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A B S T R A C T   

Human Reliability Analysis (HRA) is a critical issue for addressing human error in system reliability. There are 
numerous tasks for which human factors-related data are not available, rendering expert knowledge the only 
basis for assessing such tasks. However, the knowledge obtained from experts is subject to ambiguity and 
vagueness, which affects the usability of the assessment results. To overcome this challenge, in this paper a 
reference task based HRA method is proposed and the intuitionistic fuzzy set (IFS) is adopted because of its 
advantage of being able to handle ambiguous information. Firstly, to analyze the human error probability (HEP) 
of the target task, a reference task-based human error analysis model is introduced. Two solutions are provided: 
calculating the performance shaping factors (PSFs) distance between the reference task and the target task and 
establishing a quantitative relationship between PSFs and HEP. Secondly, the PSFs evaluation and inference 
methods based on triangular intuitionistic fuzzy numbers (TIFNs) are developed. Finally, the effectiveness and 
consistency of the two solutions of TIFN-HRA are demonstrated through a spaceflight refueling mission analysis. 
The distances between the results of the two solutions and the expert linguistic are compared and both results 
have the shortest distance to “Low”. However, solution I is simpler and the result is clearer.   

1. Introduction 

In recent years, the number of accidents due to technical failures 
decreases due to the development and progress in terms of redundancy 
and protection, which have made system more reliable (Zhan et al., 
2019). However, the reliability of human, a significant component of 
system reliability, has not been effectively guaranteed. Despite diffi
culties in obtaining accurate data, it is estimated that nearly 60 %~90 % 
of errors can be attributed to human factors, either directly or indirectly 
(Kelly & Efthymiou, 2019; Schiraldi, 2013). Therefore, the role of 
human should be considered in accident dynamics to ensure effective 
prevention of hazardous events (Jo & Lee, 2024). 

In order to reduce the risk caused by Human factors, the research on 
Human Reliability Analysis (HRA), a proactive method to identify, 
quantify, and reduce the human error probability (HEP) in human
–machine system (Hou et al., 2021), has emerged. With the introduction 
of HRA by (Swain & Guttmann, 1983) in the field of nuclear engineer
ing, various methods, theories and models for HRA have been gradually 
developed and perfected, and theoretical studies and model applications 

have been carried out by experts in other fields such as transportation 
(Chen et al., 2021), marine engineering (Uflaz et al., 2023), aerospace 
industry (DeMott & Bigler, 2017), and chemical industry (Aliabadi, 
2021). Through decades of efforts, more than 35 HRA techniques are 
developed, such as, Technique For Human Error Rate Prediction 
(THERP) (Zimolong, 1992), Success Likelihood Index Method (SLIM) 
(Vestrucci, 1988), Standardized Plant Analysis Risk-Human reliability 
analysis (SPAR-H) (Gertman et al., 2005), Cognitive Reliability and 
Error Analysis Method (CREAM) (Hollnagel, 1998). In these widely- 
applied HRA methods, a prevalent perspective suggests that human er
rors stem from the context surrounding human task execution. Perfor
mance shaping factors (PSFs) serve as tools to define the human context, 
encapsulating all elements influencing human behavior (Pan & Wu, 
2018). HRA methods are dedicated to establishing human error models 
that describe the relationship between PSFs and HEP. Furthermore, due 
to the scarcity of HRA data, expert knowledge plays a significant role in 
quantifying HEP (Tu et al., 2015). However, owing to the inherent 
ambiguity and uncertainty in human knowledge, although not entirely 
impossible, it is challenging for experts to provide precise probability 
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values (Shen et al., 2016). Therefore, addressing the uncertainty asso
ciated with expert knowledge is another concern of HRA community. 

The existing human error models primarily leverage the fact that 
PSFs directly influence HEP. They employ functions to map PSFs onto 
HEP, representing a classic research paradigm (Wang et al., 2023). 
However, the generalization capability of such functional relationships 
is limited, particularly when applied to human operational tasks in novel 
domains. This paper introduces an alternative research paradigm, as 
illustrated in Fig. 1, namely a reference task based human error model. 
Unlike directly establishing a mathematical representation between 
PSFs and HEP, this model utilizes relevant information from reference 
task to assess human error in target task. In addressing the uncertainty 
quantification issue in HRA, fuzzy sets (FS) theory (Zadeh, 1965) has 
been employed to tackle the uncertainty and ambiguity in expert 
knowledge. However, such an approach may be inadequate in handling 
uncertainty in human cognitive functions such as reasoning and hesi
tation. A potential solution to this issue lies in intuitionistic fuzzy sets 
(IFS) (Atanassov & Atanassov, 1999). As an extension of FS, IFS not only 
considers the membership degrees of expert opinions but also takes into 
account non-membership degrees and hesitancy, effectively capturing 
the uncertainty and ambiguity of human knowledge. Therefore, this 
study develops a method based on IFS for quantifying HEP. 

The aim of this paper is to evaluate the HEP of the target task using 
the information of reference task, while incorporating IFS theory to 
address the uncertainty associated with expert knowledge in the quan
tification process of HRA. The main contributions of this study are as 
follows:  

(1) A reference task based human error model is proposed, which 
offers two solutions for assessing the HEP of the target task. In this 
model, the reference task is a task similar to the target task (the 
task under evaluation), with known PSFs and HEP.  

(2) The IFS theory is utilized to address the uncertainty in expert 
knowledge during the quantification process of HRA, introducing 
a novel method termed TIFN-HRA.  

(3) The TIFN-HRA method is employed to quantify the two solutions 
within the proposed human error model: considering the PSFs 
distance and establishing a quantitative relationship between 
PSFs and HEP. The effectiveness and feasibility of this approach 
are validated using a space refueling task as a case study. 

The remaining organization of this paper is as follows. Section 2 
reviews the literature concerning HRA. Section 3 will detail the pro
posed human error model and the TIFN-HRA method. Section 4 vali
dates the effectiveness and feasibility of this method using a space 
refueling task as an example. Section 5 discusses the research findings, 
while Section 6 concludes the paper and suggests future directions for 
improvement. 

2. Literature review 

Human error is an important factor leading to the overall risk of 
safety–critical systems (Zhao, 2022). The focus of this study lies in 
establishing a novel human error model and devising methods to address 
the uncertainty in expert knowledge during HRA quantification. 
Simultaneously, given its paramount importance in contributing to 
human error, existing research has consistently evaluated HRA by 
quantifying the PSF. Therefore, in addition to providing a brief overview 
of the evolution of HRA methods and PSF categorization, it is crucial to 
comprehensively review human error models and quantification 
methods within HRA. 

