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A B S T R A C T   

In the emergency response phase after a natural disaster, aviation emergency rescue is an efficient means of 
rescue work. In this paper, the disaster victims to be rescued are discretely split according to the degree of injury, 
and different rescue time windows are given for each degree of injured disaster victims. The model takes into 
account helicopter performance factors such as capacity, cruise, hover, and fuel consumption, as well as the 
problem of multi-trip helicopter missions due to the scale of the emergency, with the decision objective of 
minimizing rescue delay loss. A genetic algorithm based encoding of virtual rescue points is developed to solve 
the problem, and the genetic operation of the algorithm is optimized to provide better solution performance for 
the model characteristics. Finally, the model and algorithm are validated with a real case, and comparative and 
sensitivity analyses are also performed.   

1. Introduction 

In recent years, the frequent occurrence of natural disasters has 
posed a serious threat to people’s lives and has raised concerns about 
emergency response measures (Wang, Choi, Liu, & Yue, 2018). The level 
of emergency management after a disaster is critical to human safety and 
health (Liu, Li, Tu, & Zhang, 2011), and disaster decision-makers should 
be equipped with robust and generic tools and models to effectively 
handle rescue work (Barbarosoǧlu & Arda, 2004). If the response is not 
properly handled, the disaster cannot be controlled in a timely and 
effective manner, which can seriously affect the recovery of social 
functions (Liu, Wang, & Li, 2022), this further highlights the importance 
that governments place on disaster response (Yang, Hao, & Lu, 2018). 

Although technological advances have provided some technical 
support for early warning of natural disasters, accurate predictive ca
pabilities are still not achievable and natural disasters around the world 
continue to pose a significant threat to the functioning of society. In 
2005, Hurricane Katrina hit New Orleans in the United States and delays 
in treating disaster victims caused additional casualties (Lei, Pinedo, Qi, 
Wang, & Yang, 2015). In another natural disaster event, on 7 February 
2009, more than 400 bushfires swept through parts of rural Victoria, 
Australia, killing 173 people and injuring 414 others (Lee, Lei, Pinedo, & 
Wang, 2013). In the aftermath of a natural disaster, infrastructure is 
almost destroyed within minutes or even seconds, houses collapse, roads 

are blocked, communications are disrupted, basic supply capabilities 
such as water and electricity are greatly affected and people in the 
affected areas are in desperate need of relocation to receive proper 
medical assistance. 

Natural disasters are often accompanied by harsh geographical and 
weather conditions, and in some cases, road rescue can be inefficient due 
to traffic congestion or even disruptions to the transport network during 
vehicle transport, especially for rescuing disaster victims stranded in 
mountainous areas, where the rugged and complex terrain can greatly 
affect rescue efforts and cause delays in rescue times. In contrast, effi
cient aviation rescue has become the preferred option for special rescue 
missions. Helicopters have many advantages such as fast response time 
and no need for runways for take-off and landing (Abdelgader, Wu, & 
Nasr, 2016), and have already completed many emergency rescue mis
sions in many countries (Andruszkow, Schweigkofler, Lefering, Frey, 
Horst, Pfeifer, Beckers, Pape, & Hildebrand, 2016). However, as a 
complex systems engineering task, aviation rescue is a technically 
demanding and collaborative operation (Zhang, Yu, Yu, & Zhang, 2016), 
including several tasks such as weather monitoring, organizational 
decision-making, and security, and is subject to restrictions such as fuel 
and landing and take-off environments, leading to many difficulties in 
helicopter emergency scheduling. 

The devastation of a disaster can also lead to varying degrees of 
injury to disaster victims. In this study, disaster victims are split 
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according to their degree of injury and an aviation emergency rescue 
route planning problem is posed in which disaster victims are divided 
according to backpacks, which is defined as the smallest set of needs that 
cannot be further divided. In this study, people with different levels of 
injury are considered as individual backpacks with different rescue time 
windows. 

This study can develop an aviation emergency rescue route planning 
model with backpacks splitting characteristics from two perspectives: 
mission scenario and aviation rescue, the model can solve the problem of 
aircraft scheduling in the event of natural disasters. The paper is orga
nized as follows. In Section 2, we review the literature that is relevant to 
this study. In Section 3, we develop an aviation emergency rescue route 
planning model that characterizes the problem of this paper, In Section 
4, we develop a genetic algorithm suitable for solving the model. In 
Section 5, the problem and algorithm presented in this paper are vali
dated based on a practical case. The final section contains the conclu
sions and the discussions for future work. 

2. Related work 

2.1. Vehicle routing problem 

2.1.1. Split delivery vehicle routing problem 
In a standard Vehicle Routing Problem (VRP), the capacity of the 

vehicle is greater than the demand of any customer. However, in reality, 
there are situations where some customers have high demand, especially 
emergency demand, when some demand points require multi-vehicle 
deliveries. This has led to the Split Delivery Vehicle Routing Problem 
(SDVRP). Archetti, Feillet, Gendreau, and Speranza (2011) studied the 
complexity of the SDVRP problem and confirmed that when the loading 
capacity of a vehicle increases (relative to the demand units), the SDVRP 
is an NP-hard problem. Ji, Zhou, Yu, and Wu (2021) proposed a two- 
dimensional loading constrained split delivery vehicle routing prob
lem (2L-SDVRP) model. Wang, Kinable, and van Woensel (2020) applied 
SDVRP to the fuel supply problem and solved it for multi-vehicle, multi- 
trip, and sub-contract deliveries. Yang, Wang, Pang, Tan, and Zhou 
(2020) considered the case of goods being consumed during trans
portation under adverse conditions. Regarding the solution of SDVRP, 
the Branch-and-Cut-and-Price algorithm by (Archetti, Bianchessi, & 
Speranza, 2014) and the method based on the new vehicle exponential 
flow formula proposed by Ozbaygin et al are the strongest exact methods 
available (Ozbaygin, Karasan, & Yaman, 2018), but these exact methods 
can only solve small instances, so solving SDVRP mostly uses heuristic 
algorithms, including neighborhood search algorithm (Ji et al., 2021), 
ant colony algorithm (Yang et al., 2020), genetic algorithm (Zeng, 
Wang, Chen, & Yang, 2021), etc. 

