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In the emergency response phase after a natural disaster, aviation emergency rescue is an efficient means of
rescue work. In this paper, the disaster victims to be rescued are discretely split according to the degree of injury,
and different rescue time windows are given for each degree of injured disaster victims. The model takes into
account helicopter performance factors such as capacity, cruise, hover, and fuel consumption, as well as the
problem of multi-trip helicopter missions due to the scale of the emergency, with the decision objective of

minimizing rescue delay loss. A genetic algorithm based encoding of virtual rescue points is developed to solve
the problem, and the genetic operation of the algorithm is optimized to provide better solution performance for
the model characteristics. Finally, the model and algorithm are validated with a real case, and comparative and
sensitivity analyses are also performed.

1. Introduction

In recent years, the frequent occurrence of natural disasters has
posed a serious threat to people’s lives and has raised concerns about
emergency response measures (Wang, Choi, Liu, & Yue, 2018). The level
of emergency management after a disaster is critical to human safety and
health (Liu, Li, Tu, & Zhang, 2011), and disaster decision-makers should
be equipped with robust and generic tools and models to effectively
handle rescue work (Barbarosoglu & Arda, 2004). If the response is not
properly handled, the disaster cannot be controlled in a timely and
effective manner, which can seriously affect the recovery of social
functions (Liu, Wang, & Li, 2022), this further highlights the importance
that governments place on disaster response (Yang, Hao, & Lu, 2018).

Although technological advances have provided some technical
support for early warning of natural disasters, accurate predictive ca-
pabilities are still not achievable and natural disasters around the world
continue to pose a significant threat to the functioning of society. In
2005, Hurricane Katrina hit New Orleans in the United States and delays
in treating disaster victims caused additional casualties (Lei, Pinedo, Qi,
Wang, & Yang, 2015). In another natural disaster event, on 7 February
2009, more than 400 bushfires swept through parts of rural Victoria,
Australia, killing 173 people and injuring 414 others (Lee, Lei, Pinedo, &
Wang, 2013). In the aftermath of a natural disaster, infrastructure is
almost destroyed within minutes or even seconds, houses collapse, roads
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are blocked, communications are disrupted, basic supply capabilities
such as water and electricity are greatly affected and people in the
affected areas are in desperate need of relocation to receive proper
medical assistance.

Natural disasters are often accompanied by harsh geographical and
weather conditions, and in some cases, road rescue can be inefficient due
to traffic congestion or even disruptions to the transport network during
vehicle transport, especially for rescuing disaster victims stranded in
mountainous areas, where the rugged and complex terrain can greatly
affect rescue efforts and cause delays in rescue times. In contrast, effi-
cient aviation rescue has become the preferred option for special rescue
missions. Helicopters have many advantages such as fast response time
and no need for runways for take-off and landing (Abdelgader, Wu, &
Nasr, 2016), and have already completed many emergency rescue mis-
sions in many countries (Andruszkow, Schweigkofler, Lefering, Frey,
Horst, Pfeifer, Beckers, Pape, & Hildebrand, 2016). However, as a
complex systems engineering task, aviation rescue is a technically
demanding and collaborative operation (Zhang, Yu, Yu, & Zhang, 2016),
including several tasks such as weather monitoring, organizational
decision-making, and security, and is subject to restrictions such as fuel
and landing and take-off environments, leading to many difficulties in
helicopter emergency scheduling.

The devastation of a disaster can also lead to varying degrees of
injury to disaster victims. In this study, disaster victims are split
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according to their degree of injury and an aviation emergency rescue
route planning problem is posed in which disaster victims are divided
according to backpacks, which is defined as the smallest set of needs that
cannot be further divided. In this study, people with different levels of
injury are considered as individual backpacks with different rescue time
windows.

This study can develop an aviation emergency rescue route planning
model with backpacks splitting characteristics from two perspectives:
mission scenario and aviation rescue, the model can solve the problem of
aircraft scheduling in the event of natural disasters. The paper is orga-
nized as follows. In Section 2, we review the literature that is relevant to
this study. In Section 3, we develop an aviation emergency rescue route
planning model that characterizes the problem of this paper, In Section
4, we develop a genetic algorithm suitable for solving the model. In
Section 5, the problem and algorithm presented in this paper are vali-
dated based on a practical case. The final section contains the conclu-
sions and the discussions for future work.

2. Related work
2.1. Vehicle routing problem

2.1.1. Split delivery vehicle routing problem

In a standard Vehicle Routing Problem (VRP), the capacity of the
vehicle is greater than the demand of any customer. However, in reality,
there are situations where some customers have high demand, especially
emergency demand, when some demand points require multi-vehicle
deliveries. This has led to the Split Delivery Vehicle Routing Problem
(SDVRP). Archetti, Feillet, Gendreau, and Speranza (2011) studied the
complexity of the SDVRP problem and confirmed that when the loading
capacity of a vehicle increases (relative to the demand units), the SDVRP
is an NP-hard problem. Ji, Zhou, Yu, and Wu (2021) proposed a two-
dimensional loading constrained split delivery vehicle routing prob-
lem (2L-SDVRP) model. Wang, Kinable, and van Woensel (2020) applied
SDVRP to the fuel supply problem and solved it for multi-vehicle, multi-
trip, and sub-contract deliveries. Yang, Wang, Pang, Tan, and Zhou
(2020) considered the case of goods being consumed during trans-
portation under adverse conditions. Regarding the solution of SDVRP,
the Branch-and-Cut-and-Price algorithm by (Archetti, Bianchessi, &
Speranza, 2014) and the method based on the new vehicle exponential
flow formula proposed by Ozbaygin et al are the strongest exact methods
available (Ozbaygin, Karasan, & Yaman, 2018), but these exact methods
can only solve small instances, so solving SDVRP mostly uses heuristic
algorithms, including neighborhood search algorithm (Ji et al., 2021),
ant colony algorithm (Yang et al., 2020), genetic algorithm (Zeng,
Wang, Chen, & Yang, 2021), etc.

