Personal Homepage

Personal Information

MORE+

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

E-Mail:

Date of Employment:1999-12-01

School/Department:School of Astronautics

Education Level:博士研究生

Business Address:Room 521, Building D, Shahe Main Campus

Gender:Male

Contact Information:13661373313

Degree:博士

Status:Employed

Academic Titles:Head of the Department of Aerospace Propulsion

Alma Mater:Beihang University

Xu Xu

+

Gender:Male

Education Level:博士研究生

Alma Mater:Beihang University

Profile:

Current position: Home / Personal Profile

Xu Xu, Professor and Doctoral Supervisor at the School of Astronautics, Beihang University, and Head of the Department of Aerospace Propulsion. Research has primarily focused on hypersonic ramjet engine testing and simulation, detonation combustion testing and simulation, liquid rocket engine testing and simulation, and the development of computational fluid dynamics (CFD) methods and software. Some research has been supported by various projects, including the National Natural Science Foundation, the Aeronautics Foundation, the Astronautics Foundation, the 863 Program, and other scientific and technological projects. Over 150 academic papers have been published in domestic and international journals. Extensive scientific collaborations have been conducted with the Third Academy of China Aerospace Science and Industry Corporation, leading to the establishment of a joint team for the analysis and experimental research of flow field characteristics in high-speed combustion processes. Several academic positions are held, including: 1. Member of the Academic Committee of the Key Laboratory of Hypersonic Ramjet Engine Technology 2. Member of the Detonation and Novel Propulsion Committee of the Chinese Society of Engineering Thermophysics 3. Member of the Aerospace Society's Committee on Aerospace Power Combustion and Heat Transfer 4. Editorial Board Member of the journals "Rocket Propulsion" and "Propulsion and Energy (English)" In response to the propulsion needs for space travel and near-space missions, the technology of various engines has been developed, including: 1. Scramjet engines 2. Liquid rocket engines 3. Combined cycle and detonation cycle engines Research on the transport, atomization, mixing, and combustion processes of liquid, slurry, gel, and powder fuels has been conducted on experimental platforms for liquid rocket engines, scramjet engines, and rotating detonation engines. Various experimental measurement methods have been developed, including: 1. Planar Laser-Induced Fluorescence (PLIF) imaging measurement methods 2. Combined PLIF/MIE imaging measurement methods 3. Laser absorption spectroscopy measurement methods 4. Two-color pyrometry measurement methods Computational Fluid Dynamics (CFD) Technology Several CFD software tools have been developed, including the Hurricane software (Highly Universal Rocket and Ramjet Simulation Codes for Analysis and Evaluation) for rocket and ramjet flow simulation, rapid computation software for supersonic and hypersonic flows, a combustion device heat transfer simulation system, hypersonic multi-physics coupling computation software, overall performance computation software for precooled