刘鹏
已经得到个称赞     给我点赞
  • 副研究员
  • 教师英文名称:Peng Liu
  • 教师拼音名称:liupeng
  • 电子邮箱:
  • 入职时间:2020-10-27
  • 所在单位:航空发动机研究院
  • 学历:博士研究生
  • 性别:
  • 学位:工学博士学位
  • 在职信息:在职
  • 毕业院校:天津大学
  • 学科:动力工程及工程热物理
  • 个人简介
  • 研究方向
  • 社会兼职
  • 教育经历
  • 工作经历
  • 团队成员
  • 其他联系方式

工学博士,副研究员,硕士生导师,2010-2014年在天津大学机械工程学院学习并获得工学学士学位,2014-2020年在天津大学机械工程学院学习并获得工学博士学位(直博),2018-2019年受国家留学基金委资助赴美国劳伦斯伯克利国家实验室联合培养,202010月起入职北京航空航天大学航空发动机研究院。航空发动机复杂系统安全性教育部创新团队核心骨干、国家重点项目(四代机)空气系统和传热支撑团队/五代机空气系统联合设计团队核心成员。

主要从事航空发动机能量管理(氢能航空发动机能量管理,先进动力循环/制冷循环,混合工质循环)、空气系统与传热(空气系统低能耗设计,空气系统稳定性评估,关键间隙不敏感性技术)、安全性与适航(基于MBSA的复杂系统安全性分析与评估,大数据在航空发动机安全性领域的应用)等相关研究。

近三年主持“两机”基础科学中心重点项目、国自然青年基金、“两机”专项重大项目专题等科研项目等6项,科研经费超千万。相关成果在Applied Energy、Energy Conversion and Management等期刊上发表SCI论文40篇,其中第1/通讯作者20余篇,申请授权国家/国际发明专利10余项。为能源领域顶级期刊Progress in Energy and Combustion Science(主编邀请制,IF=32)撰写综述论文。曾获中国汽车工程学会优秀博士论文(2021年)、天津大学优秀博士论文(2020年)、中国内燃机学会学术年会暨燃烧节能净化分会联合学术会议优秀论文一等奖(2017年)。

人才培养方面,独立/协助指导研究生10余人,其中北航优秀毕业生2人,北航研究生优秀学术创新成果奖2每年招收免试保送/统考研究生2~3人,招生方向为080700动力工程及工程热物理(学术学位)和085800能源动力(专业学位),欢迎对航空发动机能量管理、空气系统与传热、安全性与适航技术感兴趣的同学联系,联系邮箱:liupeng91@buaa.edu.cn



发表论文

2024年

1. Deng Changchun, Qiu Tian, Liu Peng*, Ding Shuiting, Luo Xiang. BP neural network regularized by wall temperature characteristics to reduce the ill-posedness of two-dimensional inverse heat transfer problems in rotating disk cavities. International Journal of Thermal Sciences, 2024; 203, 109145. 【SCI Q1】

2. Liu Peng, Yang Tianyan, Zheng Hongbin, Huang Xiang, Wang Xuan, Qiu Tian*, Ding Shuiting. Thermodynamic analysis of power generation thermal management system for heat and cold exergy utilization from liquid hydrogen-fueled turbojet engine. Applied Energy 2024;365C: 123290. 【SCI Q1】

3. Deng Changchun, Qiu Tian, Liu Peng*, Ding Shuiting, and Luo Xiang. The reduction of ill-posedness of the inverse heat transfer problem in rotating disc cavities using the wall temperature characteristics as the priori knowledge. International Journal of Heat and Mass Transfer 2024; 222: 125135. 【SCI Q1】

4. Gan Chenyu, Ding Shuiting, Qiu Tian, Liu Peng*, and Ma Qinglin. Model-based safety analysis with time resolution (MBSA-TR) method for complex aerothermal–mechanical systems of aero-engines.  Reliability Engineering & System Safety 2024; 243: 109864. 【SCI Q1】

5. Jin Xin, Liu Chuankai, Liu Peng, Ding Shuiting, Qiu Tian. Robust Optimization of the Secondary Air System Axial Bearing Loads with the Labyrinth Clearance Uncertainty. Journal of Aerospace Engineering, 2024;37(5), 04024051. 【SCI Q3】

2023年

1. Zhang Shenghui, Ding Shuiting, Liu Peng*. Effects of swirl and hot streak on thermal performances of a high-pressure turbine. Chinese Journal of Aeronautics, (2023), 36(5): 250–267【SCI Q1】

2. Shi Yu, Ding Shuiting, Liu Peng*, et.al. Swirl Flow and Heat Transfer in a Rotor-Stator Cavity with Consideration of the Inlet Seal Thermal Deformation Effect. Aerospace, 2023, 10(2), 134【SCI Q1】

2022年:

