Personal Homepage

Personal Information

MORE+



Supervisor of Master's Candidates

E-Mail:

Date of Employment:2024-09-05

School/Department:Hangzhou International Innovation Institute

Business Address:Hangzhou international campus, R3 2112

Gender:Male

Status:Employed

Alma Mater:Beihang University

Discipline:Aeronautical and Astronautical Science and Technology
Control Science and Engineering
Transportation Engineering

WANG Mingkai

+

Gender:Male

Alma Mater:Beihang University

Paper

Current position: Home / Paper
Bi-Layer Sizing and Design Optimization Method of Propulsion System for Electric Vertical Takeoff and Landing Aircraft

Impact Factor:9.0
DOI number:10.1016/j.energy.2023.129052
Journal:Energy
Key Words:Aircraft design, Optimization, Vertical takeoff and landing, Electric propulsion
Abstract:Electric vertical takeoff and landing (eVTOL) aircraft is a promising solution for future urban air mobility, but it suffers from insufficient energy and power density as opposed to fossil fuel-based aircraft. This paper proposes a bi-layer design optimization method for electric propulsion systems. To tackle the issue of high-dimension design parameters and multiple performance constraints, the design process is divided into two parameter optimization problems. In the upper layer, only scalar parameters of components are considered to determine a feasible sizing result subject to energy-flow limits. The outcome of this layer further serves as the initial guess of the lower design layer. The constraints of power conservation and conversion among components are taken into account. The optimization is scheduled in a cascaded paradigm that maximizes the total energy efficiency with minimized total weight. The blade-element momentum method is employed to estimate propeller thrust and torque coefficients. The proposed method is applied to a tilt-wing eVTOL. The sizing results shows that the eVTOL mass is reduced by 11.66% as opposed to the benchmark method. The proposed method provides a generic framework for sizing and design optimization independent of configuration and mission profiles.
Indexed by:Journal paper
Document Code:129052
First-Level Discipline:Aeronautical and Astronautical Science and Technology
Document Type:J
Volume:283
Page Number:1-14
Translation or Not:no
Date of Publication:2023-11-12
Included Journals:SCI
Links to published journals:https://www.sciencedirect.com/science/article/pii/S0360544223024465