Most of the current research on SDVRP has been on the continuous
splitting of demand, where vehicles can be loaded with any number of
units at the demand point. Qiu, Fu, Eglese, and Tang (2018) considered
the case of discrete splitting, splitting demands into bags, and verified
that the splitting method could reduce travel costs by combining ex-
periments with different batches. Gupta, Govindan, Mehlawat, and
Khaitan (2022) applied this splitting method to the green vehicle routing
problem and considered the case of uncertainty in travel time, mini-
mizing fuel emissions by modeling and solving for it. There is less
research on discrete split vehicle route problem (Salani & Vacca, 2011),
the aforementioned studies did not consider the individual demand time
variability of splitting objects, especially for emergency demands. As far
as we know, different time windows have not been considered for
emergency demands in currently discrete splitting studies.

2.1.2. Vehicle routing problems with multiple time windows

Vehicle Routing Problems With Multiple Time Windows (VRPMTW)
are those where the customer requests a service that can be over a range
of time periods. Belhaiza, Hansen, and Laporte (2014) designed a hybrid
variable neighbourhood forbidden search method to solve the
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VRPMTW, and the study also developed a relaxation algorithm. Bar-
adaran, Shafaei, and Hosseinian (2019) presented the vehicle distribu-
tion problem for heterogeneous vehicles with multiple hard priority
time windows (VRPMPTW) and developed three multi-objective models
considering uncertainties. Beheshti, Hejazi, and Alinaghian (2015) also
considered the problem of multiple priority time windows and devel-
oped a co-evolutionary multi-objective quantum genetic algorithm.
Favaretto, Moretti, and Pellegrini (2007) considered the vehicle path
problem with multiple time windows with periodic constraint properties
and designs an ant colony algorithm for solving it.

Most of the current research on VRPMTW defines that demand points
can have different delivery times, where vehicles can deliver goods
within a specified time period, give a certain penalty for not being
within the time period (soft time window) or simply not allow delivery
(hard time window). Under emergency demand conditions, the vari-
ability of the individuals being rescued may lead to different levels of
urgency of the demand and therefore different time windows for rescue,
and this case can also trip the multiple time window problem. Currently,
the time window for most VRPMTW studies is set at the time of service to
the point of need, but for emergency relief, it is the time to transfer the
victims to a shelter or hospital that affects the final outcome of the relief.

2.2. Emergency route planning problem

Unlike the traditional logistics industry of vehicle routing problem,
emergency rescue is often characterized by strong timeliness and weak
economy. At the same time, emergency demands are more complex.
Disasters can also lead to changes in weather and road conditions,
making the transport time of emergency vehicles difficult to determine,
or even causing road blockages and resulting in routing failures. At
present, research into emergency route planning has been conducted
mainly from two perspectives: demand and uncertainty.

Based on the diversity of emergency demands, Bodaghi, Pala-
neeswaran, and Abbasi (2018) considered both expendable resources
(food, tents, etc.) and non-expendable resources (volunteers, doctors,
etc.), loaded them into the same vehicle for transportation, and set the
disposal time at the point of need as a decreasing linear function of the
amount of non-expendable resources. Sheu (2010) proposed a dynamic
rescue demand management model for emergency logistics operations
under conditions of incomplete information about large-scale natural
disasters, and applied data fusion to predict rescue demand in multiple
regions. Fontem, Melouk, Keskin, and Bajwa (2016) considered the
problem of network delivery in the presence of uncertainty in travel
times and deadlines. Jiang, Bian, and Liu (2021) studied the optimiza-
tion of emergency supplies of fresh agricultural products in the context
of a large-scale pandemic. The optimization model considered response
time, risk of infection and transport resources. Zhang, Qin, Wang, He,
and Liu (2017) proposed the manpower allocation and vehicle routing
problem (MAVRP), a model that optimizes both manpower allocation
and vehicle routing, based on the real-life medical problems derived
from non-emergency ambulance transfer services in public hospitals in
Hong Kong. Anuar, Lee, and Pickl (2022) studied the delivery of critical
supplies in humanitarian operations and the model considered random
road capacity and damage. Chen, Pan, Chen, and Liu (2020) proposed a
vehicle distribution problem for a non-contact joint distribution service
during the COVID-19 epidemic.

For emergency rescue, the destructive nature of disasters can cause
varying degrees of harm to people. When assessing a disaster, it is
important to focus not only on the extent of the disaster, but also on the
consequences of the disaster. The varying degrees of injury of disaster
victims requiring rescue creates a diversity of emergency demands. The
urgency of rescuing disaster victims with different levels of injury at the
same rescue point also varies.
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2.3. Aviation emergency rescue areas

The salient feature of emergency route planning is the variability of
the mission environment, resulting in a high degree of uncertainty in
factors such as travel time. Compared to road emergency response,
aviation emergency rescue is relatively less dependent on geographical
conditions, and parameters such as speed are relatively easy to deter-
mine, but the characteristics of helicopter bring with them other factors
and limitations. In aviation emergency rescue missions, the low altitude
operating environment of aircraft operating below 1000 m often suffers
from high safety risks, low rescue efficiency and unreasonable imple-
mentation due to helicopter performance.