1. Shi Yu, Ding Shuiting, Qiu Tian, Liu Peng*, Liu Chuankai. Nonuniform Clearance Effects on Pressure Distribution and Leakage Flow in the Straight-through Labyrinth Seals. International Journal of Aerospace Engineering, 2022, 2022, 9684007 SCI Q3

2. Zhang Shenghui, Ding Shuiting, Liu Peng*, Qiu Tian. Effect of Hot Streak on Aerothermal Performance of High Pressure Turbine Guide Vane under Different Swirl Intensities. Aerospace, 2022, 9(10), 579SCI Q1】3. Zhao Gang, Qiu Tian, Liu Peng*. Sensitivity Analysis of Geometrical Parameters to the Flow of Pre-swirl System after Turbine Blade Fracture. Aerospace, 2022, 9(12), 783SCI Q1

4. Shi Yu, Ding Shuiting, Qiu Tian, Peng Liu*, Chuankai Liu. Nonuniform Clearance Effects on Windage Heating and Swirl Development in Straight-Through Labyrinth Seals. Journal of Aerospace Engineering, 2022, 35(3): 04022016. 【SCI Q2】

5. Zhao Gang, Qiu Tian, Liu Peng*. Influence of Blade Fracture on the Flow of Rotor-Stator Systems with Centrifugal Superposed Flow. Aerospace, 2022, 9(2): 106. 【SCI Q1】

6. Wang Jie, Liu Peng*, Qiu Tian, Ding Shuiting. An Investigation into the Flow of Rotating Orifices with Euler Angle and the Calculation Model of Discharge Coefficient Considering the Effect of Comprehensive Incidence Angle. Aerospace 2022, 9, 179. 【SCI Q1】

7. Liu Xiaojing, Ding Shuiting, Qiu Tian, Liu Chuaikai, Liu Peng, Li Guo, Zhang Xiaozhe. Analysis of entropy generation and potential inhibition in an aeroengine system environment. International Journal of Aerospace Engineering, 2022(1), 3637181. SCI Q3

2021年以前:

1.   Ligeng Li, Hua Tian, Peng Liu, Lingfeng Shi*, Gequn Shu*. Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept. Energy, 2021, 229:120718.

2.   Tian, H.1, Liu Peng1., Shu, G*. Challenges and opportunities of Rankine cycle for waste heat recovery from internal combustion engine. Progress in Energy and Combustion Science, 2021, 84, 100906.

3.   Liu, P., Shu, G.*, Tian, H.*, Feng W., Shi, L., Wang, X. Experimental study on transcritical Rankine cycle (TRC) using CO2/R134a mixtures with various composition ratios for waste heat recovery from diesel engines. Energy Conversion and Management, 2020, 208, 112574.

4.   Tian H., Xu Z., Liu P., Wang X., Shu G. How to select regenerative configurations of CO2 transcritical Rankine cycle based on the temperature matching analysis. International Journal of Energy Research, 2020, 44(4), 2560–2579.

5.   Liu, P., Shu, G.*, Tian, H.*, Feng W., Shi, L., Xu, Z. Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in Organic Rankine Cycle for waste heat recovery from diesel engines. Energy Conversion and Management, 2019, 198, 111776.

6.   Liu P., Shu G., Tian H*. How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery. Energy, 2019, 174, 543–552.

7.   Liu P., Shu G., Tian H*. Carbon Dioxide as Working Fluids in Transcritical Rankine Cycle for Diesel Engine Multiple Waste Heat Recovery in Comparison to Hydrocarbons. Journal of Thermal Science, 2019, 28(3), 494–504.

8.   Liu, P., Shu, G.*, Tian, H.*, Feng W., Shi, L., Wang, X. Experimental study on transcritical Rankine cycle (TRC) using CO2/R134a mixtures with various composition ratios for waste heat recovery from diesel engines. Energy Conversion and Management, 2020, 208, 112574.

9.   Tian H., Xu Z., Liu P., Wang X., Shu G. How to select regenerative configurations of CO2 transcritical Rankine cycle based on the temperature matching analysis. International Journal of Energy Research, 2020, 44(4), 2560–2579.

10.   Liu, P., Shu, G.*, Tian, H.*, Feng W., Shi, L., Xu, Z. Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in Organic Rankine Cycle for waste heat recovery from diesel engines. Energy Conversion and Management, 2019, 198, 111776.

11.   Liu P., Shu G., Tian H*. How to approach optimal practical Organic Rankine cycle (OP-ORC) by configuration modification for diesel engine waste heat recovery. Energy, 2019, 174, 543–552.

12.   Liu P., Shu G., Tian H*. Carbon Dioxide as Working Fluids in Transcritical Rankine Cycle for Diesel Engine Multiple Waste Heat Recovery in Comparison to Hydrocarbons. Journal of Thermal Science, 2019, 28(3), 494–504.

