的个人主页 http://shi.buaa.edu.cn/dufeng/zh_CN/index.htm
杜锋,北京航空航天大学交通科学与工程学院飞行器适航系,副教授,硕士/博士研究生导师。
2009年本科毕业于四川大学,获土木工程学士学位;同年保送至北京大学攻读研究生,2015年获北京大学固体力学博士学位。
2015年-2018年在美国东北大学机械工程系担任研究助理、博士后、助理研究教授等职务。
2019年加入北航交通学院。
2024年派驻北航杭州校区。
主要从事仿生飞行器、结构动态分析、流固耦合力学、冰摩擦力学与飞机防除冰等研究。
共发表论文20余篇,包括JMPS, JFM, AIAA J, FRICTION, APPLIED PHYSICS LETTERS, APPLIED SURFACE SCIENCE等。
主持和参与项目9项,包括主持国家自然基金面上项目1项。获中国航空学会自然科学一等奖1项;获2024年首届空天前沿大会最佳论文奖1项;XX首届航空创意挑战赛三等奖1项;获2023年全国服务业科技创新奖一等奖1项。
开设针对本科生的《科研课堂》和《智能材料及其航空应用》课程,开设针对研究生的《科学写作与报告》课程。获北航教学成果特等奖1项,二等奖1项;指导学生获互联网+大赛全国金奖,获北京市优秀创新创业导师。
联系方式:fengdu@buaa.edu.cn
欢迎对仿生飞行器、流固耦合力学、冰摩擦力学与飞机防除冰等感兴趣的同学报考硕士、博士研究生!
已发表论文或会议报告:
[1] Du, F., Lv, P., Li, H., Wang, J & Shao, L-H., A theoretical model to determine solid surface tension through droplet on film configuration and experimental verification. Journal of the Mechanics and Physics of Solids. 183, 105504(2024).
[2] Du, F. & Wu, J. H., Analytical Modeling for Flapping Wing Deformation and Kinematics with Beam Flexibility. AIAA JOURNAL. 61, 2 (2023).
[3] Du, F., Analytical Theory of Ice‑Skating Friction with Flat Contact. Tribology Letters. 71:5(2023).
[4] Du, F. & Wu, J. H., Analytical results for pitching kinematics and propulsion performance of flexible foil. J. Fluid Mech. 979, A5 (2024)【AIE关键科学论文】.
[5] Fang, X. Wu, J. H. & Du, F., Kinematic modeling and analysis of transmission mechanism with joint clearance for flapping wing micro aerial vehicle. International Journal of Micro Air Vehicles. 15: 1–14 (2023).
[6] Du, F., Ke, P. & Hong, P., How ploughing and frictional melting regulate ice-skating friction. Friction 11(11): 2036–2058 (2023).
[7] Fang, X. Wu, J. H. & Du, F., Elastodynamic model for flapping-wing micro aerial vehicle. Bioinspir. Biomim. 16, 065009 (2021).
[8] Deng, Y., Du, F., Chen, Z., Lv, P., Yin, Z., He, M., Xue, M. & Li H., Functionalized Superhydrophobic Coatings with Electro-Photothermal Effect for All-Day Durable Anti-Icing. Advanced Materials Interfaces. 2300869(2023).
[9] Du, F. & Huang, H. C., When is Lonely Adatom Model valid?. Surface Science, 682, 60 (2019).
[10] Du, F. & Huang, H. C., A theory of growing crystalline nanorods – Mode I. Surface Science, 674, 18 (2018).
[11] Du, F. & Huang, H. C., A generalized theory of thin film growth. Surface Science, 669, 154 (2018).
[12] Du, F., Elliott, P. R. & Huang, H. C., Generalized theory of smallest diameter of metallic nanorods. Physical Review Materials, 1, 033401 (2017).
[13] Du, F. & Huang, H. C., Closed-form theory of nuclei separation on highly anisotropic surfaces. Applied Surface Science, 390, 107 (2016).
[14] Du, F., Huang, J. Y., Duan, H. L., Xiong, C. Y. & Wang, J. X., Wetting transparency of supported graphene is regulated by polarities of liquids and substrates. Applied Surface Science, 454, 249 (2018).
[15] Du, F., Huang, J. Y., Duan, H. L., Xiong, C. Y. & Wang, J. X., Surface stress of graphene layers supported on soft substrate. Scientific Reports, 6, 25653 (2016).
[16] Du, F., Duan, H. L., Xiong, C. Y. & Wang, J. X., Substrate wettability requirement for the direct transfer of graphene. Applied Physics Letters, 107, 143109 (2015).