Most of the current research on SDVRP has been on the continuous 
splitting of demand, where vehicles can be loaded with any number of 
units at the demand point. Qiu, Fu, Eglese, and Tang (2018) considered 
the case of discrete splitting, splitting demands into bags, and verified 
that the splitting method could reduce travel costs by combining ex
periments with different batches. Gupta, Govindan, Mehlawat, and 
Khaitan (2022) applied this splitting method to the green vehicle routing 
problem and considered the case of uncertainty in travel time, mini
mizing fuel emissions by modeling and solving for it. There is less 
research on discrete split vehicle route problem (Salani & Vacca, 2011), 
the aforementioned studies did not consider the individual demand time 
variability of splitting objects, especially for emergency demands. As far 
as we know, different time windows have not been considered for 
emergency demands in currently discrete splitting studies. 

2.1.2. Vehicle routing problems with multiple time windows 
Vehicle Routing Problems With Multiple Time Windows (VRPMTW) 

are those where the customer requests a service that can be over a range 
of time periods. Belhaiza, Hansen, and Laporte (2014) designed a hybrid 
variable neighbourhood forbidden search method to solve the 

VRPMTW, and the study also developed a relaxation algorithm. Bar
adaran, Shafaei, and Hosseinian (2019) presented the vehicle distribu
tion problem for heterogeneous vehicles with multiple hard priority 
time windows (VRPMPTW) and developed three multi-objective models 
considering uncertainties. Beheshti, Hejazi, and Alinaghian (2015) also 
considered the problem of multiple priority time windows and devel
oped a co-evolutionary multi-objective quantum genetic algorithm. 
Favaretto, Moretti, and Pellegrini (2007) considered the vehicle path 
problem with multiple time windows with periodic constraint properties 
and designs an ant colony algorithm for solving it. 

Most of the current research on VRPMTW defines that demand points 
can have different delivery times, where vehicles can deliver goods 
within a specified time period, give a certain penalty for not being 
within the time period (soft time window) or simply not allow delivery 
(hard time window). Under emergency demand conditions, the vari
ability of the individuals being rescued may lead to different levels of 
urgency of the demand and therefore different time windows for rescue, 
and this case can also trip the multiple time window problem. Currently, 
the time window for most VRPMTW studies is set at the time of service to 
the point of need, but for emergency relief, it is the time to transfer the 
victims to a shelter or hospital that affects the final outcome of the relief. 

2.2. Emergency route planning problem 

Unlike the traditional logistics industry of vehicle routing problem, 
emergency rescue is often characterized by strong timeliness and weak 
economy. At the same time, emergency demands are more complex. 
Disasters can also lead to changes in weather and road conditions, 
making the transport time of emergency vehicles difficult to determine, 
or even causing road blockages and resulting in routing failures. At 
present, research into emergency route planning has been conducted 
mainly from two perspectives: demand and uncertainty. 

Based on the diversity of emergency demands, Bodaghi, Pala
neeswaran, and Abbasi (2018) considered both expendable resources 
(food, tents, etc.) and non-expendable resources (volunteers, doctors, 
etc.), loaded them into the same vehicle for transportation, and set the 
disposal time at the point of need as a decreasing linear function of the 
amount of non-expendable resources. Sheu (2010) proposed a dynamic 
rescue demand management model for emergency logistics operations 
under conditions of incomplete information about large-scale natural 
disasters, and applied data fusion to predict rescue demand in multiple 
regions. Fontem, Melouk, Keskin, and Bajwa (2016) considered the 
problem of network delivery in the presence of uncertainty in travel 
times and deadlines. Jiang, Bian, and Liu (2021) studied the optimiza
tion of emergency supplies of fresh agricultural products in the context 
of a large-scale pandemic. The optimization model considered response 
time, risk of infection and transport resources. Zhang, Qin, Wang, He, 
and Liu (2017) proposed the manpower allocation and vehicle routing 
problem (MAVRP), a model that optimizes both manpower allocation 
and vehicle routing, based on the real-life medical problems derived 
from non-emergency ambulance transfer services in public hospitals in 
Hong Kong. Anuar, Lee, and Pickl (2022) studied the delivery of critical 
supplies in humanitarian operations and the model considered random 
road capacity and damage. Chen, Pan, Chen, and Liu (2020) proposed a 
vehicle distribution problem for a non-contact joint distribution service 
during the COVID-19 epidemic. 

For emergency rescue, the destructive nature of disasters can cause 
varying degrees of harm to people. When assessing a disaster, it is 
important to focus not only on the extent of the disaster, but also on the 
consequences of the disaster. The varying degrees of injury of disaster 
victims requiring rescue creates a diversity of emergency demands. The 
urgency of rescuing disaster victims with different levels of injury at the 
same rescue point also varies. 
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2.3. Aviation emergency rescue areas 

The salient feature of emergency route planning is the variability of 
the mission environment, resulting in a high degree of uncertainty in 
factors such as travel time. Compared to road emergency response, 
aviation emergency rescue is relatively less dependent on geographical 
conditions, and parameters such as speed are relatively easy to deter
mine, but the characteristics of helicopter bring with them other factors 
and limitations. In aviation emergency rescue missions, the low altitude 
operating environment of aircraft operating below 1000 m often suffers 
from high safety risks, low rescue efficiency and unreasonable imple
mentation due to helicopter performance. 

Based on the perspective of aircraft scheduling optimization, Ono 
et al. (2013) investigated the differences in aircraft response intervals 
for the provision of emergency medical services in different situations. 
Zhang, Li, and Li (2021) developed a collaborative air-ground dispatch 
model that considered the traffic environment and the performance of 
different aircraft. Chen et al. (2022) proposed a three-tier network 
model for cross-regional emergency resource dispatching, in which the 
three-tier multi-model network is formed by the superposition of rail
way, road, waterway, and air networks. Ferrari and Chen (2020) saw air 
search and rescue fleet planning as a resource allocation problem. Zhang 
et al. (2016) considered the effect of stochastic wind speed in the opti
mization of an aviation emergency rescue route and constructed a 
scheduling optimization model incorporating maximum fuel load, 
average fuel consumption per hour, and aircraft cruise flight speed. 

Based on the aviation emergency rescue capability assessment, 
Zhang, Hu, and Li (2019) evaluated general aviation emergency rescue 
capabilities, using performance parameters such as helicopter range, 
hovering, and load as key influencing factors. Sun, Liu, Tian, Wu, and 
Gao (2020) applied virtual reality technology to evaluate the effec
tiveness of helicopter emergency rescue. From the perspective of search 
and rescue task allocation. Zhang, Li, Wang, Li, and Li (2022) con
structed a search and rescue task allocation model by considering factors 
such as the UAV operating environment and hovering endurance. Beck, 
Teacy, Rogers, and Jennings (2018) constructed a collaborative online 
planning problem model for search and rescue disaster victims’ work in 
emergency response. 