combined cycle engines, performance evaluation software for combined cycle engines, and virtual simulation software for rocket engines. These tools have been applied in the development and fault analysis of various rocket engines and supersonic combustion ramjet engines. The primary research areas include: 1. Combustion flow simulation of scramjet engines2. Oblique detonation and rotating detonation combustion simulation3. Multiscale supersonic atomization4. Supercritical hydrocarbon fuel cooling and injection characteristics5. Acceleration methods for CFD computationsMaster's and doctoral students are consistently recruited, and undergraduates with innovative spirit and research interest are welcomed to join the research group for scientific training. Open Source CFD Software The OpenHurricane software, an open-source CPU-GPU heterogeneous solver for complex chemical reaction mechanism calculations, has been released. OpenHurricane is designed for hypersonic flows, which involve strong non-equilibrium effects in fluid dynamics, thermodynamics, chemistry, and electromagnetism. The software uses a CPU-GPU heterogeneous solver to accelerate complex chemical reaction mechanism calculations. OpenHurricane will continue to be updated and released on the open-source website. Open Source CFD Software URL: https://github.com/BUAAHPL/OpenHurricanePublished Monographs 徐旭,陈兵,徐大军,《冲压发动机原理及技术》,北京航空航天大学出版社,2014Published Papers2024[1] Q. Zhu, Y. Wu, W. Zhou, Q. Yang, and X. Xu. A comprehensive study on the roles of viscosity and heat conduction in shock waves[J]. Journal of Fluid Mechanics, 2024, 984: A74. https://doi.org/10.1017/jfm.2024.264.[2] Suyi Dou, Yushu Jin, Qingchun Yang, Lok Han Josiah Lo, Xu Xu, Qingfei Fu and Lun Pan. Combustion Characteristics and Application Performance of JP-10/Nano-Sized Aluminum Gel-Fueled Scramjet[J]. AIAA Journal, 2024, V62(4): 1330-1441, https://doi.org/10.2514/1.J063095.[3] Jiaxun Liu, Wenyuan Zhou, Suyi Dou, Miao Zhang, Qingchun Yang, Xu Xu. Two-phase flow characteristics of cryogenic propellant in filling the head cavity of liquid rocket engine[J]. Applied Thermal Engineering, 2024: 122976., https://doi.org/ 10.1016/j.applthermaleng.2024.122976.[4] Sihang Rao, Bing Chen, Xu Xu. Heterogeneous CPU-GPU parallelization for modeling supersonic reacting flows with detailed chemical kinetics[J]. Computer Physics Communications, 2024, 300: 109188, https://doi.org/10.1016/j.cpc.2024. 109188.[5] 王旭,卜彦鹏,徐旭,于洋,关铭,刘佳迅,杨庆春. 镁-二氧化碳冲压发动机粉末燃料供应特性研究[J]. 推进技术, 2024, 45(1): 139-148.[6] 王旭,王天龙,刘永祺,徐旭,杨庆春. 静电发射器对微米级金属单颗粒的供应特性研究[J]. 推进技术, 2024.2023[1] X. Wang, X. Xu, Q. Yang, Numerical analysis on thermal environment of reusable launch vehicle during supersonic retropropulsion, Int. J. Therm. Sci. 198 (2024) 108857. https://doi.org/10.1016/j.ijthermalsci.2023.108857.[2] X. Wang, Y. Yang, Y. Liu, X. Xu, Q. Yang, Thermodynamic analysis of a high Mach number scramjet engine with secondary combustion for thrust enhancement, Therm. Sci. Eng. Prog. 47 (2024) 102275. https://doi.org/10.1016/j.tsep.2023.102275.[3] Xu Wang, Xu Xu, Qingchun Yang, et al. Experimental Study on Fuel Supply Characteristics of Magnesium Powder Ramjet Engine,74th International Astronautical Congress, 2023.