2.1. Evolution of HRA methods 

Various HRA methods have been proposed over time to enhance 
human reliability. These methods can be categorized by generation. The 
first-generation HRA methods encompass THERP (Zimolong, 1992), 
Human Cognitive Reliability (HCR) (Apostolakis et al., 1988) and SLIM 
(Vestrucci, 1988). These methods notably lack consideration for the 
influence of human cognitive activities, and their calculation of HEP 
mirrors that of equipment failures. Consequently, the first-generation 
HRA methods fail to address the exploration of human error mecha
nisms. The second-generation of HRA methods emerged in the 1990 s 
and are currently undergoing further development. Representative 
methods include the CREAM (Hollnagel, 1998), a technique for human 
error analysis (ATHEANA) (Cooper et al., 1996), and the accident dy
namics simulator – information, decision, action in crew context (ADS- 
IDAC) (Chang & Mosleh, 2007). These methods incorporate cognitive 
models of human behavior into HRA approaches, aiming to elucidate the 
mechanisms underlying human errors. With the rapid advancement of 
computer technology, HRA methods such as ADS-IDAC have employed 
simulation techniques to predict human error. These methods are 
referred to as third-generation or next-generation HRA methods (Coyne, 
2009). Regardless of the generation of HRA method, they all strive to 
construct a human error model elucidating the mechanisms by which 
PSFs influence HEP. Additionally, emphasis has been placed on the ac
curacy and credibility of HRA quantification. 

2.2. PSF categorization 

Definitions of PSF differ between HRA methods. Swain divides PSFs 
into three broad categories: external PSFs, stressor PSFs, and internal 
PSFs in THERP approach, where external PSFs also include situational 
characteristics, operational and task instructions, and task and equip
ment characteristic, stressor PSFs include psychological stress and 
physiological stress, and internal PSFs include organismal factors (Swain 
& Guttmann, 1983). The CREAM approach categorizes factors that in
fluence human performance into nine types named common perfor
mance conditions (CPCs) (Hollnagel, 1998). In the Technique for the 
Retrospective and Predictive Analysis of Cognitive Errors (TRACEr) 
approach, PSFs are divided into human factors, information/commu
nication factors, ability/training factors, internal/external environ
mental factors, organizational factors, and other factors (Said & Noor, 
2013). Due to the significant impact of PSFs and the variability in its 
interpretation, this study begins by systematically categorizing PSFs as 
all contextual factors that contribute to or result in human errors during 
the interaction between human and the task (Pan & Wu, 2018). 

Based on the discussion above, PSFs are organized and summarized 
into five categories in this study: environmental factors, equipment 
factors, task factors, team and organizational factors, and personal fac
tors, as shown in Table 1. 

2.3. Human error models in HRA 

The challenge of human error model is to establish the relationship Fig.1. Research ideas.  
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between PSFs and HEP, aiming to describe the mechanisms underlying 
human errors. Specifically, these models provide a foundational 
framework for the quantification methods of HRA (Hou et al., 2021), 
which can be categorized into three main types: parameter-based 
models, cognitive-behavioral models, and computer simulation models. 

Parameter-based models, rooted in system parameters, primarily 
focus on the task level of human error mechanisms. They address the 
HEP from a global and systemic perspective, linking PSFs to HEP 
through implicit functions (Apostolakis et al., 1988; Vestrucci, 1988; 
Zimolong, 1992). This approach parallels the analysis methods for 
equipment failure probabilities. The first-generation HRA methods 
commonly employ parameter-based models, such as THERP and HCR. 

In cognitive-behavioral models, the modulation of PSFs on HEP starts 
to delve into human cognitive activities and even cognitive functions 
(Cooper et al., 1996; Hollnagel, 1998). Among these, the most repre
sentative is the Contextual Control Model (COCOM) provided by the 
CREAM. COCOM assesses operator control using four cognitive control 
modes: Scrambled, Opportunistic, Tactical, and Strategic, categorized 
based on the evaluation levels of nine CPCs representing the context 
influencing human error. Despite significant progress compared to 
parameter-based models, cognitive-behavioral models lack sufficient 
theoretical and experimental foundations, and none of these methods 
has yet established a comprehensive underlying causal mechanism 
model linking PSFs and HEP. 

With the assistance of computer simulation technology, the next- 
generation HRA methods can simulate human cognitive activities in 
specific task context through computers (Chang & Mosleh, 2007; Li & 
Mosleh, 2019). In these methods, human error models are closely linked 
with simulation programs, enabling more accurate HEP by adjusting 
simulation task context. A representative approach is ADS-IDAC. How
ever, these approaches face significant challenges in describing uncer
tainty, particularly regarding human cognitive ambiguity. 

2.4. Quantification methods of HRA 

HRA is a domain characterized by scarcity of data. In practice, 
although methodologies vary depending on tasks being addressed, these 
methods all aim to quantify HEP under conditions of uncertainty. 
Currently, Bayesian networks-based methods and fuzzy-based ap
proaches are highly favored by HRA researchers. 

Bayesian Networks (BNs) possess the capability to model complex 
relationships among influencing factors. Moreover, their ability to 
integrate multiple sources of information enables researchers to develop 
HRA models with stronger cognitive theoretical and empirical founda
tions (Mkrtchyan et al., 2015). Additionally, BNs are regarded as a 
method for handling data scarcity and multiple data sources, thus their 
utilization in quantifying HRA has steadily increased over the past 
decade (Li et al., 2012; Shirley et al., 2020; Zhao, 2022). BNs can inte
grate traditional fault tree and event tree models and capture the 
probabilistic relationships between PSFs and HEP. Despite numerous 
advantages, however, BNs may encounter limitations in handling expert 
knowledge within a probabilistic framework, as they require experts to 
provide precise probability values and may not adequately account for 

the vagueness and uncertainty in expert knowledge. 
Zadeh’s (Zadeh, 1965) FS theory has been utilized as an effective tool 

for addressing uncertainty and ambiguity, achieving significant success 
in the field of HRA. Table 2 summarizes some of the latest HRA methods 
using fuzzy approaches. For instance, (Konstandinidou et al., 2006) in
tegrated FS theory with CREAM methods to determine the HEP based on 
the data acquired from experts. (Ung, 2015) applied a weighted fuzzy 
CREAM method considering the importance of PSFs to obtain HEP in the 
HRA of maritime transportation. In another study, (Li et al., 2010) 
proposed a new Fuzzy Human Error Risk Assessment Methodology 
(FHERAM) to measure the importance of human errors in risk analysis. 
(Casamirra et al., 2009) integrates fault tree analysis, HEART and fuzzy 
set theory to analyze the probability of human error in irradiation 
process. 

