韩啸

副研究员

副研究员  硕士生导师 

电子邮箱:

入职时间:2021-10-21

所在单位:航空发动机研究院

学历:博士研究生

办公地点:北航沙河校区主楼B1001

在职信息:在职

研究领域

当前位置: 中文主页 >> 研究领域

学术成果列表


代表作:

[1]     Han X, Laera D, Yang D, et al. Flame interactions in a stratified swirl burner: Flame stabilization, combustion instabilities and beating oscillations[J]. Combustion and Flame, 2020, 212: 500-509.

[2]     Han X; Laera, D; Morgans, A S; Sung, C J; Hui, X; Lin, Y Z*; Flame macrostructures and thermoacoustic instabilities in stratified swirling flames , Proceedings of the Combustion Institute, 2019, 37(4): 5377-5384.

[3]     Han X, Yang D, Wang J*, et al. The effect of inlet boundaries on combustion instability in a pressure-elevated combustor[J]. Aerospace Science and Technology, 2021, 111: 106517.

[4]     Han X, Laera D, Morgans A S, et al. Inlet temperature driven supercritical bifurcation of combustion instabilities in a lean premixed prevaporized combustor[J]. Experimental Thermal and Fluid Science, 2019, 109: 109857.

[5]     Wang X, Han X*, Song H, et al. Multi-bifurcation behaviors of stability regimes in a centrally staged swirl burner[J]. Physics of Fluids, 2021, 33(9): 095121. 


SCI:

[1]     Ma J, Hui X, Han M, Han X, et al. Influence of the co-and counter-swirl on combustion instability of the centrally staged combustor[J]. Physics of Fluids, 2023, 35(8).

[2]     Zhang J, Hui X, An Q, Han X, et al. Absolute instabilities and dynamics of helical vortices in twin annular swirling jets[J]. Physics of Fluids, 2023, 35(5).

[3]     Zhang C, Tao C, Song H, Han X, et al. Experimental investigations on central vortex core in swirl spray flames using high-speed laser diagnostics[J]. Physics of Fluids, 2023, 35(3).

[4]     Qin Z, Wang X, Han X, et al. Pre-trained combustion model and transfer learning in thermoacoustic instability[J]. Physics of Fluids, 2023, 35(3).

[5]     Ma J, Hui X, Han X*, et al. The effect and mechanism of the flow deflector on ignition performance of the centrally-staged combustor[J]. Physics of Fluids, 2023.

[6]     Wang X, Han X, Sung C J. Transitions of thermoacoustic modes and flame dynamics in a centrally-staged swirl combustor[J]. Energy, 2023, 263: 125813.

[7]     Han M, Han X*, Wang X, et al. Thermoacoustic instabilities with varying geometries of the main-stage exit in a centrally staged burner[J]. Physics of Fluids, 2022, 34(12): 125112.

[8]     Wang X, Han X, Wang J, et al. Flame stabilization and thermoacoustic instability during operating condition modulations: Roles of pilot and main flames[J]. Physics of Fluids, 2022, 34(12): 125102.

[9]     Wang S, Zheng J, Xu L, An Q, Han X, et al. Experimental investigation of the helical mode in a stratified swirling flame[J]. Combustion and Flame, 2022, 244: 112268.

[10] Han M, Han X, Wang J, et al. Experimental study of the effect of air split ratio on thermoacoustic instability in a centrally-staged swirl burner[J]. Physics of Fluids, 2022.

[11] Wang S, Zheng J, Li L, Xia X, Han X, et al. Extensional study of optical flow enhanced hybrid PIV method for dual-plane stereoscopic PIV measurement[J]. Measurement Science and Technology, 2022.

[12] Wang S, Zheng J, Li L, Yang Z, Xia X, Fu C, Gao Y, Liu X, Han X*, et al. Evolution characteristics of 3D vortex structures in stratified swirling flames studied by dual-plane stereoscopic PIV[J]. Combustion and Flame, 2022, 237: 111874.

[13] Zhou Y, Zhang C, Han X*, et al. Monitoring combustion instabilities of stratified swirl flames by feature extractions of time-averaged flame images using deep learning method[J]. Aerospace Science and Technology, 2021, 109: 106443.

[14] Wang X, Han M, Han X*, et al. Flame structures and thermoacoustic instabilities of centrally-staged swirl flames operating in different partially-premixed modes[J]. Energy, 2021, 236: 121512.