[4] Xu Wang, Xu Xu, Qingchun Yang, et al. Research on the Base Heating of Sub-Scale Hydrogen/Oxygen Rocket ,74th International Astronautical Congress, 2023.[5] 吴忧, 陈兵, 杨庆春, 徐旭. 碳氢燃料超燃冲压发动机热非平衡效应研究 [J]. 航空学报, 2023 44 529399. Doi: 10.7527/S1000-6893.2023.29399.[6] You Wu, Jiwu Liu, Jian Peng, Xu Xu, Bing Chen and Qingchun Yang. Effect of Thermal Nonequilibrium on Captured Mass Flow Rate of Scramjet Inlets[J]. AIAA Journal, 2023, 61(12): 5288-5301.[7] 朱清波, 周文元, 杨庆春, 徐旭. 激波内部结构的数值求解方法[J]. 力学学报, 2023, 55(9): 1858-1866. http://doi.org/10.6052/0459-1879-23-093.[8] W Zhou,S Dou,Q Yang,X Xu,K Xing. Distribution characteristics of a supercritical hydrocarbon fuel jet injected into a high-speed crossflow[J]. Fuel, 2023, 333: 126497.[9] Zhou Wenyuan, Xu Xu, Yang Qingchun, Zhao Ronghui, Jin Yushu. Characterization of pintle engine performance for GO2/kerosene propellants[J]. Applied Thermal Engineering, 2023, 227: 120421.[10] Zhou Wenyuan, Chen, Bing, Zhu Qingbo, Rao Sihang Xu Xu, Numerical simulation of angled-injected liquid jet breakup in supersonic crossflow by a hybrid VOF-LPT method[J]. International Journal of Multiphase Flow, 2023, 166: 104503.[11] Bo Xu, Bing Chen, Jian Peng, Wenyuan Zhou, Xu Xu. A Coupled Heat Transfer Calculation Strategy for Composite Cooling Liquid Rocket Engine[J]. Aerospace, 2023, 10(5): 473.[12] 靳雨树,李智欣,徐旭,窦苏沂,杨庆春.含硼碳氢燃料在超燃冲压发动机中的燃烧试验研究[J],推进技术,2023,44(3)[13] 靳雨树,徐旭,杨庆春. 含能碳氢燃料燃烧特性及发动机应用研究进展[J],航空学报,Vol. 44 No. 5,20232022[1] Wu Y, Xu X, Chen B, et al. Theoretical and numerical study of the binary scaling law for electron distribution in thermochemical non-equilibrium flows under extremely high Mach number[J]. Journal of Fluid Mechanics, 2022, 940: A3. https://doi.org/10.1017/jfm.2022.191.[2] Wang X, Bu Y, Xu X, Yang Q. Experimental investigation on the thrust regulation of a Mg–CO2 Martian ramjet. Acta Astronaut 2022;197:191–9. https://doi.org/10.1016/j.actaastro.2022.05.033.[3] Yang Q, Wang X, Xu X, Liu J, Yu Y. Effects of magnesium particle size on combustion characteristic of martian ramjet engine. Energy 2022;260:125121. https://doi.org/10.1016/j.energy.2022.125121.[4] Wang X, Bu Y, Xu X, Yang Q. Effect of mixing section configurations on combustion efficiency of Mg-CO2 Martian ramjet. Chin J Aeronaut 2023;36:165–73. https://doi.org/10.1016/j.cja.2022.12.002.[5] Wang X, Xu X, Yang Q. Base Thermal Environment on Multinozzle Rocket Configurations. J Spacecraft Rockets 2022:10. https://doi.org/10.2514/1.A35323.[6] Rao Sihang, Xu Xu, Chen Bing, Yang Qingchun. An investigation of hybrid CPU-GPU solvers for supersonic reacting flow simulation with detailed chemical kinetics[J]. Aerospace Science and Technology, 2022, 126: 107597, https://doi.org/10. 1016/j.ast.2022.107597.[7] Yushu Jin, Xu Xu, Xu Wang, Suyi Dou, Qingchun Yang and Lun Pan, Propulsive and combustion behavior of hydrocarbon fuels containing boron nanoparticles in a liquid rocket combustor[J], Proc IMechE Part G:J Aerospace Engineering, 2022, Vol. 236(12) 2580–2591[8] Yushu Jin, Xu Xu, Qingchun Yang, Suyi Dou, Xu Wang and Qingfei Fu, Combustion Behavior of Hydrocarbon/Boron Gel-Fueled Scramjet[J], AIAA JOURNAL, Vol. 60, No. 6, June 2022[9] Suyi Dou, Qingchun Yang, Yushu Jin, Xu Xu. Study on Fuel Equivalence Ratio Range for Supersonic Premixed Combustion Mode to Establish in a Scramjet[J]. Acta Astronautica, 2022, V199: 37-48, https://doi.org/10.1016/j.actaastro.2022.07.016[10] Zhou Wenyuan, Xu Xu, Yang Qingchun, Zhao Ronghui, Jin Yushu. Experimental and numerical investigations on the spray characteristics of liquid-gas pintle injector[J]. Aerospace Science and Technology, 2022, 121: 107354.