Based on the perspective of aircraft scheduling optimization, Ono
et al. (2013) investigated the differences in aircraft response intervals
for the provision of emergency medical services in different situations.
Zhang, Li, and Li (2021) developed a collaborative air-ground dispatch
model that considered the traffic environment and the performance of
different aircraft. Chen et al. (2022) proposed a three-tier network
model for cross-regional emergency resource dispatching, in which the
three-tier multi-model network is formed by the superposition of rail-
way, road, waterway, and air networks. Ferrari and Chen (2020) saw air
search and rescue fleet planning as a resource allocation problem. Zhang
et al. (2016) considered the effect of stochastic wind speed in the opti-
mization of an aviation emergency rescue route and constructed a
scheduling optimization model incorporating maximum fuel load,
average fuel consumption per hour, and aircraft cruise flight speed.

Based on the aviation emergency rescue capability assessment,
Zhang, Hu, and Li (2019) evaluated general aviation emergency rescue
capabilities, using performance parameters such as helicopter range,
hovering, and load as key influencing factors. Sun, Liu, Tian, Wu, and
Gao (2020) applied virtual reality technology to evaluate the effec-
tiveness of helicopter emergency rescue. From the perspective of search
and rescue task allocation. Zhang, Li, Wang, Li, and Li (2022) con-
structed a search and rescue task allocation model by considering factors
such as the UAV operating environment and hovering endurance. Beck,
Teacy, Rogers, and Jennings (2018) constructed a collaborative online
planning problem model for search and rescue disaster victims’ work in
emergency response.

From the above literature, it can be concluded that the performance
of aircraft is the most critical element for research related to aviation
emergency rescue, mainly comprising cruise speed, fuel consumption,
hovering, and loading capacity. For large-scale emergency operations,
helicopters are in relatively short supply compared to road-based
emergency vehicles, when multiple round trips are required to carry
out rescue missions with minimal pilot fatigue.

3. Model formulation for aviation emergency rescue route
planning

3.1. Problem description

In this study, the problem focuses on the use of helicopters for the
emergency task of rescuing injured disaster victims. Some of the rescue
points do not have normal landing and take-off conditions due to the
limitations of the slope, hardness of the ground, and extreme
geographical conditions, and therefore required the use of electric
winches for hovering rescue work with the cooperation of winch hands
and lifeguards. The number of disaster victims waiting to be rescued at
some of the rescue points exceeds the helicopter’s capacity, allowing
disaster victims at the same rescue point to be transferred in batches, but
disaster victims with the same level of injury at the same rescue point
need to be transferred in the same batch. Due to the scale of the mission
and the number of helicopters, each helicopter has to make several trips
between the hospital and the rescue point until all the disaster victims
had been transferred to the hospital. The fuel consumption coefficient
differs between cruising and hovering helicopters, especially when
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hovering, where the helicopter uses its tail to counteract the counter-
torque caused by the rotor blades to keep the helicopter stable in the
air, resulting in additional fuel consumption. Disaster victims with
different injuries require different resettlement times and have different
rescue time windows. The rescue mission scenario is shown in Fig. 1.

3.2. Problem assumptions

The following assumptions underlie the model in this study.

Assumption 1. Emergency helicopters are deployed at the base in
advance and are in airworthy condition, and all helicopters depart from
the base in unison at the start of the mission.

Clarification: As the activation of the helicopters is a relatively time-
consuming task, the aviation emergency rescue team will do a good job
of preparation before the emergency occurs to ensure that the helicop-
ters are in an airworthy condition at all times, and that all these prep-
arations have been deployed in advance before the decision maker gives
the order to deploy the mission.

Assumption 2. Accessibility is provided between each node and the
flight time of the helicopter between the nodes is known.

Clarification: Unlike road rescue, helicopter rescue is less depen-
dent on geography, so the paper defaults to helicopters being able to fly
between any node.

Assumption 3. The number of disaster victims waiting to be rescued
at each rescue point and the number of people at each injury level is
known, the number of people at each injury level after splitting is less
than the emergency helicopter capacity.

Clarification: The paper divides the disaster victims according to the
degree of injury, and proposes a route planning problem that divides the
disaster victims according to backpacks, which is defined as the mini-
mum set of demands that cannot be further divided. In this study, the
groups with different degrees of injuries are considered as individual
backpacks, so that the number of disaster victims who need to be
transferred to the same affected demand point is a discrete combination
of multiple backpacks, and any backpack is smaller than the capacity of
the helicopter. This also ensures that the helicopter can continuously
load multiple backpacks.

Assumption 4. The emergency helicopter used for the rescue mission
is of the same type.

Clarification: Different types of helicopters are used for different
emergency work scenarios, this paper is a study of helicopter rescue and
transfer of disaster victims. Therefore, it is assumed that the same he-
licopters are deployed at the same base for the evacuation of the disaster
victims.

Assumption 5. Time spent by the helicopters in refueling is negli-
gible, while not taking into account queuing issues. Negligible time
spent on the ground for normal take-off and landing to accommodate
and unload the disaster victims.

Clarification: In this study, the rescue time is mainly determined by
the helicopter cruise flight time as well as hover rescue placement time.
Generally, large helicopters used for rescue transportation missions have
a long range and require less frequent refueling and a short refueling
time, while the number of refueling equipment at the default resupply
point can meet the refueling needs of any number of helicopters.
Therefore, the refueling time for helicopters is negligible. And in the
normal execution of ground rescue placement or arrival at the hospital
to unload the disaster victims, there is no need to use the electric winch
for operation.

3.3. Mathematical model
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Fig. 1. Aviation emergency rescue mission scenario.
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Objective (1) is to minimize rescue delay loss. The decision objective
o= Y X gen, az owetiveDiston e delay loss. The decision objective
= e takes into account the urgency of rescue for disaster victims wit
different levels of injury, and the loss function is related to the time it
Z Xo<lgl — 1, vk €K, W e v as) takes for disaster victims to be tran§ferred to the hosp%tgl and t.he
i, number of people transferred. There is no reward for arriving earlier
than the time window, but there is a penalty for arriving later than the
C - Z CVieN, 14) rescue time window. The greater the degree of injury to the disaster

victims, the larger the penalty coefficient (Table 1).
The constraints can be summarized as the helicopter access node

reR
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Table 1
A summary of notations.