[17] Lin, F., Du, F., Huang, J. Y., et al. Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer. Colloids and Surfaces B-Biointerfaces, 146 (2016). (Lin, F. and Du, F. contributed equally to this work).
[18] Gu. M., Lv. L., Du. F., et al. Effects of thermal treatment on the adhesion strength and osteoinductive activity of single-layer graphene sheets on titanium substrates. Scientific Reports, 8, 8141 (2018).
[19] Chen, Y. B., Sun, J. Y., Gao, J. F., Du, F., et al., Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture. Advanced Materials, 27, 47 (2015).
[20] Liu, Y. S., Chen, T., Du. F., et al. Single-Layer Graphene Enhances the Osteogenic Differentiation of Human Mesenchymal Stem Cells In Vitro and In Vivo. Journal of Biomedical Nanotechnology, 12, 1 (2016).
[21] Gu, M., Liu, Y. S., Chen, T., Du, F., et al., Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? Tissue Engineering Part B-Reviews, 20, 5 (2014)
[22] Wan, Z. P., Zhang, S. S., Fan, Y. L., Liu, K., Du, F., et al., B cell activation is regulated by the stiffness properties of the substrate presenting the antigens. The Journal of Immunology, 190, 4661 (2013).
[23] Li, X. G., Xue, Y. H., Lv, P. Y., Lin, H., Du, F., et al., Liquid plasticine: controlled deformation and recovery of droplets with interfacial nanoparticle jamming. Soft Matter, 12, 1655 (2016).
[1] 孙世祥,徐塬皓,张雨浓,吴江浩,杜锋. 扑翼微型飞行器翼杆惯性载荷识别[J].无人系统技术,2023,6(3):91-102.
[2] 王翔宇,柯鹏,杜锋. 液滴冲击过程动态接触角模型研究[J]. 应用数学与力学,2024,已接收。
[3] 杜锋, 洪平,柯鹏. 基于落球法原位测试人工冰场冰面硬度的方法研究[J]. 冰雪运动,2023,45(4):18-22.
[1] Du, F., Wang, Z. C., Xiong, C. Y. & Wang, J. X., Enhanced adhesion of human mesenchymal stem cells on graphene during osteogenic differentiation. 13th International Conference on Fracture (ICF13), 2013, Beijing, China.
[2] Du, F., Lin, F., Xiong, C. Y. & Wang, J. X., Cellular behaviors on graphene is substrate depended. The 7th World Congress of Biomechanics(WCB2014), 2014, Boston, Massachusetts, USA.
[3] 张雨浓, 杜锋,吴江浩. 扑翼飞行器翼梁形变识别及悬臂梁模型适配.第十届中国航空学会青年科技论坛,2022,南昌.
[4] 张梦玉, 杜锋,吴江浩. 基于图像处理的微扑翼飞行器振动识别方法.第十届中国航空学会青年科技论坛,2022,南昌.
[5] 吴辰浩,吴江浩,杜锋. 基于电机驱动的扑翼微型飞行器的结构动力学建模. 2022年无人系统高峰论坛(USS2022),2022,西安.
[6] 姚荟,吴江浩,李泊远,李晓阳,杜锋. 含间隙扑翼飞行器传动机构可靠性分析.第六届中国航空科学技术大会,2023,浙江乌镇.
[7] 王翔宇,柯鹏,杜锋.液滴冲击过程动态接触角模型研究,计算力学大会,2023,大连.
[8] 孙世祥,吴江浩,杜锋,基于变形梁轮廓的悬臂梁载荷反演,计算力学大会,2023,大连.
[9] 王翔宇,刘强,刘斐然,李宏源,杜锋,Research on wing shapes optimization for gliding distance,空天前沿大会,2024,西安.
[10] 刘强,杜锋,柯鹏,何傲涵,Lower limb modelling techniques for Chinese adult males,国际机载机电系统学术会议,2024,西安.
[11] 何傲涵,柯鹏,杜锋,刘强,Research on a risk assessment model for lower limb impact injuries based on multi-body dynamics,国际机载机电系统学术会议,2024,西安.
[1] 杜锋,柯鹏,李欣阳. 一种可原位测试的硬度测量装置.中国发明专利,2021,已授权.
[2] 杜锋,吴江浩, 吴辰浩. 一种小型轴承的摩擦力矩测试装置.中国发明专利,2024,已公开.
北京大学  力学  博士研究生毕业  博士学位
四川大学  土木工程  大学本科毕业  学士学位
美国东北大学 机械工程系 研究助理教授