Personal Homepage

Personal Information

MORE+

Associate Professor

Supervisor of Master's Candidates

E-Mail:

Date of Employment:2025-05-21

School/Department:软件学院

Education Level:博士研究生

Business Address:新主楼C808,G517

Gender:Male

Contact Information:18810578537

Degree:博士

Status:Employed

Alma Mater:北京航空航天大学

Discipline:Software Engineering
Computer Science and Technology

Junfan Chen

+

Gender:Male

Education Level:博士研究生

Alma Mater:北京航空航天大学

Paper

Current position: Home / Paper
ContrastNet: A Contrastive Learning Framework for Few-Shot Text Classification

Journal:Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI), CCF-A
Abstract:Few-shot text classification has recently been promoted by the meta-learning paradigm which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. Despite their success, existing works building their meta-learner based on Prototypical Networks are unsatisfactory in learning discriminative text representations between similar classes, which may lead to contradictions during label prediction. In addition, the tasklevel and instance-level overfitting problems in few-shot text classification caused by a few training examples are not sufficiently tackled. In this work, we propose a contrastive learning framework named ContrastNet to tackle both discriminative representation and overfitting problems in few-shot text classification. ContrastNet learns to pull closer text representations belonging to the same class and push away text representations belonging to different classes, while simultaneously introducing unsupervised contrastive regularization at both task-level and instance-level to prevent overfitting. Experiments on 8 few-shot text classification datasets show that ContrastNet outperforms the current state-of-the-art models.
Co-author:Junfan Chen,Richong Zhang, Yongyi Mao, Jie Xu
Indexed by:国际学术会议
Page Number:10492-10500
Translation or Not:no
Date of Publication:2022-01-01