The classical FS theory assigns a degree of membership to each 
element in a set to indicate the degree of belongingness to that set. This 
leads to an “either/or” representation in the universe of discourse. 
However, there is hesitation in the linguistics of the experts due to 
personal errors and lack of knowledge. In other words, the membership 
degree and non-membership degree of human natural language are not 
complementary, which is noted in the theory of intuitionistic fuzzy set 
developed by (Atanassov & Atanassov, 1999). As an extend to classical 
fuzzy set, IFS suggest that non-membership is not always equal to one 
minus the degree of membership, providing a robust solution to the 
situation when human language is “neither/nor” (uncertainty, hesita
tion neutral) (Aliabadi, 2021). Therefore, IFS theory with triangular 
intuitionistic fuzzy number (TIFN) is adopted as the method of quanti
fying HEP in this study. 

3. Material and methods 

This section presents a reference task based human error model and a 
HRA quantification method named TIFN-HRA based on IFS theory. 

3.1. A reference task based human error model 

The relationship between PSFs and HEP is an indispensable part of 
research on the HRA model, however, this relationship is difficult to 
quantify explicitly. For example, in the information-processing model 
proposed by Wickens, although it is known that there is a connection 
between the influencing factors and actions, it is difficult to characterize 
the exact form of the connection and express it quantitatively as a 
function (Wickens et al., 2021). 

Existing research has indicated that human behavior and perfor
mance are highly complex and challenging to measure directly (Pan & 
Wu, 2018). Therefore, in HRA, most studies focus on identifying and 
quantifying PSFs to infer HEP. In this paper, the influence of PSFs on 
HEP should be divided into two parts: 1) PSFs level (the level of the PSFs 
itself), and 2) PSFs weight (the importance of PSFs to HEP). This 

Table 1 
Categorization of PSFs.  

PSFs Category PSFs 

Environmental Working hours, Climate, Temperature 
Equipment Equipment Availability, Maintenance equipment availability 
Task Operation program availability, Operation program 

availability, Number of simultaneous operation tasks 
Team and 

organizational 
Information Adequacy, Information Accuracy, Training, 
Organizational Culture, Organizational Structure, Available 
times, Supervision 

Personal Cognitive factors, Physiological factors, Psychological 
factors, Stress, Experience, Age  

Table 2 
Some Fuzzy-HRA methods.  

Methods Applications 

Fuzzy-CREAM Human error in maintenance tasks of a chemical plant ( 
Konstandinidou et al., 2006) 

FHERAM Crew reliability in the maritime field (Ung, 2015) 
Human reliability in ship cabin fire emergency response (Ahn & 
Kurt, 2020) 
Human errors in risk analysis (Li et al., 2010)  

Fuzzy-FMEA 
Human reliability assessment for medical devices (Lin et al., 2014) 

Fuzzy-SPAR-H Human reliability during emergency response drill for man 
overboard on ships (Ahn et al., 2022) 

IT2FS-SLIM Human error in maritime transportation (Erdem & Akyuz, 2021) 
Fuzzy-BN- 

CREAM 
Human error in oil tank collision (Ung, 2019) 

Fuzzy- HEART Human error in irradiation process (Casamirra et al., 2009)  
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introduces a novel concept into HEP evaluation, suggesting that the HEP 
of a target task can be estimated by leveraging the distance between the 
PSFs of the reference task and the target task. 

Hence, with reference to a previous study (Tyagi & Akram, 2013), 
this study proposes a reference task based human error model. An 
innovative solution is proposed to evaluate the HEP of the target task 
based on the distance between PSFs of reference task and target task, 
while considering expert credibility. 

The proposed model is built upon the following assumptions: 

Assumption 1. PSFs of the same type can have different effects on tasks 
depending on the context. 

Assumption 2:. The distance relationship between the PSFs of the refer
ence task and the target task is believed to be consistent with the distance 
relationship between their corresponding HEPs. 

Assumption 3:. The quantitative relationship between the PSFs and HEP 
in the reference task can be mapped to the target task. 

The motivation of this article is to infer the HEP of the target task 
from the information of the reference task. However, the reference task 
and the target task are almost impossible to be identical. Otherwise, the 
contexts of these two tasks would be the same (i.e., the types and 
measurement of PSFs are the same), and their HEPs would also be equal. 
Therefore, our research implies an assumption that the same type of 
PSFs can be used to measure different tasks. In other words, the premise 
of this analysis is that the key types of PSFs between the reference and 
target tasks should be fundamentally similar. Before assessing the HEP 
of the target task, relevant PSFs for the task context should be identified 
based on historical statistical data or expert assessment. 

With the discussion above, this study provides two solutions to 
establish the link between the reference task and the target task 
(quantitative relationship f). Solution I: Calculating the distance of PSFs 
between the reference task and the target task. Solution II: Establishing a 
quantitative relationship between PSFs and HEP in the reference task, as 
shown in Fig. 2. 

3.1.1. Solution I:Calculating the PSFs distance 
Since the reference task selected is highly similar to the target task, it 

is feasible and plausible to conduct a distance analysis at the level of 
PSFs. Depending on assumption 2, the distance relationship between the 
PSFs of the target task and the reference task in this study is consistent 
with the distance relationship between their HEP. This means that the 
HEP of the target task can be determined once the PSFs distance is 
assessed. Fig. 3 illustrates the concept of calculating the PSFs distance to 

evaluate the HEP of the target task. 

3.1.2. Solution II: Establishing a quantitative relationship between PSFs- 
HEP 

Most current HRA methods acknowledge that PSFs play a critical role 
in affecting HEP, (Xing Pan & Wu, 2020) summarized the role of PSFs in 
the perceived error quantification process and proposed that PSFs 
consist of personal factors and external factors, which collectively 
constitute the task context. Therefore, HEP can be considered as being 
determined by the task context, which is characterized and evaluated by 
PSFs. 

Assuming that the operators involved in the reference task and the 
target task are the same, so the quantitative relationship between the 
external PSFs and HEP in the reference task is equally applicable to the 

Fig.2. The reference task-based human error analysis model.  

Fig.3. The concept of calculating PSFs distance (where DI represents the PSFs 
distance, IIFSR and IIFST represent the integrated evaluation results of the PSFs for 
the reference task and the target task, respectively., HEPR and HEPT represents 
the HEP of reference task and target task, respectively.). 

