSC Sustainability, 2(8): 2295-2311, 2024.
[30] Y. Ma, T. Liang, Y. Wang, Q. Zhang, J. Hong. Longitudinal wave propagation analysis in Entangled metallic wire materials using an improved wave and finite element method. Mechanics of Advanced Materials and Structures, 1-13, 2023. (SCI, IF 2.8, Q2)
[31] Y. Ma, T. Liang, Y. Wang, Q. Zhang, J. Hong. Experimental Investigation of Wave Propagation Characteristics in Entangled Metallic Wire Materials by Acoustic Emission. Materials, 16(13), 4723, 2023. (SCI, IF 3.4, Q2)
[32] J. Shen, M. Garrad, Q. Zhang, O. Leao, et al. Active reconfiguration of multistable metamaterials for linear locomotion. Physical Review B, 107(21), 214103, 2023. (SCI, IF 3.7, Q2)
[33] J. Wang, Z. Xu, Q. Zhang, M. Titirici, S. J. Eichhorn, et al. Stable Sodium Metal Batteries in Carbonate Electrolytes Achieved by Bifunctional, Sustainable Separators with Tailored Alignment. Advanced Materials. 34(49): 2206367-2206380, 2022 (SCI, IF 32.1, Q1)
[34] C. Yang, D. Zhang, Q. Zhang, Z. Zhao, Z. Zeng. Theoretical study on the propagation of high impact energy in the rotor with local plastic deformation after blade off. Mech. Syst. Signal Pr. 196: 110329-110355, 2023 (SCI, IF 8.9, Q1)
[35] X. Yu, Q. Zhang, G. Allegri, M. Schenk, F. Scarpa, et al. In-plane elasticity of beetle elytra inspired sandwich cores. Compos. Struct. 300: 116155-116168, 2022 (SCI, IF 6.6, Q1)
[36] W. Lu, F. Qin, Q. Zhang, C. Remillat, et al. Peng. Engineering foam skeletons with multilayered graphene oxide coatings for enhanced energy dissipation. Compos. Pt. A. 137: 106035-106046, 2020 (SCI, IF 9.5, Q1)
[37] D. Zhang, J. Fu, Q. Zhang, J. Hong. An effective numerical method for calculating nonlinear dynamics of structures with dry friction: application to predict the vibration response of blades with underplatform dampers. Nonlinear Dyn. 88: 223-237, 2017 (SCI, IF 5.7, Q1)
[38] Y. Ma, W. Hu, D. Zhang, Q. Zhang, J. Hong. Tunable mechanical characteristics of a novel soft magnetic entangled metallic wire material. Smart Materials and Structure. 25: 095015-095025, 2016 (SCI, IF 4.1, Q2)
[39] Z. Zhao, D. Zhang, C. Yang, Q. Zhang*(通讯). The Safety Design Method for the Rotor System With Fan Blade Off. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2024, 88032:V10BT26A012 (EI).
[40] H. Sun H, D. Zhang, Q. Zhang*(通讯), et al. Mechanical Properties of the Support Structure With Recoverable Stiffness. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2024, 88032:V10BT27A020 (EI).
[41] Q. Zhang, W. Li, Z. Liang, and J. Hong. Study on the Stiffness Loss and its Affecting Factors of the Spline Joint Used in Rotor Systems. ASME Turbo Expo 2014 (EI)
[42] J. Hong, P. Yu, D. Zhang, Z. Liang and Q. Zhang. Dynamic characteristics of rotor system with additional constraint due to rub-impact. ASME Turbo Expo 2016 (EI)
[43] 赵镇瑶,杨诚,张启成*(通讯),等.带熔断结构的叶片丢失转子动态响应特性. 航空动力学报, 1-13. 2024 (EI)
[44] 马艳红,张启成,张大义,朱海雄,陆宏伟,洪杰. 静载荷作用下金属橡胶失效判据及耐久性试验研究. 北京航空航天大学学报. 42(02), 2016 (EI)
[45] 张大义,夏颖,张启成,马艳红,洪杰. 金属橡胶力学性能研究进展与展望[J]. 航空动力学报. 33(06), 2018 (EI)
[1] 孙赫,张大义,张启成,霍炳辉. 叶片-楔形缘板阻尼器动力学响应求解软件,软件著作权,登记号:2024SR0392593
[2] 孙赫,张大义,吴亚光,霍炳辉,张启成. 带冠叶片动力学响应求解软件,软件著作权,登记号:2024SR0392214
[3] 李继世, 张大义, 霍炳辉, 张启成, 王鑫. 航空发动机外部结构振动环境试验载荷谱制订软件. 2024SR0616797
[4] 赵镇瑶,张大义,霍炳辉,张启成. 风扇叶片丢失转子系统振动响应求解软件 V1.0. 2024SR0650411.
[5] 曾振坤,霍炳辉,张启成,张大义. 支承刚度非对称转子稳态不平衡响应求解软件 V1.0. 2024SR0650951.