扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 李柳元 ( 教授 )

    的个人主页 http://shi.buaa.edu.cn/liliuyuan/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
论文 当前位置: 中文主页 >> 论文
Automatic classification of mesoscale auroral forms using convolutional neural networks
点击次数:
发表刊物:Journal of Atmospheric and Solar-Terrestrial Physics
关键字:POLEWARD BOUNDARY; INTENSIFICATIONS; Convolutional neural networks
摘要:Convolutional neural networks (CNNs) in deep learning enable the extraction of features in image data. Through the multi-layer superposition of a convolutional neural network, we can better capture the essential characteristics of different auroral subclasses and further classify auroral images in detail. Because the auroral morphological features often present abstract characteristics, our study compares different CNN architectures and different layering in order to test the best neural network model for mesoscale aurora classification. Although the classification models and subclasses used b
合写作者:J. -Y. Yang,+++,L. -Y. Li ,+++
第一作者:Z.-X. Guo
论文类型:基础研究
论文编号:105906
一级学科:地球物理学
文献类型:期刊
卷号:235
页面范围:DOI10.1016/j.jastp.2022.105906
ISSN号:1364-6826
是否译文:否
发表时间:2022-06-21
收录刊物:SCI
发布期刊链接:https://www.sciencedirect.com/science/article/pii/S1364682622000797?via%3Dihub
版权所有 2014-2022 北京航空航天大学  京ICP备05004617-3  文保网安备案号1101080018
地址:北京市海淀区学院路37号  邮编:100191  电话:82317114