Fig.4. The concept of establishing a quantitative PSFs-HEP relationship.  
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target task (assumption 3). Fig. 4 indicates the concept of establishing a 
PSFs-HEP quantitative relationship to assess the HEP of the target task. 
Where F(IIFS) represents the quantitative relationship between PSFs and 
HEP, IIFS represents the comprehensive assessment result of PSFs. 

3.2. Intuitionistic fuzzy set 

Building upon the two solutions, it’s crucial to note that assessing 
HEP in a target task necessitates expert input. This study aims to address 
the uncertainty inherent in expert knowledge by employing the IFS 
theory, which will be elucidated further below. 

3.2.1. Definitions, rules and properties 
The IFS can be represented as follows (Atanassov & Atanassov, 1999; 

Yazdi, 2018). 

Definition 1. Intuitionistic Fuzzy Set. 

Suppose X is a given discourse domain, where X:[0,1] and x ∈ X, 
then IFS A on X is expressed by: 

A = {〈x, μA(x), νA(x) 〉|x ∈ X } (1)  

where μA(x) ∈ [0,1] and νA(x) ∈ [0, 1] denote membership and non- 
membership, respectively, and: 

0⩽μA(x)+ νA(x)⩽1 (2)  

πA(x) = 1 − μA(x) − νA(x) is also introduced as hesitation degree (Intui
tionistic index) of whether x belongs to A or not, which always equals 
0 in classical fuzzy set. 

Definition 2. Intuitionistic Fuzzy Number. 

An ordered pair 〈μA(x), νA(x) 〉 from an IFS A = {〈x, μA(x),
νA(x) 〉|x ∈ X } is called intuitionistic fuzzy numbers (IFN) if it follows:  

(i) (i)μA(x) must be convex and νA(x) must be concave, if and only if 
they satisfy following functions (Tyagi & Akram, 2013): 

μA(λx1 + (1 − λ)x2 )⩽λμA(x1)+ (1 − λ)μA(x2) (3)  

νA(λx1 + (1 − λ)x2 )⩾λνA(x1)+ (1 − λ)νA(x2) (4)  

where λ ∈ [0,1] and ∀x1,x2 ∈ X.  

(ii) (ii)An IFS is normalized if and only if ∃x0 ∈ X,which makes 
μA(x0) = 1 and νA(x0) = 0.  

(iii) (iii)Support S(A) = {x ∈ E : νA(x) < 1} is bounded.  
(iv) (iv)μA(x) is upper semi-continuous and νA(x) is lower semi- 

continuous. 

Assuming that A and B are IFSs on a given domain X, the following 
properties and rules exist (Atanassov, 1994): 

Rule 1:A ∩ B = {〈x, μA(x) ∧ μB(x), νA(x) ∨ νB(x) 〉|∀x ∈ X}; 
Rule 2:A ∪ B = {〈x, μA(x) ∨ μB(x), νA(x) ∧ νB(x) 〉|∀x ∈ X}; 
Rule 3:A = {〈x, νA(x), μA(x) 〉|∀x ∈ X}; 

Property 1. A ⊆ B ⇔ ifandonlyif(∀x ∈ X)(μA(x)⩽μB(x)&vA(x)⩾vB(x)); 

Property 2:. A = B ⇔ ifandonlyif(∀x ∈ X)(μA(x) = μB(x)&νA(x) =

νB(x)); 

Where μA(x) ∧ μB(x) = min(μA(x),μB(x)), νA(x) ∨ νB(x) = max(νA(x),
νB(x)).

The three rules give the operational forms of the membership and 
non-membership functions under the conditions of intersecting, merg
ing, and taking the inverse operation among IFSs, respectively. 

3.2.2. TIFN and arithmetic rules 
In this study, triangular intuitionistic fuzzy sets (TIFNs) are used for 

the evaluation and inference of PSFs. A TIFN is an IFN that considers 
both membership and non-membership functions, represented as fol
lows: 

μA(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1
, a1⩽x < a2

a3 − x
a3 − a2

, a2⩽x < a3

0, otherwise

(5)  

νA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b1 − x
b2 − b1

,1b1⩽x < b2

x − b2

b3 − b2
, b2⩽x < b3

0, otherwise

(6)  

where b1⩽a1⩽a2(b2)⩽a3⩽b3, and when μA(xi) = νA(xi), there exists 
μA(xi), νA(xi) < 0.5. TIFN can then be illustrated as A =

(a1, a2, a3; b1, b2, b3). Fig. 5 gives a schematic representation of a TIFN. 
To represent the quantified relationship of the PSFs and HEP, a TIFN- 

based inference method is established as below. 
Assume that M = (m1,m2,m3; n1, n2, n3) and T = (t1, t2, t3; s1, s2, s3), 

then for the operation between TIFNs is defined as follows (Atanassov, 
1994; Dengfeng & Chuntian, 2002).  

1) δ × M = (δm1, δm2, δm3; δn1, δn2, δn3), and the result is still a TIFN. 

Where δ is a constant andδ > 0.  

2) M ⊕ T = (m1 + t1,m2 + t2,m3 + t3; n1 + s1, n2 + s2, n3 + s3), and the 
result is still a TIFN.  

3) M ⊗ T = (m1t1,m2t2,m3t3; n1s1, n2s2, n3s3), and the result is still a 
TIFN. 

Moreover, in order to solve intuitionistic fuzzy relations among 
TIFNs, certain functions need to be employed. 

3.2.3. Relation function between two TIFNs 
The relation function between two TIFNs represents the mapping 

relationship between input and output in the IFS system. Define D as an 
intuitionistic fuzzy(IF) relation from M to T: 

D = M ∩ T = {〈(x, y), μD(x, y), νD(x, y) 〉|x ∈ M, y ∈ T } (7) 

Then there exist μD(x, y) = μM(x) ∧ μT(y) and νD(x, y) =

νM(x) ∨ νT(y). 
When the IFS M and the intuitionistic fuzzy relation D are known, the 

IFS T can be calculated by the following equations (Tyagi & Akram, 
2013): 

μT(y) = ∨
x
[μM(x) ∧ μD(x, y) ] (8)  

νT(y) = ∧
x
[νM(x) ∨ νD(x, y) ] (9)  

3.2.4. Distance between two TIFNs 
The measurement of IFS distance is an important part of the expert- 

based IFS system. The distance between two continuous and discrete 
TIFNs can be calculated by Eqs. (10) and (11), respectively, which 
contain three parameters: membership, non-membership, and intui
tionistic index. The traditional Euclidean distance (Szmidt & Kacprzyk, 
2000) considers the Intuitionistic index (π(x)) equally with the mem
bership degree (u(x)) and the non-membership degree (v(x)), which is 
somewhat unreasonable. Because the Intuitionistic index (π(x)) is an 
important parameter that represents the degree of hesitation of experts, 
it needs to be corrected.  
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where a and b are constants and 0 < a < b, [a, b] is the interval over 
which membership functions and non-membership functions need to be 
integrated. ρ is a correction coefficient, and ρ ∈ [0,1]. When ρ = 0, the 
influence of π(x) on distance is ignored. When ρ = 1, Eq. (11) becomes 
the traditional Euclidean distance. The Intuitionistic index π(x) contains 
both membership and non-membership information. In the absence of 
any other prior information, we take ρ = 0.5 to represent the maximum 
uncertainty in hesitation. 