13.   Shi L., Shu G. *, Tian H. *, Chen T., Liu P., Li L. Dynamic tests of CO2-Based waste heat recovery system with preheating process. Energy, 2019, 171, pp. 270–283.

14.   Liu P., Shu G., Tian H.*, Wang X., Yu Z. Alkanes based two-stage expansion with interheating Organic Rankine cycle for multi-waste heat recovery of truck diesel engine. Energy, 2018, 147, 337–350.

15.   Liu P., Shu G., Tian H.*, Wang X. Engine load effects on the energy and exergy performance of a Medium Cycle/Organic Rankine Cycle for exhaust waste heat recovery. Entropy, 2018, 20(2), 137.

16.   Yang H., Shu G.*, Tian H., Ma X., Chen T., Liu P. Optimization of thermoelectric generator (TEG) integrated with three-way catalytic converter (TWC) for harvesting engine's exhaust waste heat. Applied Thermal Engineering, 2018, 144, 628–638.

17.   Shu G., Yu Z., Tian H.*, Liu P., Xu Z. Potential of the transcritical Rankine cycle using CO2-based binary zeotropic mixtures for engine's waste heat recovery. Energy Conversion and Management, 2018, 174, 668–685.

18.   Wang X., Shu G.*, Tian H.*, Feng W., Liu P., Li X. Effect factors of part-load performance for various Organic Rankine cycles using in engine waste heat recovery. Energy Conversion and Management, 2018, 174, 504–515.

19.   Shu G.*, Yu Z., Liu P., Xu Z., Sun R. Potential of a thermofluidic feed pump on performance improvement of the dual-loop Rankine cycle using for engine waste heat recovery. Energy Conversion and Management, 2018, 171, 1150–1162.

20.   Li X., Shu G., Tian H.*, Huang G., Liu P., Wang X., Shi L. Experimental comparison of dynamic responses of CO2 transcritical power cycle systems used for engine waste heat recovery. Energy Conversion and Management, 2018, 161, 254–265.

21.   Wang X., Shu G., Tian H., Liu P., Jing D., Li X. The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery. Energy, 2018, 147, 440–450.

22.   田华,井东湛,舒歌群*,王轩,刘鹏. 不同工质的有机朗肯循环系统变工况特性对比研究. 西安交通大学学报, 2018, 52(3), 25–33

23.   田华*,井东湛, 王轩, 刘鹏, 喻志刚. Part-load performance analysis of cogeneration system for engine waste heat recovery. 化工学报, 2018, 69(2), pp. 792–800.

24.   Shu G., Liu P., Tian H. *, Wang X., Jing D. Operational profile based thermal-economic analysis on an Organic Rankine cycle using for harvesting marine engine's exhaust waste heat. Energy Conversion and Management 2017, 146, 107–123.

25.   Shu G., Che J., Tian H.*, Wang X., Liu P., Jing D. Off-Design Regulation Performance of Absorption Chiller Driven by Gas Engine Exhaust. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2017, 50(7), 682–688.

26.   Liu P., Shu G.-Q*., Tian H. *, Wang X., Jing D. Fluid Selection and Thermodynamic Analysis of an Electricity-Cooling Cogeneration System Based on Waste Heat Recovery from Marine Engine. SAE Technical Papers, 2017, 2017-March(March)

27.   Shu G.*, Che J., Tian H., Wang X., Liu P. A compressor-assisted triple-effect H2O-LiBr absorption cooling cycle coupled with a Rankine Cycle driven by high-temperature waste heat. Applied Thermal Engineering, 2017, 112, pp. 1626–1637.

28.   Li X., Shu G., Tian H.*, Shi L., Huang G., Chen T., Liu P. Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery. Energy, 2017, 140, 696–707.

29.   Wang X., Shu G.*, Tian H.*, Liu P., Jing D., Li X. Dynamic analysis of the dual-loop Organic Rankine Cycle for waste heat recovery of a natural gas engine. Energy Conversion and Management, 2017, 148, pp. 724–736

30.   Wang X., Shu G., Tian H., Liu P., Li X., Jing D. Dynamic Response Performance Comparison of Ranking Cycles with Different Working Fluids for Waste Heat Recovery of Internal Combustion Engines. Energy Procedia, 2017, 105, 1600–1605.

31.   Wang X., Shu G.*, Tian H., Liu P., Li X., Jing D. Engine working condition effects on the dynamic response of organic Rankine cycle as exhaust waste heat recovery system. Applied Thermal Engineering, 2017, 123, 670–681.

32.   Shu G., Wang X., Tian H.*, Liu P., Jing D., Li X. Scan of working fluids based on dynamic response characters for Organic Rankine Cycle using for engine waste heat recovery. Energy, 2017, 133, 609–620


暂无内容