From the above literature, it can be concluded that the performance 
of aircraft is the most critical element for research related to aviation 
emergency rescue, mainly comprising cruise speed, fuel consumption, 
hovering, and loading capacity. For large-scale emergency operations, 
helicopters are in relatively short supply compared to road-based 
emergency vehicles, when multiple round trips are required to carry 
out rescue missions with minimal pilot fatigue. 

3. Model formulation for aviation emergency rescue route 
planning 

3.1. Problem description 

In this study, the problem focuses on the use of helicopters for the 
emergency task of rescuing injured disaster victims. Some of the rescue 
points do not have normal landing and take-off conditions due to the 
limitations of the slope, hardness of the ground, and extreme 
geographical conditions, and therefore required the use of electric 
winches for hovering rescue work with the cooperation of winch hands 
and lifeguards. The number of disaster victims waiting to be rescued at 
some of the rescue points exceeds the helicopter’s capacity, allowing 
disaster victims at the same rescue point to be transferred in batches, but 
disaster victims with the same level of injury at the same rescue point 
need to be transferred in the same batch. Due to the scale of the mission 
and the number of helicopters, each helicopter has to make several trips 
between the hospital and the rescue point until all the disaster victims 
had been transferred to the hospital. The fuel consumption coefficient 
differs between cruising and hovering helicopters, especially when 

hovering, where the helicopter uses its tail to counteract the counter- 
torque caused by the rotor blades to keep the helicopter stable in the 
air, resulting in additional fuel consumption. Disaster victims with 
different injuries require different resettlement times and have different 
rescue time windows. The rescue mission scenario is shown in Fig. 1. 

3.2. Problem assumptions 

The following assumptions underlie the model in this study. 
Assumption 1. Emergency helicopters are deployed at the base in 

advance and are in airworthy condition, and all helicopters depart from 
the base in unison at the start of the mission. 

Clarification: As the activation of the helicopters is a relatively time- 
consuming task, the aviation emergency rescue team will do a good job 
of preparation before the emergency occurs to ensure that the helicop
ters are in an airworthy condition at all times, and that all these prep
arations have been deployed in advance before the decision maker gives 
the order to deploy the mission. 

Assumption 2. Accessibility is provided between each node and the 
flight time of the helicopter between the nodes is known. 

Clarification: Unlike road rescue, helicopter rescue is less depen
dent on geography, so the paper defaults to helicopters being able to fly 
between any node. 

Assumption 3. The number of disaster victims waiting to be rescued 
at each rescue point and the number of people at each injury level is 
known, the number of people at each injury level after splitting is less 
than the emergency helicopter capacity. 

Clarification: The paper divides the disaster victims according to the 
degree of injury, and proposes a route planning problem that divides the 
disaster victims according to backpacks, which is defined as the mini
mum set of demands that cannot be further divided. In this study, the 
groups with different degrees of injuries are considered as individual 
backpacks, so that the number of disaster victims who need to be 
transferred to the same affected demand point is a discrete combination 
of multiple backpacks, and any backpack is smaller than the capacity of 
the helicopter. This also ensures that the helicopter can continuously 
load multiple backpacks. 

Assumption 4. The emergency helicopter used for the rescue mission 
is of the same type. 

Clarification: Different types of helicopters are used for different 
emergency work scenarios, this paper is a study of helicopter rescue and 
transfer of disaster victims. Therefore, it is assumed that the same he
licopters are deployed at the same base for the evacuation of the disaster 
victims. 

Assumption 5. Time spent by the helicopters in refueling is negli
gible, while not taking into account queuing issues. Negligible time 
spent on the ground for normal take-off and landing to accommodate 
and unload the disaster victims. 

Clarification: In this study, the rescue time is mainly determined by 
the helicopter cruise flight time as well as hover rescue placement time. 
Generally, large helicopters used for rescue transportation missions have 
a long range and require less frequent refueling and a short refueling 
time, while the number of refueling equipment at the default resupply 
point can meet the refueling needs of any number of helicopters. 
Therefore, the refueling time for helicopters is negligible. And in the 
normal execution of ground rescue placement or arrival at the hospital 
to unload the disaster victims, there is no need to use the electric winch 
for operation. 

3.3. Mathematical model 

min f =
∑

k∈K

∑

v∈V

∑

r∈R

(

brmax
{

Tkv − tmr, 0
}∑

i∈Nb

Ykv
ir Cr

i

)

(1) 

Subject to: 
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∑

v∈V

∑

k∈K
Hkv

i ⩾1, ∀i ∈ Nb (2)  

∑

k∈K

∑

v∈V
Ykv

ir = 1, ∀i ∈ Nb,∀r ∈ R (3)  

Hkv
i = max

∀r∈R

{
Ykv

ir

}
,∀i ∈ Nb,∀k ∈ K,∀v ∈ V (4)  

∑

j∈Nb∪Nc

Xkv
0j = 1, v = 1, ∀k ∈ K (5)  

∑

i∈Nc

∑

j∈Nb∪Nd

Xkv
ij = 1, v ∈ V\1,∀k ∈ K (6)  

∑

i∈Nb∪Nd

∑

j∈Nc

Xkv
ij = 1, ∀v ∈ V,∀k ∈ K (7)  

∑

i∈N\Nc

Xkv
ij = Hkv

j , v = 1, ∀j ∈ Nb,∀k ∈ K (8)  

∑

j∈N\Na

Xkv
ij = Hkv

i , v = 1, ∀i ∈ Nb,∀k ∈ K (9)  

∑

i∈N\Na

Xkv
ij = Hkv

j , v ∈ V\1, ∀j ∈ Nb, ∀k ∈ K (10)  

∑

j∈N\Na

Xkv
ij = Hkv

i , v ∈ V\1, ∀i ∈ Nb, ∀k ∈ K (11)  

∑

i∈Nb∪Nd

Xkv
ij =

∑

h∈Nb∪Nd

Xk(v+1)
jh ,∀j ∈ Nc (12)  

∑

i,j∈Nb

Xkv
ij ⩽|ϕ| − 1,∀k ∈ K,∀v ∈ V (13)  

Ci =
∑

r∈R
Cr

i ,∀i ∈ Nb (14)  

∑

i∈Nb

Ci⩽vmaxw (15)  

Zkv
i =

∑

r∈R
Ykv

ir Cr
i , ∀i ∈ Nb, ∀k ∈ K, ∀v ∈ V (16)  

∑

k∈K

∑

v∈V
Zkv

i = Ci, ∀i ∈ Nb (17)  