3.3. The proposed TIFN-HRA 

Grounded in the analysis of the human error model discussed earlier 
and the IFS theory introduced, we present a novel method named TIFL- 
HRA for effectively evaluating HEP in a target task. The routine steps of 
the integrated TIFN-HRA method are summarized as follows (Fig. 6). 

Step 1: Definition of the reference task. 
The goal of this paper is to evaluate the HEP of target task using a 

reference task with known data. Therefore, the first step is to find a 
reference task which is highly similar to the target task. 

Step 2: Selection of critical PSFs. 
The proposed methodology begins with the selection of PSFs. Given 

the large number of PSFs that exist in reality, it is important to identify 

d(M,T) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2(b − a)

∫ b

a

[
(μM(x) − μT(x) )

2
+ (νM(x) − νT(x) )2

+ ρ(πM(x) − πT(x) )2 ]
√

(10)   

d(M,T) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2n

∑n

i=1

[
(μM(xi) − μT(xi))

2
+ (νM(xi) − νT(xi))

2)
+ ρ

(
πItR

(xi) − πItA
(xi)

)2
]

√

(11)   

Fig.5. Membership and non-membership functions of a TIFN.  

Fig.6. The detailed algorithm of TIFN-HRA methodology.  

Table 3 
Expert Credibility Value and Judgment Basis.  

No. Level Judgment basis values 

1 Very Believable 
(VB) 

10 years or more of work experience or a 
PhD  

1.0 

2 Believable (B) 5–10 years of work experience or a master’s 
degree  

0.9 

3 Relative Believable 
(RB) 

Less than 5 years of work experience or a 
bachelor’s degree  

0.8  
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those that have the greatest influence on HEP. While some PSFs may 
have a negligible effect, others may be critical and contribute signifi
cantly to overall performance. Therefore, it is essential to accurately 
identify and prioritize these critical PSFs. 

Step 3: Calculation of HRA-related statistics for reference task. 
In this step, statistics on HRA-related data for the reference task are 

calculated. 
Step 4: PSFs evaluation based on TIFN. 
The goal of this step is to perform the evaluation of PSFs (for both the 

reference task and the target task) with TIFNs, including the expert 
credibility, the evaluation of PSFs level and PSFs weight.  

(1) Expert credibility evaluation 

It is necessary to assess the credibility of the experts (the importance 
of the expert’s evaluations in the universe of discourse), because the 
credibility of their assessments varies depending on the expert’s 
knowledge level (Zhang et al., 2016). The credibility of experts is 
divided into three levels in this study C = {Relative Believable (RB), 
Believable (B), Very Believable (VB)}. Table 3 illustrates the criteria of 
determining the expert credibility and the values of each level of 
credibility.  

(2) PSF level evaluation 

PSF level represents the level of its own. In this study, there are five 
levels for PSFs, which are defined as L = {Very Poor (VP), Poor(P), 
Medium(M), Good(G), Very Good (VG)}. For example, comparable to 
the concept of CPCs in CREAM, the PSF level in this study is gauged 
relative to its influence on HEP. When the PSF exhibits a “Very good” 
level, it exerts a favorable influence on HEP, thereby enhancing human 
performance; conversely, at a “Very poor” PSF level, it bears a detri
mental effect on HEP, potentially escalating the likelihood of human 
error occurrence. 

The PSF level is determined by expert linguistic and subsequently 
translated into TIFN. 

The TIFN representing expert linguistic is given by the following 
equation in terms of Very Poor (VP): 

VP =
1
m
×
(

Ẽ1 + Ẽ2 + ...+ Ẽm

)
(12) 

where Ẽi(i = 1, 2, …, m) is the TIFN given by the ith expert, m is the 
number of experts.  

(3) PSFs weight evaluation 

Different PSFs have different effects on the human error, and 
considering the importance of the PSFs means considering the weight of 
each PSF for the task. The weight of PSFs in this study is divided into five 
levels W = {Very Unimportant (VU), Unimportant(U), Fair(F), Impor

tant(I), Very Important (VI)}. Similarly, PSFs weights are given by ex
perts linguistic and transformed into TIFNs. 

Step 5: PSFs aggregation based on TIFN. 
This step is the process of aggregating several TIFNs into a single 

TIFN, and ultimately obtaining the integrated level and integrated 
weight of PSFs.  

(1) Integrated level of PSFs 

The integrated level of each PSF It , t = 1,2,…, n is represented as 
below: 

It =
1
m
× [(c1 × It1) ⊕ (c2 × It2) ⊕ ⋯ ⊕ (cm × Itm) ] (13) 

where Iti represents the ith expert’s assessment of the tth PSF level, and 
Iti corresponds to a TIFN in L. ci represents ith expert’s credibility, n is the 
number of PSFs and m is the number of experts. According to the ag
gregation algorithm mentioned in 3.2.2, the result of the calculation is 
still a TIFN, from which we can obtain the integrated level of each PSF.  

(2) Integrated weight of PSFs 

Similar to the aggregation process of the PSF level, the aggregation of 
the PSF weight Wt , i = 1,2,…, n is the integration of each expert’s 
evaluation of the importance of the PSF by considering the expert 
credibility ci, which is represented as below. 

Wt =
1
m
× [(c1 × Wt1) ⊕ (c2 × Wt2) ⊕ ⋯ ⊕ (cm × Wtm) ] (14) 

where Wti represents the ith expert’s assessment of the tth PSF weight. 
Similarly, it can be seen that the result of the calculation is still a TIFN, 
which gives the integrated weight of each PSF.  