Notation Definition

Sets

N, Aviation emergency rescue base,N, = {0}

N, Set of rescue points,Np = {1,2,---,n}

N, Set of designated hospitals,N, = {n+ 1,n+ 2,---,n+ m}

Ny Set of refueling stations,Ng = {n+ m+ 1,n+ m+ 2,---,n+ m+ h}

N Set of all nodes,N = N, UN;, UN, UNy

K Set of emergency helicopters,K = {1,2,---,k}

R Set of injury rating of the disaster victims,R = {1,2,--,r}

v Set of emergency helicopter trips,V = {1,2,--,v}

Indexes

i Helicopter access to the node index

j Helicopter access to the node index

k Emergency helicopters index,k € K

r Disaster victims injury rating index,r € R

v Emergency helicopter trip index,v € V

Parameters

w Maximum number of disaster victims that can be loaded on an
emergency helicopter k

cf Number of disaster victims with injury level r at rescue point i

ci Total number of disaster victims to be relocated at rescue points i

Yi If emergency helicopter at rescue point i settles disaster victims with
hover rescue, y;=1; otherwise, y;=0

fe, Disposal time of disaster units with injury class r at the time of the
hover rescue

trj Cruise flight time of helicopter from node i to j

tm, The rescue time window for disaster victims with injury level r to reach
the hospital

b, Delayed loss of rescue per injured disaster victims per unit of time for r
Fuel tank volume for emergency helicopters

5 Fuel consumption coefficient for helicopter cruising flights (at a
certain cruising speed)

& Fuel consumption coefficient for the hovering rescue phase of a
helicopter (at a given hover height)

Vinax Maximum number of trips per emergency helicopter

p Safe backup fuel coefficient(contingency fuel) for emergency
helicopters

M A large number

Variables

X{;" If emergency helicopter k visits node j from node i for the trip v, X{;-V:I 5
otherwise, X§'=0

Ye If the emergency helicopter k is loaded on its trip v with disaster
victims of rescue point i of injury level r, Y& = 1; otherwise, Y& = 0

i If emergency helicopter k visits rescue point i on the trip v, H{“’ =1;

otherwise,H® =0

wikv Disposal time of emergency helicopter k for the trip v at rescue point i

T Emergency helicopter k time to complete the trip v

z Number of disaster victims loaded at rescue point i on the trip v of
emergency helicopter k

Py The amount of fuel remaining in the tank of the emergency helicopter k

for the trip v to node i
The amount of fuel remaining in the tank of the emergency helicopter k
leaving node i on trip v

constraint, the helicopter capacity constraint, the travel time constraint,
and the helicopter fuel constraint.

1) Node access constraints

Eq. (2) indicates that each rescue point can be visited by multiple
helicopters on different trips. Eq. (3) indicates that disaster victims with
the same level of injury at each rescue point cannot be further split. Eq.
(4) indicates that if a helicopter visits a rescue point on a given trip, it
must be loaded with disaster victims with a certain level of injury at that
rescue point. Eq. (5) indicates that all helicopters depart from the base
on the first trip. Eq. (6) means that the helicopter departs from the
hospital at the beginning of all trips except the first. Eq. (7) means that
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disaster victims are taken to the hospital at the end of each trip. Egs. (8)
to (11) represent the conservation of flow per helicopter per trip. Eq.
(12) represents the articulation of successive trips of the same helicop-
ter. Eq. (13) avoids the formation of sub-loops between rescue points.

2) Capacity constraints

Eq. (14) indicates that the total number of disaster victims waiting to
be rescued at each rescue point is equal to the sum of the number of
disaster victims at each level of injury. Eq. (15) ensures that all disaster
victims are rescued. Eq. (16) means that the number of people loaded on
the helicopter at the rescue point is the sum of the number of people
loaded for each level of injury. Eq. (17) indicates that all injured people
at the rescue points need to be rescued. Eq. (18) indicates a limit on the
number of people the helicopter can load per trip.

3) Travel time constraint

Assuming a departure time of O for all helicopters, the cumulative
flight time of the helicopters consists of the cruise flight time and the
resettlement time of the disaster victims. The resettlement time is only
affected by the hover rescue. Eq. (19) indicates the time required for the
helicopter to settle the disaster victims at the rescue point. Eq. (20) in-
dicates the completion time of each helicopter trip.

4) Fuel constraint

Eq. (21) indicates that the helicopter is fully fuelled when leaving
either the base or the refueling point. Eq. (22) indicates the cruise flight
fuel consumption. Eq. (23) indicates the fuel consumption at the rescue
point. Eq. (24) indicates the fuel inheritance relationship between the
front and rear trips of the helicopter. Eq. (25) ensures that the helicopter
arrives at each node with a greater amount of fuel than the backup fuel.

4. Design of genetic algorithm

Route planning is a classical combinatorial optimization problem,
and the difficulty of solving the problem increases dramatically as the
size of the problem increases. Genetic algorithm, as a relatively mature
intelligent optimization algorithm, has been widely used to solve
combinatorial optimization problems (Gupta et al., 2022). Therefore, a
maximum retained crossover and adaptive mutation genetic algorithm
(MRC&AM-GA) has been developed in this paper to solve the model, the
algorithm uses a new encoding method based on virtual rescue points.
The main design steps of the algorithm are encoding, decoding, fitness
calculation, and genetic operation.