∑

i∈Nb

Zkv
i ⩽w, ∀k ∈ K, ∀v ∈ V (18)  

Wtkv
i =

∑

r∈R
Ykv

ir Cr
i (f ermax{γi, 0}), ∀i ∈Nb,∀k ∈ K,∀v ∈ V (19)  

Tk(v+1) = Tkv +
∑

i∈N

∑

j∈N
Xkv

ij trij +
∑

i∈Nb

Wtkv
i , ∀k ∈ K,∀v ∈ V (20)  

Pkv
i2 = u, ∀i ∈ Na ∪ Nd,∀k ∈ K,∀v ∈ V (21)  

Pkv
j1 ⩽Pkv

i2 − δαtrij + M
(

1 − Xkv
ij

)
,∀i, j ∈ N,∀k ∈ K,∀v ∈ V (22)  

Pkv
i2 = Pkv

i1 − Wtkv
i δβmax{γi, 0},∀i ∈ Nb, ∀k ∈ K,∀v ∈ V (23)  

Pkv
i1 = Pk(v+1)

i2 ,∀i ∈ Nc,∀k ∈ K, ∀v ∈ V (24)  

Pkv
i1 ⩾ρu, ∀i ∈ N, ∀k ∈ K,∀v ∈ V (25) 

Objective (1) is to minimize rescue delay loss. The decision objective 
takes into account the urgency of rescue for disaster victims with 
different levels of injury, and the loss function is related to the time it 
takes for disaster victims to be transferred to the hospital and the 
number of people transferred. There is no reward for arriving earlier 
than the time window, but there is a penalty for arriving later than the 
rescue time window. The greater the degree of injury to the disaster 
victims, the larger the penalty coefficient (Table 1). 

The constraints can be summarized as the helicopter access node 

Fig. 1. Aviation emergency rescue mission scenario.  
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constraint, the helicopter capacity constraint, the travel time constraint, 
and the helicopter fuel constraint.  

1) Node access constraints 

Eq. (2) indicates that each rescue point can be visited by multiple 
helicopters on different trips. Eq. (3) indicates that disaster victims with 
the same level of injury at each rescue point cannot be further split. Eq. 
(4) indicates that if a helicopter visits a rescue point on a given trip, it 
must be loaded with disaster victims with a certain level of injury at that 
rescue point. Eq. (5) indicates that all helicopters depart from the base 
on the first trip. Eq. (6) means that the helicopter departs from the 
hospital at the beginning of all trips except the first. Eq. (7) means that 

disaster victims are taken to the hospital at the end of each trip. Eqs. (8) 
to (11) represent the conservation of flow per helicopter per trip. Eq. 
(12) represents the articulation of successive trips of the same helicop
ter. Eq. (13) avoids the formation of sub-loops between rescue points.  

2) Capacity constraints 

Eq. (14) indicates that the total number of disaster victims waiting to 
be rescued at each rescue point is equal to the sum of the number of 
disaster victims at each level of injury. Eq. (15) ensures that all disaster 
victims are rescued. Eq. (16) means that the number of people loaded on 
the helicopter at the rescue point is the sum of the number of people 
loaded for each level of injury. Eq. (17) indicates that all injured people 
at the rescue points need to be rescued. Eq. (18) indicates a limit on the 
number of people the helicopter can load per trip.  

3) Travel time constraint 

Assuming a departure time of 0 for all helicopters, the cumulative 
flight time of the helicopters consists of the cruise flight time and the 
resettlement time of the disaster victims. The resettlement time is only 
affected by the hover rescue. Eq. (19) indicates the time required for the 
helicopter to settle the disaster victims at the rescue point. Eq. (20) in
dicates the completion time of each helicopter trip.  

4) Fuel constraint 

Eq. (21) indicates that the helicopter is fully fuelled when leaving 
either the base or the refueling point. Eq. (22) indicates the cruise flight 
fuel consumption. Eq. (23) indicates the fuel consumption at the rescue 
point. Eq. (24) indicates the fuel inheritance relationship between the 
front and rear trips of the helicopter. Eq. (25) ensures that the helicopter 
arrives at each node with a greater amount of fuel than the backup fuel. 

4. Design of genetic algorithm 

Route planning is a classical combinatorial optimization problem, 
and the difficulty of solving the problem increases dramatically as the 
size of the problem increases. Genetic algorithm, as a relatively mature 
intelligent optimization algorithm, has been widely used to solve 
combinatorial optimization problems (Gupta et al., 2022). Therefore, a 
maximum retained crossover and adaptive mutation genetic algorithm 
(MRC&AM-GA) has been developed in this paper to solve the model, the 
algorithm uses a new encoding method based on virtual rescue points. 
The main design steps of the algorithm are encoding, decoding, fitness 
calculation, and genetic operation. 

4.1. Coding method 

Assuming that the helicopters need to visit a total of n rescue points, 
and the disaster victims to be rescued at each rescue point are split into a 
total of r injury levels, then the helicopter needs to pass through n*r 
virtual nodes after visiting all the rescue points. The numbers from 1 to 
n*r are not the actual rescue point numbers in the model, but are the 
definition of virtual rescue point, which also constitute the backpacks in 
this paper. The virtual rescue point code is shown in Fig. 2. 

In the encoding method of other nodes, 0 represents the base, H 
represents the hospital, and R represents the refueling point. 

4.2. Decoding strategy 

The decoding operation is carried out in four steps: determining the 
helicopter trips, the adjustment of backpacks within the trip, the inser
tion of hospital nodes, and the selection of fuel supply points. Firstly, the 
helicopter trip is determined by cutting to determine the virtual rescue 
point visited by each helicopter for each trip. Secondly, the location of 

Table 1 
A summary of notations.  