(3) Definition of the IFS index 

In order to make a comprehensive assessment of each PSF, this study 
defined the Intuitionistic fuzzy success index (IIFS) as a comprehensive 
assessment result of the PSFs, which contains the weights of the PSF, the 
levels of the PSFs, and the credibility of the expert. IIFS can be obtained 
by aggregating the integrated level and integrated weight of the PSFs, 
and the equation is as follows: 

IIFS =
1
n
× [(W1 ⊗ I1) ⊕ (W2 ⊗ I2) ⊕ ⋯ ⊕ (Wn ⊗ In) ] (15) 

Step 6: Solution I: Calculation of the PSF distance. 
The goal of this step is to assess the HEP of the target task by 

calculating the distance of PSFs. 
Step 6–1: PSFs distance calculation 
Following the assessment of the PSFs for both the target and refer

ence tasks, the comprehensive assessment results for each PSF must be 
compared. Specifically, if the level of a PSF (IIFST ) in the target task is 
higher, it suggests that the PSF will have a more positive impact on the 
target task and hence, a lower HEP. 

Suppose that the integrated evaluation result of a PSF for the refer
ence task is ItR , and that for the target task is ItA . In this context, the 
distance between the two tasks for the tth PSF can be expressed as follows 
using Eq. (10):   

The integrated distance of all PSFs is: 

DI =
1
n
× [(dI1 × W1) ⊕ (dI2 × W2) ⊕ ⋯ ⊕ (dIn × Wn) ] (17)  

where n is the number of PSFs. 
According to the aggregation algorithm, the result of the calculation 

is still a TIFN. 

dIt (ItR , ItT ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2(b − a)

∫ b

a

[(
μItR

(x) − μItA
(x)

)2
+
(

νItR
(x) − νItA

(x)
)2

+ ρ
(

πItR
(x) − πItA

(x)
)2

]√

(16)   
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Step 6–2: HEP evaluation for the target task. 
As the HEP of the reference task HEPR is known and represented in 

the form of TIFN, it can be calculated as: 
{

HEPT = HEPR + DI ⊗ HEPRIIFSR > IIFST

HEPT = HEPR − DI ⊗ HEPRIIFSR < IIFST

(18) 

Step 7: Solution II: Establishment of a quantitative relationship be
tween PSFs and HEP. 

The goal of this step is to assess the HEP of the target task by 
establishing a quantitative relationship between PSFs and HEP. 

Step 7–1: Determining the PSF-HEP intuitionistic fuzzy relationship. 
It is assumed that the HEP of the reference task HEPR can be deter

mined and reflected in the form of TIFN as shown below: 

HEPR = (r1, r2, r3; e1, e2, e3)

Then, on this basis, the IF relationship between HEPR and IIFSR can be 
determined. 

Fuzzy logic and fuzzy approximate inference are useful for the pro
cess of deriving imprecise conclusions from an imprecise set of data, and 
this study extends the concept of fuzzy logic to intuitionistic fuzzy logic. 
In the conditional propositions and integrated inference rules, the 
reference task-related indicators are evaluated using TIFN to establish 
an intuitionistic fuzzy relationship F between IIFSR and HEPR. The con
ditional statement is “if IIFSR , then HEPR”, where IIFSR is the cause event 
and HEPR is the result event. The elements in the fuzzy relation F 
represent the possibility of mapping from the intuitionistic fuzzy success 
index IIFSR to the human error probability HEPR. 

Let EIIFSR and ER represent the set of discrete elements on the intui
tionistic fuzzy success index IIFSR and the HEPR, respectively, defined as 
EIIFSR = {xI1 , xI2 ,⋯, xIα}, ER =

{
xR1 , xR2 ,⋯, xRβ

}
, where α, β are finite 

certain integers. An intuitionistic fuzzy relation F is an intuitionistic 
fuzzy set on EIIFSR ∩ ER and its elements are element pairs consisting of 
elements corresponding to EIIFSR and ER, respectively. Given that the 
element pairs on F is (x, z), the membership function and the non- 
membership function of F can be defined as Eq. (19) and Eq. (20), 
respectively. 

μF(x, z) =
{

μIIFSR
(x) ∧ μR(z)

}
(19)  

νF(x, z) = {νIIFSR (x) ∨ νR(z) } (20) 

Based on (19) and (20), the membership and non-membership 
matrices about F can be acquired, and the IF relation F is established. 

Step 7–2: HEP evaluation for the target task. 
The relationship between PSFs and HEP for the target task consid

ered in this study is the same as the relationship in the reference task. 
Because the IF relationship F between IIFSR and HEPR has been deter
mined (the membership and non-membership matrixes of F have been 
established), we can find the set of discrete elements on the IF relation F 
corresponding to the IIFST and then identify the set of discrete elements 
on HEP of the target task. 

Therefore, according to the Eqs. (8) and (9), and from the evaluation 
results of the known IIFST and the IF relationship F obtained from the 
reference task, the HEP of the target task can be calculated as follows: 

μHEPT
(z) = ∨

x

[
μIIFST

(x) ∧ μF(x, z)
]

(21)  

νHEPT (z) = ∧
x

[
νIIFST

(x) ∨ νF(x, z)
]

(22)  

where Eq. (21) means: the membership degree μHEPT
(z) of HEPT takes the 

maximum value among the minimum values between the membership 
degree μIIFST

(x) of all IIFST and the membership degree matrix μF(x, z) of F.
Finally, HEPT with discrete element pairs as set elements can be 

obtained and shown as below: 

HEPT =
{(

x1, μx1
, νx1

)
,
(
x2, μx2

, νx2

)
,⋯

(
xn, μxn

, νxn

)}

4. Case study 

4.1. Background 

Human factors play a crucial role in various phases of spaceflight, 
ranging from design and implementation to launch and maintenance. 
Studies have demonstrated that human error is the primary cause of 
hazardous incidents in the spaceflight launch field(Forsbacka & Helton, 
2023; Pan et al., 2022), and can even lead to catastrophic consequences 
sometimes, such as core equipment damage or even personnel injury. 
Therefore, in order to improve the reliability of the entire launch 
mission, the HEP must be fully considered in advance (Calhoun et al., 
2013). HRA of space refueling missions can provide a decision basis for 
the analysis, measurement and prevention of human errors during space 
launch. 

In this study, the refueling task in the spaceflight launch process is 
selected as a specific object of study, and a simulation experiment is 
designed as a reference task to analyze the HEP of the refueling task. 