4.1. Coding method

Assuming that the helicopters need to visit a total of n rescue points,
and the disaster victims to be rescued at each rescue point are split into a
total of r injury levels, then the helicopter needs to pass through n*r
virtual nodes after visiting all the rescue points. The numbers from 1 to
n*r are not the actual rescue point numbers in the model, but are the
definition of virtual rescue point, which also constitute the backpacks in
this paper. The virtual rescue point code is shown in Fig. 2.

In the encoding method of other nodes, O represents the base, H
represents the hospital, and R represents the refueling point.

4.2. Decoding strategy

The decoding operation is carried out in four steps: determining the
helicopter trips, the adjustment of backpacks within the trip, the inser-
tion of hospital nodes, and the selection of fuel supply points. Firstly, the
helicopter trip is determined by cutting to determine the virtual rescue
point visited by each helicopter for each trip. Secondly, the location of
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Fig. 2. Virtual rescue point coding method.

the backpacks within the trip is adjusted. Thirdly, identify suitable
hospitals to house the disaster victims based on the head and end rescue
points of each trip. Finally, based on the characteristics of helicopter fuel
replenishment, refueling strategies are developed and suitable fuel
supply points are inserted, resulting in a complete helicopter route plan.

4.2.1. Trip cutting

In this study, a putback random sampling method is used to select the
cut points and the number of cut routes depends on the number of he-
licopters and the maximum number of trips. Although the maximum
number of trips per helicopter is specified in the model, however, when
helicopters are on a rescue mission, each helicopter does not necessarily
need to run all trips and only needs to meet the need to move all disaster
victims. Therefore, when decoding the cut trips, the same cut point is
chosen to indicate that the trip access node belonging to that helicopter
is the empty set, i.e., the helicopter does not perform this trip task. In the
final formed cut piece segment, according to left-to-right order, each
Vmax iS @ route plan for one helicopter.

4.2.2. Backpacks adjustment

As disaster victims at the same rescue point are split into backpacks
and have different time windows, disaster victims with different levels of
injury at the same rescue point can theoretically be transferred in mul-
tiple batches, which results in different backpacks belonging to the same
rescue point within the same trip of a particular helicopter being able to
be randomly arranged in a sequence of routes, not necessarily in adja-
cent order. Once the trip route has been determined, if the different
backpacks belonging to the same rescue point are not in adjacent order,
they need to be adjusted to be in adjacent order.

4.2.3. Hospital selection

At the end of each trip, the helicopter needs to place the disaster
victims in a suitable hospital for treatment, thus freeing up seats for the
next rescue mission. The hospital visited at the end of a helicopter trip is
also the starting point for the next trip. Therefore, the hospital with the
shortest distance between the last rescue point of the current trip and the
first rescue point of the next trip is used as the endpoint of the current
trip. When the helicopter performs its last trip, it only needs to select the
hospital with the closest distance to the last rescue point visited on this
trip.

4.2.4. Fuel replenishment

The fuel replenishment point selection scheme of this study can be
described as follows: when the helicopter arrives at the actual node
corresponding to gene at i, calculate the remaining fuel for the execut-
able mission (removal of backup fuel), calculate the fuel consumption of
the cruise flight to the next actual node corresponding to gene at i+1
according to the order of the route node visits, then calculate the fuel
consumption resulting from the resettlement of disaster victims at the
node corresponding to gene at i + 1, and finally calculate the fuel con-

sumption from the actual node corresponding to gene at i+1 to the
nearest refueling node. Compare the remaining executable task fuel with
the sum of the three fuel consumptions above, If the former is greater
than the latter, the helicopter still has enough fuel to travel to the
replenishment point after flying to the actual node corresponding to
gene at i and placing the disaster victims, so there is no need to insert a
refueling node after gene at i. If the former is less than the latter, the
corresponding refueling node needs to be inserted to meet the next
rescue mission.

Two cases need to be analyzed for inserting the refueling stations.
When the actual nodes corresponding to gene at i and gene at i+1
belong to different nodes, then only the appropriate refueling station
point needs to be inserted between the actual nodes corresponding to i
and i + 1; however, when the actual nodes corresponding to i and i +1
belong to the same rescue point, if the fuel refueling point is inserted
between them, the helicopter returns to the original node after flying to
the refueling station point to refuel, which means that when the heli-
copter finds that it is running low on fuel after resettling some of the
disaster victims at the rescue point, it needs to refuel at the refueling
point and come back to continue resettling the remaining victims at that
rescue point. The fallback operation is performed for the sub-case, i.e.,
the actual node corresponding to i is selected to refuel and resupply in
front of its different nodes, ensuring that the nodes before and after the
refueling node visited by the helicopter are different.

After analyzing the specific scenario where refueling is needed, a
suitable refueling site needs to be selected. In this paper, there are two
options for selecting refueling stations for helicopters. The first scheme
is to calculate the sum of the two visiting nodes of the helicopter before
and after refueling among all refueling nodes, select the refueling station
point with the smallest distance, and, when the remaining fuel of the
helicopter at the current node can guarantee to reach the refueling node,
choose to insert the refueling node; when the remaining fuel of the he-
licopter at the current node cannot guarantee to reach the refueling
node, choose the refueling node closest to the node.

In Fig. 3, the specific implementation of each step in the decoding
operation is illustrated. The example assumes that there are five rescue
points, that the disaster victims at each rescue point are split into three
levels according to the degree of injury, and that there are two heli-
copters performing emergency missions, each of which performs a
maximum of two trip rescue missions. After implementing the rules for
each step, two path scenarios are finalized. In scenario (a), both heli-
copters perform 2 trip missions, while in scenario (b), the second heli-
copter performs only one mission(The other trip is an empty set).