[11] Zhou Wenyuan, Xing Kai, Dou Suyi, Yang, Qingchun, Xu Xu. Experimental and Numerical Investigations on the Mixing Process of Supercritical Jet Injected into a Supersonic Crossflow[J]. Aerospace, 2022, 9(11): 631.[12] 唐靖博,杨庆春,徐旭. 预冷组合循环发动机吸气式模态建模与性能分析[J],推进技术, 2022,43(9)[13] 朱清波, 杨庆春, 徐旭. 激波结构问题中连续介质流体力学的失效. 第十二届全国流体力学学术会议, 西安, 2022.2021[1] Yushu Jin, Suyi Dou, Qingchun Yang, Xu Xu, Qingfei Fu, Lun Pan,Performance characteristics of a scramjet engine using JP-10 fuel containing aluminum nanoparticles[J],Acta Astronautica 185 (2021) 70-77[2] Jin, YS, Dou, SY, Wang, X, Yang, QC , Xu, X, Pan, L, Effect of nano-sized aluminum additive on wall heat transfer characteristics of the liquid-fueled scramjet engine[J], APPLIED THERMAL ENGINEERING, Vol. 197, 2021.[3] 王旭, 徐旭. 变截面超-超引射器启动特性数值研究[J]. 强激光与粒子束, 2021, 33(07): 72–78.[4] 吴忧, 徐旭, 陈兵, 杨庆春.高马赫数下横/逆向喷流干扰流场数值研究[J].航空学报,2021 ,42(S1):726359.doi:10.7527/S1000-6893.2021.26359.[5] 李慧强, 徐旭, 朱清波, 靳雨树. 以粉末燃料冲压发动机为动力的火星巡航飞行器方案初步研究. 载人航天, 2021, 27(3): 334-338. http://doi.org/10.3969/j.issn.1674-5825.2021.03.010.[6] 周文元, 徐旭. 超声速气流中液体横向射流雾化数值仿真研究[C]. 第七届爆震与新型推进学术研讨会, 福建漳州, 20212019[1] 朱清波, 徐旭, 丰硕, 韦宝禧. 宽速域火箭增强冲压燃烧室性能数值仿真研究. 第七届冲压发动机技术交流会, 成都, 2019.[2] 周文元, 徐旭. 高速气流中液体射流雾化仿真研究进展[C]. 中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议, 云南昆明, 2019Granted Patents[1] 徐旭,卜彦鹏,周文元,王旭. 冲压发动机系统: CN202111550483.9[P]. 20230425.[2] 徐旭,靳雨树,汤龙生,富庆飞,杨庆春,邵文清,李智欣. 一种应用含固体颗粒凝胶燃料的冲压发动机系统: CN202111304119.4[P]. 20230120.[3] 徐旭,靳雨树,赵融会,周文元,王旭,窦苏沂,杨庆春. 深度变推力发动机推力调控方法、装置及电子设备: CN202110451087.4[P]. 20231121.[4] 徐旭,周文元,卜彦鹏,靳雨树,王旭,杨庆春. 供粉装置、金属粉末冲压发动机及飞行器: CN202110173424.8[P]. 20220329.[5] 徐旭,邢楷,靳雨树,赵融会. 校准装置以及推力测试系统: CN202010906405.7[P]. 20210917.[6] 徐旭,周文元,靳雨树,杨庆春. 液体燃料射流雾化评估方法、装置及计算设备: CN202010697692.5[P]. 20220830.[7] 徐旭,靳雨树,周文元,杨庆春. 一种喷雾流场的测量方法和系统: CN202010701376.0[P]. 20210518.[8] 徐旭,靳雨树,周文元,杨庆春. 喷注装置、发动机及喷注装置设计方法: CN202010688061.7[P]. 20210907.[9] 徐旭,靳雨树,周文元,杨庆春. 燃料喷注设备和发动机: CN202010680939.2[P]. 20210601.[10] 徐旭,靳雨树,杨庆春,李慧强. 燃烧加热器: CN202010137472.7[P]. 20201201.[11] 杨庆春,周文元,朱清波,靳雨树,赵融会,徐旭. 针栓式喷注器、火箭发动机及火箭: CN202011305556.3[P]. 20211130.[12] 杨庆春,靳雨树,徐旭,赵融会,李慧强. 推进剂供应系统、火箭发动机及火箭: CN201911177436.7[P]. 20210406.[13] 杨庆春,靳雨树,徐旭,李慧强,赵融会. 喷注器、火箭发动机和火箭: CN201911177410.2[P]. 20200814.[14] 杨庆春,周文元,徐旭,靳雨树,李慧强. 喷注器和喷注方法: CN201911144866.9[P]. 20201103.[15] 杨庆春,李慧强,徐旭. 二氧化碳高焓来流发生装置: CN201910155325.X[P]. 20200703.Computer Software Copyrights[1] 徐旭, 饶思航, 杨弘桢, 等. 火箭冲压流动仿真通用分析软件(Hurricane)[CP]. 登记号: 2021SR0707683. 国家版权局, 2021[2] 徐旭, 陈兵, 孙冰, 等. 燃烧装置传热特性仿真系统(软件)[CP]. 登记号: 2021SR0791888. 国家版权局, 2021[3] 徐旭, 陈兵, 饶思航, 等高超声速多物理场耦合计算软件[CP]. 登记号: 2021SR0802892. 国家版权局, 2021[4] 陈兵, 徐旭, 饶思航, 等.超/高超声速流动快速计算软件[CP]. 登记号: 2021SR0395993. 国家版权局, 2021[5] 徐旭, 唐靖博, 杨庆春, 等. 基于预冷的组合循环发动机总体性能计算软件[CP] . 登记号: 2021SR0395994. 国家版权局, 2021[6] 杨庆春, 彭坚, 徐旭, 等. 组合循环发动机性能评估软件[CP]. 登记号: 2021SR0395954. 国家版权局, 2021[7] 火箭发动机虚拟仿真实验软件[CP]. 登记号: 2022SR0717718. 国家版权局, 2021