Notation Definition 

Sets  
Na Aviation emergency rescue base,Na = {0}
Nb Set of rescue points,Nb = {1,2,⋯,n}
Nc Set of designated hospitals,Nc = {n+ 1,n+ 2,⋯,n+ m}

Nd Set of refueling stations,Nd = {n+ m+ 1,n+ m+ 2,⋯,n+ m+ h}
N Set of all nodes,N = Na ∪ Nb ∪ Nc ∪ Nd 
K Set of emergency helicopters,K = {1,2,⋯,k}
R Set of injury rating of the disaster victims,R = {1,2,⋯, r}
V Set of emergency helicopter trips,V = {1,2,⋯,v}

Indexes  
i Helicopter access to the node index 
j Helicopter access to the node index 
k Emergency helicopters index,k ∈ K 
r Disaster victims injury rating index,r ∈ R 
v Emergency helicopter trip index,v ∈ V  

Parameters  
w Maximum number of disaster victims that can be loaded on an 

emergency helicopter k 
cr

i Number of disaster victims with injury level r at rescue point i 
ci Total number of disaster victims to be relocated at rescue points i 
γi If emergency helicopter at rescue point i settles disaster victims with 

hover rescue, γi=1; otherwise, γi=0 
fer Disposal time of disaster units with injury class r at the time of the 

hover rescue 
trij Cruise flight time of helicopter from node i to j 
tmr The rescue time window for disaster victims with injury level r to reach 

the hospital 
br Delayed loss of rescue per injured disaster victims per unit of time for r 
u Fuel tank volume for emergency helicopters 
δα Fuel consumption coefficient for helicopter cruising flights (at a 

certain cruising speed) 
δβ Fuel consumption coefficient for the hovering rescue phase of a 

helicopter (at a given hover height) 
vmax Maximum number of trips per emergency helicopter 
ρ Safe backup fuel coefficient(contingency fuel) for emergency 

helicopters 
M A large number  

Variables  
Xkv

ij If emergency helicopter k visits node j from node i for the trip v, Xkv
ij =1; 

otherwise, Xkv
ij =0 

Ykv
ir If the emergency helicopter k is loaded on its trip v with disaster 

victims of rescue point i of injury level r, Ykv
ir = 1; otherwise, Ykv

ir = 0 
Hkv

i If emergency helicopter k visits rescue point i on the trip v, Hkv
i = 1; 

otherwise,Hkv
i = 0 

Wtkv
i Disposal time of emergency helicopter k for the trip v at rescue point i 

Tkv Emergency helicopter k time to complete the trip v 
Zkv

i Number of disaster victims loaded at rescue point i on the trip v of 
emergency helicopter k 

Pkv
i1 The amount of fuel remaining in the tank of the emergency helicopter k 

for the trip v to node i 
Pkv

i2 The amount of fuel remaining in the tank of the emergency helicopter k 
leaving node i on trip v  
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the backpacks within the trip is adjusted. Thirdly, identify suitable 
hospitals to house the disaster victims based on the head and end rescue 
points of each trip. Finally, based on the characteristics of helicopter fuel 
replenishment, refueling strategies are developed and suitable fuel 
supply points are inserted, resulting in a complete helicopter route plan. 

4.2.1. Trip cutting 
In this study, a putback random sampling method is used to select the 

cut points and the number of cut routes depends on the number of he
licopters and the maximum number of trips. Although the maximum 
number of trips per helicopter is specified in the model, however, when 
helicopters are on a rescue mission, each helicopter does not necessarily 
need to run all trips and only needs to meet the need to move all disaster 
victims. Therefore, when decoding the cut trips, the same cut point is 
chosen to indicate that the trip access node belonging to that helicopter 
is the empty set, i.e., the helicopter does not perform this trip task. In the 
final formed cut piece segment, according to left-to-right order, each 
vmax is a route plan for one helicopter. 

4.2.2. Backpacks adjustment 
As disaster victims at the same rescue point are split into backpacks 

and have different time windows, disaster victims with different levels of 
injury at the same rescue point can theoretically be transferred in mul
tiple batches, which results in different backpacks belonging to the same 
rescue point within the same trip of a particular helicopter being able to 
be randomly arranged in a sequence of routes, not necessarily in adja
cent order. Once the trip route has been determined, if the different 
backpacks belonging to the same rescue point are not in adjacent order, 
they need to be adjusted to be in adjacent order. 

4.2.3. Hospital selection 
At the end of each trip, the helicopter needs to place the disaster 

victims in a suitable hospital for treatment, thus freeing up seats for the 
next rescue mission. The hospital visited at the end of a helicopter trip is 
also the starting point for the next trip. Therefore, the hospital with the 
shortest distance between the last rescue point of the current trip and the 
first rescue point of the next trip is used as the endpoint of the current 
trip. When the helicopter performs its last trip, it only needs to select the 
hospital with the closest distance to the last rescue point visited on this 
trip. 

4.2.4. Fuel replenishment 
The fuel replenishment point selection scheme of this study can be 

described as follows: when the helicopter arrives at the actual node 
corresponding to gene at i, calculate the remaining fuel for the execut
able mission (removal of backup fuel), calculate the fuel consumption of 
the cruise flight to the next actual node corresponding to gene at i+1 
according to the order of the route node visits, then calculate the fuel 
consumption resulting from the resettlement of disaster victims at the 
node corresponding to gene at i + 1, and finally calculate the fuel con

sumption from the actual node corresponding to gene at i+1 to the 
nearest refueling node. Compare the remaining executable task fuel with 
the sum of the three fuel consumptions above, If the former is greater 
than the latter, the helicopter still has enough fuel to travel to the 
replenishment point after flying to the actual node corresponding to 
gene at i and placing the disaster victims, so there is no need to insert a 
refueling node after gene at i. If the former is less than the latter, the 
corresponding refueling node needs to be inserted to meet the next 
rescue mission. 

Two cases need to be analyzed for inserting the refueling stations. 
When the actual nodes corresponding to gene at i and gene at i+1 
belong to different nodes, then only the appropriate refueling station 
point needs to be inserted between the actual nodes corresponding to i 
and i + 1; however, when the actual nodes corresponding to i and i+1 
belong to the same rescue point, if the fuel refueling point is inserted 
between them, the helicopter returns to the original node after flying to 
the refueling station point to refuel, which means that when the heli
copter finds that it is running low on fuel after resettling some of the 
disaster victims at the rescue point, it needs to refuel at the refueling 
point and come back to continue resettling the remaining victims at that 
rescue point. The fallback operation is performed for the sub-case, i.e., 
the actual node corresponding to i is selected to refuel and resupply in 
front of its different nodes, ensuring that the nodes before and after the 
refueling node visited by the helicopter are different. 

After analyzing the specific scenario where refueling is needed, a 
suitable refueling site needs to be selected. In this paper, there are two 
options for selecting refueling stations for helicopters. The first scheme 
is to calculate the sum of the two visiting nodes of the helicopter before 
and after refueling among all refueling nodes, select the refueling station 
point with the smallest distance, and, when the remaining fuel of the 
helicopter at the current node can guarantee to reach the refueling node, 
choose to insert the refueling node; when the remaining fuel of the he
licopter at the current node cannot guarantee to reach the refueling 
node, choose the refueling node closest to the node. 