[15] Song H, Han X*, Su T, et al. Parametric study of the slope confinement for passive control in a centrally-staged swirl burner[J]. Energy, 2021, 233: 121188.

[16] Han M, Xu Q, Han X*, et al. Dynamics of stratified swirl flame near lean blow out[J]. Propulsion and Power Research, 2021, 10(3): 235-246.

[17] Song H, Lin Y, Han X, et al. The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement[J]. Energy, 2020, 195(C).

[18] Wang X, Han X, Song H, et al. Combustion instabilities with different degrees of premixedness in a separated dual-swirl burner[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(6): 061012.

[19] Han X, Laera D, Morgans A S, et al. The effect of stratification ratio on the macrostructure of stratified swirl flames: experimental and numerical study[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(12). 



会议论文:

[1]     Su T, Lin Y, Zhang C, Han X*, et al. Flow Fields, Emission and Stabilization in Premixed Centrally-Staged Swirl Flames With Different Air Split Ratios[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2021. (GT2021-59061)

[2]     Wang Y, Han X, Lin Y. Prompt Atomization Mechanism of the Tangentially Injected Prefilming (TIP) LDI Injector[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2020. (GT2020-16302). 

[3]     Wang X, Han X*, Hui X, et al. Combustion instabilities of separated stratified swirling flames with different degrees of premixedness[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2019. (GT2019-90852)

[4]     Song H, Han X*, Lin Y, et al. The effect of the corner recirculation zone on separated stratified swirling flames and combustion instabilities[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2019. (GT2019-90436)

[5]     Han X, Laera D, Morgans A S, et al. The Effect of Stratification Ratio on the Macrostructure of Stratified Swirl Flames: Experimental and Numerical Study[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2018.GT2018-77155

[6]     Han X, Hui X, Zhang C, et al. Combustion instabilities in a lean premixed pre-vaporized combustor at high-pressure high-temperature[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2017.GT2017-65190

[7]     Han X, Hui X, Qin H, et al. Effect of the diffuser on the inlet acoustic boundary in combustion-acoustic coupled oscillation[C]. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2016.GT2016-57046


中文论文:

[1]     莫妲,林宇震,马宏宇等.基于钝体扰流的氢气微混扩散燃烧组织研究[J/OL].航空学报:1-15[2023-07-11]

[2]     覃子宇,韩啸,李磊等.斜壁限制域台阶对火焰宏观结构的影响[J/OL].航空动力学报:1-9[2023-07-11].

[3]     严熙成,韩猛,韩啸等.基于亥姆霍兹共振器的中心分级燃烧室燃烧振荡控制研究[J/OL].北京航空航天大学学报:1-12[2023-07-11].

[4]     罗守博,张耀恒,韩啸等.中心分级预混旋流火焰燃烧噪声的实验研究[J].推进技术,2023,44(05):194-202.

[5]     昌运鑫,宋恒,韩猛等.掺氢功率比对富氢甲烷燃烧振荡特性的影响[J].推进技术,2023,44(01):187-200.

[6]     魏为,许全宏,苏童等.不同气量分配下声激励对中心分级旋流火焰动力学的影响[J].航空动力学报,2022,37(08):1607-1619.

[7]     何涛,王思睿,卫思霁等.基于深度学习的贫燃熄火预测方法和实验研究[J].燃烧科学与技术,2022,28(03):304-312.

[8]     昌运鑫,宋恒,韩猛,刘玉治,韩啸,林宇震.掺氢功率比对富氢甲烷燃烧振荡特性的影响[J/OL].推进技术:1-18

[9]     覃子宇,郑东生,周宇晨,韩啸*,惠鑫,王作侠,刘翔,张弛.基于深度学习的PIV流场图像修复技术[J/OL].推进技术,2022(网络首发)

[10] 孙彬,韩啸,蔡伟伟,张弛.模型燃烧室壁面与火焰温度光学测量方法研究[J].热能动力工程,2022,37(01):89-95.

[11] 宋恒,刘玉治,王欣尧,韩啸*,林宇震.限制域形状对分层火焰和燃烧不稳定性的影响[J/OL].推进技术2022(网络首发)

[12] 王欣尧,韩啸*,林宇震,张弛,宋知人.中心分级旋流火焰中热声不稳定分岔现象研究[J].燃烧科学与技术,2021,27(04):382-387.