4.3. Fitness function

Since the routes generated after cutting do not necessarily comply
with the helicopter capacity constraint, in this paper, solutions that
violate the constraints are penalized. The fitness function is calculated as
Eq. (26).
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4.4. Genetic operation

4.4.1. Mixed selection strategy

The selection method used in this study is a combination of the bi-
nary tournament method and the retention of the elite strategy. The
binary tournament method ensures that each individual in the popula-
tion has a probability of being selected unless it is the least fit individual
in the population, thus giving the algorithm a stronger global search
capability. The retention of the elite strategy ensures that the individuals
with the highest fitness degree in the population make it to the next
generation without being eliminated. The individuals with the highest
fitness degree in the current population are not subject to crossover and
mutation operations and enter the offspring directly, replacing the in-
dividuals with the worst fitness degree in the offspring and ensuring
convergence of the algorithm.

4.4.2. Maximum retained crossover
The two crossover approaches adopted in this study can provide a

degree of assurance that the population is diverse and avoid generating
too many structurally duplicated chromosomes. When the offspring
chromosome is decoded, the selected subroutes (including empty trips)
are not cut, but only the sequences formed by the remaining gene sets
are cut. The number of cut fragments is equal to the total number of
helicopter strokes minus the number of selected child routes. The cutting
trips are spliced with the retained routes, in left-to-right order, each v .«
is a route plan for one helicopter. The two crossover methods are shown
in Fig. 4.

As the same offspring chromosome is decoded, different cut point
selections can generate different routing trips, and the crossover oper-
ation does not guarantee that the offspring chromosomes are necessarily
better than the parent chromosomes, therefore, the maximum retained
crossover in this paper incorporates a multiple cut strategy, which per-
forms multiple trip cuts based on the generated offspring chromosomes,
while mixing the parent chromosomes and the multiple cut offspring
chromosomes for the decoding operation, and selecting the individual
with the highest fitness from the mixed population as the final crossover
offspring.

4.4.3. Adaptive mutation operator

To enhance the local search capability at the later stage or when
merit search stalls, this paper optimizes the mutation operation. The
study defines the adaptive rule as follows:
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P bfiti<y generated by the crossover operation sorted from smallest to largest,
Prax = P bfit, > ";X (27) Pm(k) denotes the mutation probability of the individual whose popu-
e max lation fitness is sorted as k.
Spop)2 — k Ordinary 2-opt based mutation operation has performed poorly in
Ppax X ———— | k=pop / 2 solving this paper’s model. In this study, we designed mutation strate-
pul(k) = pop (28)

Prax , k< pop/2

In Egs. (27) and (28),P,. is the mutation probability control
parameter, whose value is determined according to the number of times
the current optimal solution is maintained constant in the iterative
process, and if the number of stagnation exceeds y,,..,Pm.x takes a larger
value. k is the ordinal number of the population fitness of the offspring

gies based on 2-opt and insertion. To avoid excessive splitting of the
same rescue point, 2-opt in this paper has two implementation forms,
namely, exchanging the selected backpacks and exchanging all the
backpacks corresponding to the selected rescue point in the trip, two
forms are randomly selected. The insertion operation can be described
as: randomly selecting two backpacks or all the backpacks in the cor-
responding rescue point in the trip, and randomly performing forward

insertion of

insertion of
. backpacks

rescue points

2-opt or insertion

insertion

f, — )
l 2-opt of

rescue points

Fig. 5. Mutation operation.
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insertion or backward insertion. The mutation operations were imple-
mented randomly and executed multiple times, the next mutation
operation is based on the previous one. The mutation can be accepted
and stopped once the fitness is better than the offspring. But if the fitness
becomes worse, the mutation result can still be retained with a relatively
small probability. This method ensures a certain degree of local search in
the direction of seeking superiority and increases the population di-
versity with a certain probability. The specific implementation of mu-
tation operation is shown in Fig. 5.

5. Case study
5.1. Case background

Wenzhou City, Zhejiang Province, China, is prone to natural disasters
due to its complex geographical conditions, posing considerable diffi-
culty to rescue work. The city has established and gradually improved its
aviation emergency rescue system since 2012, with the backbone of its
aviation emergency rescue force being the East Sea First Rescue Flight of
the Chinese Ministry of Transport, which is responsible for major natural
disaster rescue work and provides emergency rescue services to units
and individuals free of charge, with radiation coverage of the city and
surrounding cities. The incoming Wenzhou aviation emergency rescue
force is deployed at Longwan International Airport, equipped with
several rescue helicopters and crews, each equipped with a winch. In
carrying out special rescue tasks such as search and rescue at sea or
rescue operations under extreme geographical conditions, winch han-
dlers and lifeguards are required to use the winch control system to
complete rescue placement in the hovering state of the helicopter. The
city has now established a three-tier nodal rescue space layout of base-
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resupply point-landing point.

5.2. Data preparation

An aviation emergency rescue mission scenario is shown in Fig. 6.
The location parameters of the rescue points are randomly generated
and the parameters of the other nodes are derived from the existing
configuration of the aviation emergency rescue system. These nodes are
marked by ArcGIS, and the corresponding half-positive vector (Haver-
sine) distances are calculated from the latitude and longitude co-
ordinates of the nodes, which are approximately equal to the low-flying
distance of the helicopters during the rescue.

In this case study, three S-76D helicopters take off from Longwan
International Airport at the same time. It is assumed that the cruise
speed of the helicopters is constant during the mission, and the heli-
copters hover at a certain altitude during each rescue hover. The crew is
composed of two pilots, one paramedic, one winch operator, and one
lifeguard. Based on the analysis of the scale of the mission and the
existing configuration, the maximum number of trips per helicopter to
complete the rescue mission is set to 4 to ensure that all disaster victims
are rescued and to minimize crew fatigue, and the backup fuel coefti-
cient is set to 0.1. The relevant parameters of the rescue helicopter are
shown in Table 2.

