首页
研究领域
开授课程
科研项目
论文
荣誉及奖励
招生信息
学生信息
扫描手机二维码
欢迎您的访问
您是第
位访客
开通时间:
.
.
最后更新时间:
.
.
登录
|
English
|
手机版
同专业硕导
邢炜
( 教员 )
赞
的个人主页 http://shi.buaa.edu.cn/xingwei/zh_CN/index.htm
教员 硕士生导师
主要任职:
助理教授
教师英文名称:
Wei W Xing
教师拼音名称:
Xing Wei
电子邮箱:
896294298e777610e9a1b232a2bd77f496061dc71794be3b7c69d8af4e0106d2825e1d260dabbfc7dbbc4650b540b0f092af253779bce2c93f9686968ae5e6523a4dd2b23401f7aa66f7cabd6df4023fecb930dcb3aa144099b7235c225e94cf361ddec8ff0c4ae76d4bf2d321643d94f20ce8fe88fbbc2e64404ec117499e03
所在单位:
集成电路科学与工程学院
职务:
Assistant Professor
学历:
博士研究生
办公地点:
北京航空航天大学 第一馆 225
性别:
男
学位:
哲学博士学位
在职信息:
在职
毕业院校:
华威大学
学科:
电子科学与技术
论文
当前位置:
中文主页
>>
论文
[1]
.• Triantafyllidis, V., Xing, W., Shah, A. A., & Nair, P. B. (2016). Neural network emulation of spatio-temporal data using linear and nonlinear dimensionality reduction. In Advanced Computer and Communication Engineering Technology (pp. 1015-1029). Springer, Cham.
[2]
.• Xing, W.W., Triantafyllidis, V., Shah, A.A., Nair, P.B. and Zabaras, N., 2016. Manifold learning for the emulation of spatial fields from computational models. Journal of Computational Physics, 326, pp.666-690. (中科院分区Q2,JCR Q1)
[3]
.• Shah, A. A., Xing, W. W., & Triantafyllidis, V. (2017). Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2200), 20160809. (中科院分区Q2,JCR Q2)
[4]
.• Xing, W., Shah, A. A., Urasinska-Wojcik, B., & Gardner, J. W. (2017, October). Prediction of impurities in hydrogen fuel supplies using a thermally-modulated CMOS gas sensor: Experiments and modelling. In 2017 IEEE SENSORS (pp. 1-3). IEEE.
[5]
.• Triantafyllidiis, V., Xing, W. W., Leung, P. K., Rodchanarowan, A., & Shah, A. A. (2018, June). Probabilistic sensitivity analysis for multivariate model outputs with applications to Li-ion batteries. In Journal of Physics: Conference Series (Vol. 1039, No. 1, p. 012020). IOP Publishing.
[6]
.• Gadd, C., Xing, W., Nezhad, M. M., & Shah, A. A. (2019). A surrogate modelling approach based on nonlinear dimension reduction for uncertainty quantification in groundwater flow models. Transport in porous media, 126(1), 39-77. (中科院分区Q2,JCR Q2)
[7]
.• Zhe, S., Xing, W., & Kirby, R. M. (2019, April). Scalable High-Order Gaussian Process Regression. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2611-2620). (中国计算机学会B类会议,统计学习业内顶级会议,接收率30%)
[8]
.• Wang, J., Xing, W#., Kirby, R. M., & Zhang, M. (2019, June). Data-Driven Model Order Reduction for Diffeomorphic Image Registration. In International Conference on Information Processing in Medical Imaging (pp. 694-705). Springer, Cham. (#equal contributions to the first author)(医学图像处理最顶级会议,接收率25%,论文获得2019年会议最佳学术海报奖)
[9]
.• Xing, W., Elhabian, S., Zhe, S, and Kirby, R.M, 2019, Infinite ShapeOdds: A Nonlinear Generative Model for Grid-Structured Shapes. The Thirty-four AAAI (Association for the Advancement of Artificial Intelligence) conference for artificial intelligence. (中国计算机学会A类会议,接收率20%)
[10]
.• Xing, W., Elhabian, Vahid, K. and Kirby, R.M, 2019, Shared-GP: Learning Interpretable Shared Hidden Structure Across Data Spaces for Design Space Analysis and Exploration. Journal of mechanical design, 2020,1-16(中科院分区Q2,JCR Q2)
共19条 1/2
首页
上页
下页
尾页
页
版权所有 2014-2022 北京航空航天大学 京ICP备05004617-3 文保网安备案号1101080018
地址:北京市海淀区学院路37号 邮编:100191 电话:82317114