[13] 周宇晨,张弛,韩啸*,林宇震.基于全连接神经网络的分层旋流火焰燃烧振荡预报[J].推进技术,2021,42(09):2038-2044.

[14] 张弛,陶超,韩啸*,周宇晨,林宇震.速度脉动下分层旋流火焰动态传播结构提取[J].推进技术,2021,42(01):173-184.

[15] 宋恒,林宇震,韩啸,张弛*,王欣尧,韩猛.出口收缩对分层旋流火焰和热声振荡的影响[J].工程热物理学报,2020,41(09):2279-2284.

[16] 韩啸,张弛*,韩猛,林宇震.基于LES的分层旋流火焰流场结构与火焰响应研究[J].工程热物理学报,2020,41(06):1535-1543.

[17] 王思睿,刘训臣,李磊,韩啸,张弛,齐飞.分层比对分层旋流火焰稳定模式及流动结构的影响[J].空气动力学学报,2020,38(03):619-628.

[18] 张弛*,周宇晨,韩啸,林宇震.同心旋流分层预混火焰的动力学模态分析[J].推进技术,2020,41(03):595-604.

[19] 刘泽宇, 张弛, 韩啸,. 分层比对分开分层旋流预混火焰结构的影响[J]. 航空学报, 2018(3).

[20] 吕丽君, 林宇震, 韩啸, . 外激作用下自激热声系统的非线性动力学响应[J]. 航空动力学报, 2018, 33(10):109-118.

[21] 王智勇, 王波, 韩啸,. TeLESSⅡ低排放燃烧室预燃级设计对排放的影响[J]. 航空动力学报, 2017, 32(7):1561-1568.

[22] 韩啸, 林宇震*, 张弛,. 壁面喷射当量比对支板凹腔耦合燃烧的影响[J]. 北京航空航天大学学报, 2017, 43(5):969-974.

[23] 王建臣, 林宇震, 刘伟, 赵永胜, 韩啸. 蓄热式加热纯净空气直连台试验能力研究[J]. 推进技术, 2014, 35(10):1392-1397.


专利:

[1]     张弛,韩啸,林宇震,王建臣.一种宽稳定工作范围的低排放天然气燃烧室.申请号CN201510235769.6

[2]     林宇震,韩啸,张弛,王建臣.一种出口带旋流叶片的液化气燃烧室.申请号CN201510234100.5

[3]     林宇震,韩啸,王建臣,张弛. 一种主燃级采用喷油管供油的低排放燃烧室.申请号CN201610545385.9

[4]     林宇震,韩啸,王建臣,张弛.一种采用主燃级叶片开孔喷油的低排放燃烧室.申请号CN201610547978.9

[5]     林宇震韩啸张弛,王波陈盼何沛等一种采用叶片前缘轴向喷射的低排放燃烧室[P]. 申请号: CN 201610970726.7

[6]     张弛王波林宇震韩啸何沛徐榕等主燃级出口采用强制导流的低污染燃烧室[P]. 申请号: 201610860748.8

[7]     张弛, 王波, 林宇震, 韩啸, 陈伟, 何沛等. 主燃级采用单层预膜径向两级反向旋流的低污染燃烧室[P]. 申请号: 201621089663.6

[8]     林宇震韩啸张弛王波何沛徐榕等预燃级采用双层轴向旋流器的低排放燃烧室[P]. 申请号: 201621089424.0

[9]     张弛,王波 ,林宇震,韩啸.一种主燃级采用轴向两级分布式旋流器的低污染燃烧室.申请号CN201510673156.0

[10] 王建臣,王志超,韩啸,林宇震,张弛.一种预混分级强旋流低污染液化气燃烧器.申请号CN201610543571.9

[11] 林宇震,王志超,王建臣,张弛,韩啸.一种小管预混旋流低污染液化气燃烧器.申请号CN201610567088.4

[12] 林宇震,韩啸,张弛,王建臣,韩猛,王欣尧. 双旋流低排放燃烧室. 申请号201811510109.4

[13] 林宇震,韩啸,张弛,王建臣,宋恒. 燃烧室燃烧振荡控制装置及燃烧室燃烧振荡控制方法. 申请号201811509406.7