In Fig. 3, the specific implementation of each step in the decoding 
operation is illustrated. The example assumes that there are five rescue 
points, that the disaster victims at each rescue point are split into three 
levels according to the degree of injury, and that there are two heli
copters performing emergency missions, each of which performs a 
maximum of two trip rescue missions. After implementing the rules for 
each step, two path scenarios are finalized. In scenario (a), both heli
copters perform 2 trip missions, while in scenario (b), the second heli
copter performs only one mission(The other trip is an empty set). 

4.3. Fitness function 

Since the routes generated after cutting do not necessarily comply 
with the helicopter capacity constraint, in this paper, solutions that 
violate the constraints are penalized. The fitness function is calculated as 
Eq. (26). 

Fig. 2. Virtual rescue point coding method.  
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min f =

(
∑

k∈K

∑

v∈V

∑

r∈R

(

brmax
{

Tkv − tmr, 0
}∑

i∈Nb

Ykv
ir Cr

i

)

+ M
∑

k∈K

∑

v∈V
max

{
∑

i∈Nb

Zkv
i − w, 0

})

(26)  

4.4. Genetic operation 

4.4.1. Mixed selection strategy 
The selection method used in this study is a combination of the bi

nary tournament method and the retention of the elite strategy. The 
binary tournament method ensures that each individual in the popula
tion has a probability of being selected unless it is the least fit individual 
in the population, thus giving the algorithm a stronger global search 
capability. The retention of the elite strategy ensures that the individuals 
with the highest fitness degree in the population make it to the next 
generation without being eliminated. The individuals with the highest 
fitness degree in the current population are not subject to crossover and 
mutation operations and enter the offspring directly, replacing the in
dividuals with the worst fitness degree in the offspring and ensuring 
convergence of the algorithm. 

4.4.2. Maximum retained crossover 
The two crossover approaches adopted in this study can provide a 

degree of assurance that the population is diverse and avoid generating 
too many structurally duplicated chromosomes. When the offspring 
chromosome is decoded, the selected subroutes (including empty trips) 
are not cut, but only the sequences formed by the remaining gene sets 
are cut. The number of cut fragments is equal to the total number of 
helicopter strokes minus the number of selected child routes. The cutting 
trips are spliced with the retained routes, in left-to-right order, each vmax 

is a route plan for one helicopter. The two crossover methods are shown 
in Fig. 4. 

As the same offspring chromosome is decoded, different cut point 
selections can generate different routing trips, and the crossover oper
ation does not guarantee that the offspring chromosomes are necessarily 
better than the parent chromosomes, therefore, the maximum retained 
crossover in this paper incorporates a multiple cut strategy, which per
forms multiple trip cuts based on the generated offspring chromosomes, 
while mixing the parent chromosomes and the multiple cut offspring 
chromosomes for the decoding operation, and selecting the individual 
with the highest fitness from the mixed population as the final crossover 
offspring. 

4.4.3. Adaptive mutation operator 
To enhance the local search capability at the later stage or when 

merit search stalls, this paper optimizes the mutation operation. The 
study defines the adaptive rule as follows: 

Fig. 3. Detailed steps of the decoding process.  

Y. Li et al.                                                                                                                                                                                                                                        



Computers & Industrial Engineering 181 (2023) 109339

8

Pmax =

{
P1

max, bfitn⩽χmax

P2
max, bfitn > χmax

(27)  

pm(k) =

⎧
⎪⎨

⎪⎩

Pmax ×
3pop/2 − k

pop
, k⩾pop

/

2

Pmax , k < pop/2
(28) 

In Eqs. (27) and (28),Pmax is the mutation probability control 
parameter, whose value is determined according to the number of times 
the current optimal solution is maintained constant in the iterative 
process, and if the number of stagnation exceeds χmax,Pmax takes a larger 
value. k is the ordinal number of the population fitness of the offspring 

generated by the crossover operation sorted from smallest to largest, 
pm(k) denotes the mutation probability of the individual whose popu
lation fitness is sorted as k. 

Ordinary 2-opt based mutation operation has performed poorly in 
solving this paper’s model. In this study, we designed mutation strate
gies based on 2-opt and insertion. To avoid excessive splitting of the 
same rescue point, 2-opt in this paper has two implementation forms, 
namely, exchanging the selected backpacks and exchanging all the 
backpacks corresponding to the selected rescue point in the trip, two 
forms are randomly selected. The insertion operation can be described 
as: randomly selecting two backpacks or all the backpacks in the cor
responding rescue point in the trip, and randomly performing forward 

Fig. 4. Crossover operation.  

Fig. 5. Mutation operation.  

Y. Li et al.                                                                                                                                                                                                                                        



Computers & Industrial Engineering 181 (2023) 109339

9

insertion or backward insertion. The mutation operations were imple
mented randomly and executed multiple times, the next mutation 
operation is based on the previous one. The mutation can be accepted 
and stopped once the fitness is better than the offspring. But if the fitness 
becomes worse, the mutation result can still be retained with a relatively 
small probability. This method ensures a certain degree of local search in 
the direction of seeking superiority and increases the population di
versity with a certain probability. The specific implementation of mu
tation operation is shown in Fig. 5. 

5. Case study 

5.1. Case background 

Wenzhou City, Zhejiang Province, China, is prone to natural disasters 
due to its complex geographical conditions, posing considerable diffi
culty to rescue work. The city has established and gradually improved its 
aviation emergency rescue system since 2012, with the backbone of its 
aviation emergency rescue force being the East Sea First Rescue Flight of 
the Chinese Ministry of Transport, which is responsible for major natural 
disaster rescue work and provides emergency rescue services to units 
and individuals free of charge, with radiation coverage of the city and 
surrounding cities. The incoming Wenzhou aviation emergency rescue 
force is deployed at Longwan International Airport, equipped with 
several rescue helicopters and crews, each equipped with a winch. In 
carrying out special rescue tasks such as search and rescue at sea or 
rescue operations under extreme geographical conditions, winch han
dlers and lifeguards are required to use the winch control system to 
complete rescue placement in the hovering state of the helicopter. The 
city has now established a three-tier nodal rescue space layout of base- 

resupply point-landing point. 

5.2. Data preparation 

An aviation emergency rescue mission scenario is shown in Fig. 6. 
The location parameters of the rescue points are randomly generated 
and the parameters of the other nodes are derived from the existing 
configuration of the aviation emergency rescue system. These nodes are 
marked by ArcGIS, and the corresponding half-positive vector (Haver
sine) distances are calculated from the latitude and longitude co
ordinates of the nodes, which are approximately equal to the low-flying 
distance of the helicopters during the rescue. 