The parameters of the rescue points include the settlement method
and the number of disaster victims to be rescued. The case study takes
into account the randomness and destructiveness of the disaster, some of
the rescue points do not have landing and take-off conditions, so the
helicopter can only hover for resettlement, while the level of injury and
the corresponding number of disaster victims are randomly generated
according to the characteristics of the model, and the parameters of the

Base
Designated hospital]

Refueling station

coee

Rescue point

Fig. 6. Location of aviation emergency rescue mission nodes (marked by ArcGIS).
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Table 2
Parameters of the helicopters for the rescue mission (get from S-76D flight
manual).

Parameters Value Parameters Value
Cruising speed 269 km/h  Oil capacity volume 1063L
Max number of 2+12 Cruise fuel consumption 350L/
passengers seats coefficient h
Number of crew 5 people Hovering fuel consumption 472L/
members coefficient h

rescue points are shown in Table 3.

Among the parameters related to disaster victims, the rescue time
window for reaching the hospital for disaster victims with different
injury levels is 1.5 h, 2 h, and 2.5 h respectively, and the unit disposal
time for disaster victims with different injury levels in hover rescue is
0.13h, 0.08 h, and 0.05 h respectively, and the rescue delay loss per unit
time for disaster victims with different injury levels is $12, $8, and $3
respectively.

5.3. Results analysis

5.3.1. Computational result

The programming tool used to implement the algorithm is Python
3.9 and the computer processor configuration is 11th Gen Inter(R) Core
(TM) i7-11700 T @1.40 GHz 1.39 GHz with 16.0 GB of RAM and the
system type is Windows 10 64-bit operating system.

The parameters of the algorithm are set as follows: population size is
200, and the number of iterations is 300. The crossover probability is
0.9, where the preceding crossover probability is 0.9, the posterior
crossover probability is 0.1, and the number of crossover cuts is 2. The
mutation probability control parameter PL . is 0.1, and the control
parameter changes toP?, . = 0.9 when the current optimal solution of the
algorithm remains unchanged for 15 iterations. The mutation operations
of 2-opt and insertion have a probability of 0.5, and the implementations
based on backpacks and rescue points have the same probability. The
number of iterative mutations is 2. When the iterative mutation result is
worse, the parent result is retained with a probability of 0.8 and the
worse child result is accepted with a probability of 0.2. M takes the value
of 10000. The result of one iterative calculation is shown in Fig. 7.

From Fig. 7, in the beginning, the solution to the problem is
randomly generated, and the objective function is relatively large. With
the increase of the number of iterations, rescue delay loss of disaster
victims gradually decrease under the genetic operation of the algorithm,
and gradually converges after about 170 iterations. Finally, it is found
that the loss of rescue delay is $253.48. The detailed route information
of each emergency helicopter is shown in Table 4.

It can be seen from Table 4 that the two helicopters fly all four trips,
while one helicopter only performs three trips of rescue missions, and

Table 3

Parameters related to rescue points.
i Vi o

r=1 r=2 r=3

1 0 2 1 1
2 1 1 1 2
3 0 3 2 1
4 1 1 2 2
5 1 2 2 1
6 0 1 1 2
7 1 2 4 4
8 1 2 4 1
9 0 1 1 2
10 1 2 3 1
11 0 4 1 1
12 1 1 1 2
13 1 3 1 2
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Fig. 7. The curve of fitness function changing with algorithm iteration.

Table 4
Information on the rescue routes of each emergency helicopter.
Crew Trip  Rescue route node Disaster Cumulative
number access victims loaded flight time
B-7327 1 01302 — 11gs 9 59.62mins
— H2
2 H2 — 10(4,2,3; — H2 6 120.03mins
3 H2 > 11> R2— 8 225.85mins
841,23y > H5
B-7357 1 0— 14,23 — 9 80.37mins
5(1,2,3 > H4
2 H4 — 41,53 — H3 5 126.19mins
3 H3 — 601,2,3 — R1 8 175.34mins
= 2(1,2,33 —~ H1
4 H1 — 133 — H2 2 205.49mins
B-7359 1 0-3a2—9%.,2—> 9 87.09mins
7ay - H5
2 H5 — 7(2,3; = H5 8 132.25mins
3 H5 > R4 > 120123 4 191.09mins
— H2
4 H2 - 3(3; — 93y > 3 245.66mins
H5 (max)

the completion time of the entire rescue mission is about 4.1 h. Rescue
points 13, 11, 3, 9, and 7 are split, but only the rescue mission at rescue
point 13 is carried out by two different helicopters, all other rescue
points are visited by the same helicopter at each point.

To further verify the stability of the algorithm’s calculation results,
this study conducts 20 calculations for the case, the initial population is
generated randomly, and each iteration of the calculation starts from a
different initial population. The calculation results are shown in Fig. 8.
With a mean of $262.57 and a median of $252.60 for the 20 calculations,
the data are relatively concentrated.

5.3.2. Comparative analysis

In this study, the maximum retained crossover and adaptive muta-
tion genetic algorithm (MRC&AM-GA) has been developed to solve the
model, also according to the characteristics of the problem, the 2-opt
and insertion methods based on backpacks and rescue points have
been designed in the mutation operation, and the multiple mutation
execution logic has been developed. To further verify the effectiveness of
the improvements to the algorithm, the computational results are
compared with those of the standard genetic algorithm with crossover
singleton generation and mutation fixed probability (CSG&MFP-GA).
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Fig. 8. Statistics of calculation results.

The iterative calculation process of the two algorithms is shown in Fig. 9.