Fig.7. Interface of the spaceflight refueling mission simulation experiment.  
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4.2. HEP during spaceflight refueling mission 

4.2.1. Preliminary 
Step 1: Definition of the reference task. 
To assess the HEP of the target task, this study utilizes human factor 

experiment as a reference task for the spaceflight refueling mission. 
Based on field investigation conducted at the space launch site, relevant 
information pertaining to the equipment and the refueling process was 
collected. Using this information, the refueling task was decomposed 
into 13 specific steps, with each step consisting of a certain number of 
actions. A simulation program was then developed to capture various 
actions of the operator and compare them with the set error judgment 
criteria to detect any human errors. Fig. 7 illustrates the interface of the 
refueling simulation experiment. 

Step 2: Selection of critical PSFs. 
By conducting field investigation and collecting data at a spaceflight 

launch site, we analyzed accident reports from four years (2004, 2008, 
2011, and 2012) to obtain the number of human errors and identify the 
primary influencing factors, as depicted in Fig. 8. 

Among the various PSFs associated with the spaceflight launch 
mission, four factors are found to have a significant impact on human 
errors in the space refueling mission, namely training (T), experience 
(E), stress (S), and working hours (WH). It’s important to note that, even 
though supervision appears to have a similar impact as working hours, 
expert indicates that its effect might be relatively minor. This is because 
it’s less common and has less influence in practice compared to working 
hours. These PSFs correspond to team and organizational factors, per
sonal factors, and environmental factors, respectively, as described in 
Section 2.1. Consequently, this case study focuses on analyzing these 
four PSFs, which are described in detail in Table 4. 

Step 3: HRA-related statistics for reference task. 
According to the human factor experiment based on the space refu

eling mission and the analysis of the experimental data, the probability 
interval of human error probability is [0.044,0.116] (Pan et al., 2020). 
Subsequently, similar to the approach for obtaining TIFNs used to 
represent expert linguistics, we can get the TIFN of the reference task as 
HEPR = [0.044,0.08,0.116;0.014,0.08,0.146] with the expert’s 
suggestion. 

4.2.2. PSF evaluation and aggregation based on TIFN 
Step 4:PSF evaluation based on TIFN.  

(1) Expert credibility evaluation 

After considering the experts’ experience and education, the credi
bility and detailed information of the experts are obtained in Table 5.  

(2) PSFs level evaluation 

The evaluation of the four PSFs by experts for the reference task are 
listed in Table 6 below. 

Table 7 gives the TIFN for each level of PSF by expert evaluation. 
At the same time, PSFs levels for target tasks are also given by expert 

Fig.8. PSFs in spaceflight fuel refueling missions.  

Table 4 
Description of the PSFs.  

PSFs Description 

Training (T) PSF relates to team and organizations, which offers guidance 
and skill-building for people to improve task performance and 
minimize human errors. 

Experience(E) PSFs that impact personal competence involve honing intuitive 
understanding and skills through practice, encountering 
situations, and learning from successes and failures. 

Stress (S) PSF influencing timely completion of collective actions safely, 
primarily shaped by initiators’ perceptions of consequences for 
task non-completion. 

Working hours 
(WH) 

PSF related to the environment. The duration and scheduling of 
working hours, which affect individuals’ cognitive abilities, 
fatigue levels, and overall productivity, are crucial factors.  

Table 5 
Expert Credibility Evaluation.  

Experts Judgement basis Credibility 

E1 Expert 1 has a master’s degree and have 6 years work 
experience in aerospace field.  

0.9 

E2 Expert 2 has a PhD degree and work for 15 years in the field 
of reliability of space refueling systems.  

1.0 

E3 Expert 3 has a master’s degree and work for 8 years in the 
field of safety management of space refueling systems.  

0.9 

E4 Expert 4 has a bachelor’s degree and work for 2 years in the 
field of safety management of space refueling systems.  

0.8 

E5 Expert 5 has a master’s degree and work for 9 years in the 
field of reliability of space refueling systems.  

0.9  

Table 6 
Reference task PSFs level evaluation.  

PSFs Experts 

E1 E2 E3 E4 E5 

Training M G M M G 
Experience M M M G G 
Stress P VG VP G G 
Working hours VG G VG M P  

Table 7 
TIFN for each level of PSFs.  

Levels TIFN values 

VP (0.58, 0.64, 0.68; 0.57, 0.64, 0.70) 
P (0.66, 0.72, 0.77; 0.64, 0.72, 0.79) 
M (0.73, 0.78, 0.84; 0.71, 0.78, 0.86) 
G (0.80, 0.86, 0.90; 0.79, 0.86, 0.92) 
VG (0.85, 0.92, 0.97; 0.82, 0.92, 1.00)  

Table 8 
Target task PSFs influence level assessment.  

PSFs Experts 
E1 E2 E3 E4 E5 

Training G VG VG G G 
Experience G M G VG M 
Stress M VG G M VG 
Working hours VG G VG G M  
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assessment, and the results are listed in Table 8.  

(3) PSFs weight evaluation 

Table 9 gives the TIFN for each weight level of PSFs by expert 
evaluation. 

The weight of each PSF is evaluated by experts and shown in 
Table 10 below. 

Step 5: PSF aggregation based on TIFN. 
On the basis of the evaluation results of the PSFs, the aggregation of 

the PSFs of the reference task and the target task are performed.  

(1) Integrated level of PSFs 

According to Eq. (13), the integrated TIFN of each PSF can be 
obtained. 

For the reference task, the integrated evaluation results for each PSF 
are shown in Table 11. 

For instance, the TIFN of the “Training” of the reference task can be 

calculated as follows: 

ITR =
1
5
× [(c1 × M) ⊕ (c2 × G) ⊕ (c3 × M) ⊕ (c4 × M) ⊕ (c5 × G) ]

= (0.6836, 0.7324, 0.7788; 0.6694, 0.7324, 0.7968)

For the target task, the combined evaluation results of each PSF are 
shown in Table 12.  

(2) Integrated weight of PSFs 

According to Eq. (14), the TIFNs of the integrated weight of each PSF 
can be obtained (Table 13). 