In this case study, three S-76D helicopters take off from Longwan 
International Airport at the same time. It is assumed that the cruise 
speed of the helicopters is constant during the mission, and the heli
copters hover at a certain altitude during each rescue hover. The crew is 
composed of two pilots, one paramedic, one winch operator, and one 
lifeguard. Based on the analysis of the scale of the mission and the 
existing configuration, the maximum number of trips per helicopter to 
complete the rescue mission is set to 4 to ensure that all disaster victims 
are rescued and to minimize crew fatigue, and the backup fuel coeffi
cient is set to 0.1. The relevant parameters of the rescue helicopter are 
shown in Table 2. 

The parameters of the rescue points include the settlement method 
and the number of disaster victims to be rescued. The case study takes 
into account the randomness and destructiveness of the disaster, some of 
the rescue points do not have landing and take-off conditions, so the 
helicopter can only hover for resettlement, while the level of injury and 
the corresponding number of disaster victims are randomly generated 
according to the characteristics of the model, and the parameters of the 

Fig. 6. Location of aviation emergency rescue mission nodes (marked by ArcGIS).  
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rescue points are shown in Table 3. 
Among the parameters related to disaster victims, the rescue time 

window for reaching the hospital for disaster victims with different 
injury levels is 1.5 h, 2 h, and 2.5 h respectively, and the unit disposal 
time for disaster victims with different injury levels in hover rescue is 
0.13 h, 0.08 h, and 0.05 h respectively, and the rescue delay loss per unit 
time for disaster victims with different injury levels is $12, $8, and $3 
respectively. 

5.3. Results analysis 

5.3.1. Computational result 
The programming tool used to implement the algorithm is Python 

3.9 and the computer processor configuration is 11th Gen Inter(R) Core 
(TM) i7-11700 T @1.40 GHz 1.39 GHz with 16.0 GB of RAM and the 
system type is Windows 10 64-bit operating system. 

The parameters of the algorithm are set as follows: population size is 
200, and the number of iterations is 300. The crossover probability is 
0.9, where the preceding crossover probability is 0.9, the posterior 
crossover probability is 0.1, and the number of crossover cuts is 2. The 
mutation probability control parameter P1

max is 0.1, and the control 
parameter changes toP2

max = 0.9 when the current optimal solution of the 
algorithm remains unchanged for 15 iterations. The mutation operations 
of 2-opt and insertion have a probability of 0.5, and the implementations 
based on backpacks and rescue points have the same probability. The 
number of iterative mutations is 2. When the iterative mutation result is 
worse, the parent result is retained with a probability of 0.8 and the 
worse child result is accepted with a probability of 0.2. M takes the value 
of 10000. The result of one iterative calculation is shown in Fig. 7. 

From Fig. 7, in the beginning, the solution to the problem is 
randomly generated, and the objective function is relatively large. With 
the increase of the number of iterations, rescue delay loss of disaster 
victims gradually decrease under the genetic operation of the algorithm, 
and gradually converges after about 170 iterations. Finally, it is found 
that the loss of rescue delay is $253.48. The detailed route information 
of each emergency helicopter is shown in Table 4. 

It can be seen from Table 4 that the two helicopters fly all four trips, 
while one helicopter only performs three trips of rescue missions, and 

the completion time of the entire rescue mission is about 4.1 h. Rescue 
points 13, 11, 3, 9, and 7 are split, but only the rescue mission at rescue 
point 13 is carried out by two different helicopters, all other rescue 
points are visited by the same helicopter at each point. 

To further verify the stability of the algorithm’s calculation results, 
this study conducts 20 calculations for the case, the initial population is 
generated randomly, and each iteration of the calculation starts from a 
different initial population. The calculation results are shown in Fig. 8. 
With a mean of $262.57 and a median of $252.60 for the 20 calculations, 
the data are relatively concentrated. 

5.3.2. Comparative analysis 
In this study, the maximum retained crossover and adaptive muta

tion genetic algorithm (MRC&AM-GA) has been developed to solve the 
model, also according to the characteristics of the problem, the 2-opt 
and insertion methods based on backpacks and rescue points have 
been designed in the mutation operation, and the multiple mutation 
execution logic has been developed. To further verify the effectiveness of 
the improvements to the algorithm, the computational results are 
compared with those of the standard genetic algorithm with crossover 
singleton generation and mutation fixed probability (CSG&MFP-GA). 

Table 2 
Parameters of the helicopters for the rescue mission (get from S-76D flight 
manual).  

Parameters Value Parameters Value 

Cruising speed 269 km/h Oil capacity volume 1063L 
Max number of 

passengers 
2+12 
seats 

Cruise fuel consumption 
coefficient 

350L/ 
h 

Number of crew 
members 

5 people Hovering fuel consumption 
coefficient 

472L/ 
h  

Table 3 
Parameters related to rescue points.  

i γi cr
i 

r = 1 r = 2 r = 3 

1 0 2 1 1 
2 1 1 1 2 
3 0 3 2 1 
4 1 1 2 2 
5 1 2 2 1 
6 0 1 1 2 
7 1 2 4 4 
8 1 2 4 1 
9 0 1 1 2 
10 1 2 3 1 
11 0 4 1 1 
12 1 1 1 2 
13 1 3 1 2  

Fig. 7. The curve of fitness function changing with algorithm iteration.  

Table 4 
Information on the rescue routes of each emergency helicopter.  

Crew 
number 

Trip Rescue route node 
access 

Disaster 
victims loaded 

Cumulative 
flight time 

B-7327 1 0 → 13{1,2} → 11{1,2} 

→ H2 
9 59.62mins 

2 H2 → 10{1,2,3} → H2 6 120.03mins 
3 H2 → 11{3} → R2 → 

8{1,2,3} → H5 
8 225.85mins  

B-7357 1 0 → 1{1,2,3} → 
5{1,2,3} → H4 

9 80.37mins 

2 H4 → 4{1,2,3} → H3 5 126.19mins 
3 H3 → 6{1,2,3} → R1 

→ 2{1,2,3} → H1 
8 175.34mins 

4 H1 → 13{3} → H2 2 205.49mins  

B-7359 1 0 → 3{1,2} → 9{1,2} → 
7{1} → H5 

9 87.09mins 

2 H5 → 7{2,3} → H5 8 132.25mins 
3 H5 → R4 → 12{1,2,3} 

→ H2 
4 191.09mins 

4 H2 → 3{3} → 9{3} → 
H5 

3 245.66mins 
(max)  
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The iterative calculation process of the two algorithms is shown in Fig. 9. 
The final outputs are $245.45 and $381.96 respectively. Both algo

rithms are calculated iteratively from the same initial population. It can 
be seen in Fig. 9, as the number of iterations increases, the objective 
function of MRC&AM-GA declines significantly faster than CSG&MFP- 
GA under the action of the maximum retained crossover method, 
proving that it has a stronger merit-seeking capability in the early stage. 
In the later stages of the algorithm’s operation, the search tends to 
stagnate, and the adaptive rules strengthen the local search ability of 
MRC&AM-GA in the later stages, ensuring population diversity to a 

certain extent. To avoid the influence of accidental factors on the results 
of a single calculation, 10 calculations are performed for each algorithm, 
and the boxplot comparison of the two algorithms is shown in Fig. 10. 