The final outputs are $245.45 and $381.96 respectively. Both algo-
rithms are calculated iteratively from the same initial population. It can
be seen in Fig. 9, as the number of iterations increases, the objective
function of MRC&AM-GA declines significantly faster than CSG&MFP-
GA under the action of the maximum retained crossover method,
proving that it has a stronger merit-seeking capability in the early stage.
In the later stages of the algorithm’s operation, the search tends to
stagnate, and the adaptive rules strengthen the local search ability of
MRC&AM-GA in the later stages, ensuring population diversity to a

certain extent. To avoid the influence of accidental factors on the results
of a single calculation, 10 calculations are performed for each algorithm,
and the boxplot comparison of the two algorithms is shown in Fig. 10.

From a comparison of the 10 data sets, the MRC&AM-GA demon-
strated stronger solution performance, with relatively small mean and
median, as well as flatter boxe and less fluctuation in results.

5.3.3. Sensitivity analysis
In the aviation emergency rescue mission, the maximum number of
loaded disaster victims and backup fuel of the helicopter can change the
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Fig. 9. The fitness curve of the two algorithms.
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order of access nodes on the route, thus affecting the rescue time. In this
study, while keeping other conditions unchanged, the algorithm is
calculated from the same initial population. The sensitivity analysis of
these two factors is carried out respectively and the results are shown in
Fig. 11.

1) Sensitivity analysis of the maximum number of disaster victims
loaded

In the case of this study, the S-76D helicopter used for rescue mission
has 2+12 seats, and there are 5 crew members including medical staff.
Professional medical rescue helicopters are equipped with simple med-
ical equipment, such as ventilators. During a normal rescue mission,
medical personnel accompany the helicopter to provide medical cover,
additional medical staff may be on board if necessary. However, in
special demand situations, due to space constraints in the cabin, it is
possible to reduce the number of medical staff or overload the helicopter
as appropriate, while ensuring its safety. Therefore, to further investi-
gate the effect of the number of disaster victims on board the helicopter
on the results, the variation of the objective function is calculated for the
cases of accommodating 7 to 12 people respectively.

From Fig. 11(a), it can be concluded that the number of disaster
victims loaded on the helicopter has an impact on the rescue delay
losses. The overall trend is that the lower the number of disaster victims
loaded, the greater the rescue delay loss. The objective function amounts
to $343.32 with the addition of two medical staff. The difference in
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rescue delay losses is not significant when the crew members are 4,5 and
6. The downward trend in the objective function accelerates when the
helicopter is overloaded by one to two people. Therefore, if necessary, a
suitable overload solution can be selected while meeting the maximum
take-off weight and safety of the helicopter.

2) Sensitivity analysis of helicopter safety backup fuel

Although the fuel consumption parameters for helicopter cruising
and hovering are known in this paper, there is still a risk of increased
fuel consumption due to unforeseen circumstances during rescue
mission, and backup fuel ensures the safety of the helicopter in the air to
a certain extent. Subjectively, the increase in backup fuel can shorten the
range of the helicopter and increases the frequency of fuel supply, thus
extending the rescue time. In this study, the change of rescue delay loss
is calculated separately for different coefficients.

As can be seen in Fig. 11(b), there is no significant change in the
objective function when the backup fuel coefficient is less than 0.20, all
three helicopters refuel once, when it is not wise and safe to keep too
little backup fuel. At a coefficient equal to 0.15, it is approximately the
international standard for 30-minute cruise flight reserve fuel. In case it
is greater than 0.20, the rescue delay loss increases obviously, and the
shortening of the maximum range of the helicopter directly leads to an
increase in the number of visits to refueling stations, which affects
rescue time. Therefore, the decision-maker should set the backup fuel
reasonably according to helicopter safety.

6. Conclusions and discussions

This study is based on an emergency mission scenario, in which
disaster victims waiting to be rescued are discrete split according to their
degree of injury, and given different urgency rescue time windows. The
model also takes into account the characteristics of helicopter perfor-
mance, and establishes an air emergency rescue route planning problem
that considers the split of disaster victims according to backpacks, with
the loss of rescue delays as the decision objective. A genetic algorithm is
used to solve the model based on a virtual rescue point coding approach
to provide a scientific route plan for emergency decision-makers.

Several conclusions can be drawn from the problem characteristics
and the analysis of the results: (1) the model can effectively address the
differentiated characteristics of the individual demands of rescue tar-
gets; (2) the designed genetic algorithm solution is relatively stable and
can provide a more satisfactory solution; (3) some of the parameters of
the helicopter can affect the quality of rescue mission completion, and
decision-makers should make reasonable adjustments according to the
actual needs.

In a related study by other scholars, Tirkolaee et al. (2019a)
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Fig. 11. Sensitivity analysis of maximum number of disaster victims loaded and backup fuel.
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investigated the multi-trip vehicle routing problem with time windows
of particular relevance to municipal waste collection, considering mul-
tiple vehicle trips and time windows as the most critical features of the
problem. Still using municipal waste collection as a research context.
Tirkolaee et al. (2019b) extended their previous research to the case of
demand uncertainty and constructs a bi-objective robust model. Kha-
lilpourazari and Doulabi (2022) studied the problem of designing blood
supply chain networks in emergency, and the parameters of the pro-
posed mathematical formulation are also uncertain. For the treatment of
uncertainty, robust optimization models were constructed in the papers
(Ozmen, Kropat, & Weber, 2017; Ozmen, Weber, Batmaz, & Kropat,
2011) based on polyhedral uncertainty sets. These discussions of un-
certainty and how to deal with it inspire for our future work.

Compared to the mentioned scholars’ research, we consider more
complex real-life problem scenarios, not only considering multiple trips
and time windows, but also considering the characteristics of demand
variability, which leads to the model innovation of this study. However,
in contrast to their research, the parameters in our model are all
deterministic, and there is much scope for expansion in terms of
parameter uncertainty for emergency scenarios, particularly the impact
of environmental factors on helicopter performance and the uncertainty
of rescue demands. Improving the applicability of the model is a chal-
lenge we will need to face in the future.
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