From a comparison of the 10 data sets, the MRC&AM-GA demon
strated stronger solution performance, with relatively small mean and 
median, as well as flatter boxe and less fluctuation in results. 

5.3.3. Sensitivity analysis 
In the aviation emergency rescue mission, the maximum number of 

loaded disaster victims and backup fuel of the helicopter can change the 

Fig. 8. Statistics of calculation results.  

Fig. 9. The fitness curve of the two algorithms.  
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order of access nodes on the route, thus affecting the rescue time. In this 
study, while keeping other conditions unchanged, the algorithm is 
calculated from the same initial population. The sensitivity analysis of 
these two factors is carried out respectively and the results are shown in 
Fig. 11.  

1) Sensitivity analysis of the maximum number of disaster victims 
loaded 

In the case of this study, the S-76D helicopter used for rescue mission 
has 2+12 seats, and there are 5 crew members including medical staff. 
Professional medical rescue helicopters are equipped with simple med
ical equipment, such as ventilators. During a normal rescue mission, 
medical personnel accompany the helicopter to provide medical cover, 
additional medical staff may be on board if necessary. However, in 
special demand situations, due to space constraints in the cabin, it is 
possible to reduce the number of medical staff or overload the helicopter 
as appropriate, while ensuring its safety. Therefore, to further investi
gate the effect of the number of disaster victims on board the helicopter 
on the results, the variation of the objective function is calculated for the 
cases of accommodating 7 to 12 people respectively. 

From Fig. 11(a), it can be concluded that the number of disaster 
victims loaded on the helicopter has an impact on the rescue delay 
losses. The overall trend is that the lower the number of disaster victims 
loaded, the greater the rescue delay loss. The objective function amounts 
to $343.32 with the addition of two medical staff. The difference in 

rescue delay losses is not significant when the crew members are 4,5 and 
6. The downward trend in the objective function accelerates when the 
helicopter is overloaded by one to two people. Therefore, if necessary, a 
suitable overload solution can be selected while meeting the maximum 
take-off weight and safety of the helicopter.  

2) Sensitivity analysis of helicopter safety backup fuel 

Although the fuel consumption parameters for helicopter cruising 
and hovering are known in this paper, there is still a risk of increased 
fuel consumption due to unforeseen circumstances during rescue 
mission, and backup fuel ensures the safety of the helicopter in the air to 
a certain extent. Subjectively, the increase in backup fuel can shorten the 
range of the helicopter and increases the frequency of fuel supply, thus 
extending the rescue time. In this study, the change of rescue delay loss 
is calculated separately for different coefficients. 

As can be seen in Fig. 11(b), there is no significant change in the 
objective function when the backup fuel coefficient is less than 0.20, all 
three helicopters refuel once, when it is not wise and safe to keep too 
little backup fuel. At a coefficient equal to 0.15, it is approximately the 
international standard for 30-minute cruise flight reserve fuel. In case it 
is greater than 0.20, the rescue delay loss increases obviously, and the 
shortening of the maximum range of the helicopter directly leads to an 
increase in the number of visits to refueling stations, which affects 
rescue time. Therefore, the decision-maker should set the backup fuel 
reasonably according to helicopter safety. 

6. Conclusions and discussions 

This study is based on an emergency mission scenario, in which 
disaster victims waiting to be rescued are discrete split according to their 
degree of injury, and given different urgency rescue time windows. The 
model also takes into account the characteristics of helicopter perfor
mance, and establishes an air emergency rescue route planning problem 
that considers the split of disaster victims according to backpacks, with 
the loss of rescue delays as the decision objective. A genetic algorithm is 
used to solve the model based on a virtual rescue point coding approach 
to provide a scientific route plan for emergency decision-makers. 

Several conclusions can be drawn from the problem characteristics 
and the analysis of the results: (1) the model can effectively address the 
differentiated characteristics of the individual demands of rescue tar
gets; (2) the designed genetic algorithm solution is relatively stable and 
can provide a more satisfactory solution; (3) some of the parameters of 
the helicopter can affect the quality of rescue mission completion, and 
decision-makers should make reasonable adjustments according to the 
actual needs. 

In a related study by other scholars, Tirkolaee et al. (2019a) 

Fig. 10. Comparison of two algorithm boxplots.  

Fig. 11. Sensitivity analysis of maximum number of disaster victims loaded and backup fuel.  
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investigated the multi-trip vehicle routing problem with time windows 
of particular relevance to municipal waste collection, considering mul
tiple vehicle trips and time windows as the most critical features of the 
problem. Still using municipal waste collection as a research context. 
Tirkolaee et al. (2019b) extended their previous research to the case of 
demand uncertainty and constructs a bi-objective robust model. Kha
lilpourazari and Doulabi (2022) studied the problem of designing blood 
supply chain networks in emergency, and the parameters of the pro
posed mathematical formulation are also uncertain. For the treatment of 
uncertainty, robust optimization models were constructed in the papers 
(Ozmen, Kropat, & Weber, 2017; Özmen, Weber, Batmaz, & Kropat, 
2011) based on polyhedral uncertainty sets. These discussions of un
certainty and how to deal with it inspire for our future work. 

Compared to the mentioned scholars’ research, we consider more 
complex real-life problem scenarios, not only considering multiple trips 
and time windows, but also considering the characteristics of demand 
variability, which leads to the model innovation of this study. However, 
in contrast to their research, the parameters in our model are all 
deterministic, and there is much scope for expansion in terms of 
parameter uncertainty for emergency scenarios, particularly the impact 
of environmental factors on helicopter performance and the uncertainty 
of rescue demands. Improving the applicability of the model is a chal
lenge we will need to face in the future. 
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