For instance, the TIFN of the integrated weight of “Training” can be 
calculated as follows: 

WT =
1
5
× [(c1 × VI) ⊕ (c2 × I) ⊕ (c3 × VI) ⊕ (c4 × I) ⊕ (c5 × F) ]

= (0.6768, 0.7488, 0.8100; 0.6462, 0.7488, 0.8406)

(3) Intuitionistic fuzzy success index 

To compare PSFs levels more intuitively between the reference task 
and the target task, it is first necessary to determine the intuitionistic 
fuzzy success index, which is an integrated level of all PSFs. In accor
dance with the results of integrated level and integrated weight of the 
PSFs and Eq. (15), aggregation can be performed to obtain the intuitive 
fuzzy success index of the reference task and the target task as: 

IIFSR =
1
4
× [(WT ⊗ ITR ) ⊕ (WE ⊗ IER ) ⊕ (WP ⊗ IPR ) ⊕ (WWH ⊗ IWHR ) ]

= (0.4161, 0.5047, 0.5891; 0.3864, 0.5047, 0.6268)

IIFST =
1
4
× [(WT ⊗ ITT ) ⊕ (WE ⊗ IET ) ⊕ (WP ⊗ IPT ) ⊕ (WWH ⊗ IWHT ) ]

= (0.4396, 0.5330, 0.6195; 0.4077, 0.5330, 0.6598)

The IIFSR and IIFST are still TIFNs. 

4.2.3. Evaluation of the HEP of the target task 
Step 6: Solution I: Calculating the PSFs distance.  

(1) PSFs distance calculation 

According to Eq. (16), the distance between each PSF of the target 

Table 9 
TIFN for each weight of PSFs.  

Levels TIFN values 

VU (0.33, 0.42, 0.51; 0.31, 0.42, 0.53) 
U (0.45, 0.56, 0.66; 0.42, 0.56, 0.68) 
F (0.62, 0.70, 0.78; 0.59, 0.70, 0.81) 
I (0.72, 0.81, 0.89; 0.68, 0.81, 0.93) 
VI (0.85, 0.92, 0.97; 0.82, 0.92, 1.00)  

Table 10 
PSFs weight evaluation.  

PSFs Experts 
E1 E2 E3 E4 E5 

Training VI I VI I F 
Experience F I VI F U 
Stress I VI I U I 
Working hours F F U I F  

Table 11 
TIFN of each PSF integrated influence level of reference task.  

PSFs TIFN values 

ITR (0.6836, 0.7324, 0.7788; 0.6694, 0.7324, 0.7968) 
IER (0.6808, 0.7292, 0.7764; 0.6662, 0.7292, 0.7944) 
ISR (0.6652, 0.7212, 0.7610; 0.6504, 0.7212, 0.7810) 
IWHR (0.7016, 0.7576, 0.8022; 0.6820 0.7576, 0.8238)  

Table 12 
TIFN of each PSF integrated influence level of target task.  

PSFs TIFN values 

ITT (0.7390, 0.7968, 0.8366; 0.7224, 0.7968, 0.8584) 
IET (0.7014, 0.7532, 0.7984; 0.6854, 0.7532, 0.8180) 
IST (0.7152, 0.7696, 0.8162; 0.6952, 0.7696, 0.8380) 
IWHT (0.7254, 0.7812, 0.8244; 0.7074, 0.7812, 0.8460)  

Table 13 
TIFN of the integrated weight of each PSF.  

PSFs TIFN values 

WT (0.6768, 0.7488, 0.8100; 0.6462, 0.7488, 0.8406) 
WE (0.5888, 0.6664, 0.7366; 0.5598, 0.6664, 0.7638) 
WS (0.6308, 0.7110, 0.7802; 0.5984, 0.7110, 0.8110) 
WWH (0.5434, 0.6224, 0.6980; 0.5148, 0.6224, 0.7248)  

Fig.9. HEP of the target task considering the PSFs distance.  
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task and the reference task can be calculated as: dIT = 0.2429, dIE =

0.1241, dIP = 0.2237, and dIWH = 0.1399. 
For example, the distance between “Training” of the reference task 

and the target task can be calculated as follows: 

Through Eq. (17), the combined distance of all PSFs is: 

DI =
1
4
× [(dIT × WT) ⊕ (dIE × WE) ⊕ (dIP × WP) ⊕ (dIWH × WWH) ]

= (0.1136, 0.1277, 0.1401; 0.1081, 0.1277, 0.1454)

And the result of the calculation is still a TIFN.  

(2) HEP evaluation for the target task 

The HEP of the reference task is already known and the HEP evalu
ation result is expressed as TIFN. Additionally, the PSF levels of the 
target task are better than those of the reference task, as indicated by the 
intuitionistic fuzzy success index. Therefore, the target task is expected 
to be more reliable. The HEP of the target task can be determined by 
calculating the PSFs distance between the target and reference tasks 
using Eq. (18). 

HEPT = HEPR − dI ⊗ HEPR

= (0.0390, 0.0698, 0.0998; 0.0125, 0.0698, 0.1248)

Fig. 9 gives the evaluation results of the HEP of the target task 
calculating the PSFs distance. 

Step 7: Solution II: Establishing a quantitative relationship between 
PSFs and HEP. 

The second solution, establishing a quantitative relationship be
tween PSFs and HEP, works in the following way.  

(1) Determining the PSFs-HEP intuitionistic fuzzy relationship 

Given that the PSFs and HEP of the reference task are presented in 

the form of TIFNs, the relationship between them can be established by 
treating the PSF evaluation results as independent variables and the HEP 
as the dependent variable. Intuitive fuzzy reasoning is used as an 
assessment tool to measure the relationship F of given integrated PSFs 

level and HEP, which means “if the IIFSR is, then the human reliability is 
HEPR”. Thus, it can be determined that there is a quantified relationship 
between them, and the elements in the relationship F determined by 
using intuitive fuzzy inference represent the fuzzy possibilities from IIFSR 

mapping to HEPR. 
The IFS IIFSR and HEPR in the reference task need to be discretized to 

determine this IF relationship. It may be useful to take EIIFSR 
and ER as 

discrete subsets of the IIFSR and the HEPR of the reference task, respec
tively, and the two sets are given as follows: 

EIFSR =

{
0.4, 0.43, 0.46, 0.49, 0.52, 0.55, 0.58, 061, 0.64, 0.67, 0.7,

0.73, 0.76, 0.79, 0.82, 0.85, 0.88, 0.91, 0.94, 0.97

}

ER =

{
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 20

}

Then the set of discrete intuitionistic fuzzy success index and the set 
of membership and non-membership relations for HEP corresponding to 
the reference task can be obtained as follows: 

In this way, the IF relationship F between PSFs and HEP is solved, 
and the membership and non-membership matrices of the PSFs-HEP 
correlation can be obtained according to Eqs. (19) and (20), as shown 
in Figs. 10 and 11. 

For example, we can obtain μF(0.05,0.61) and νF(0.05,0.61) ac
cording to Eqs. (19) and (20), respectively: 

μF(0.05, 0.58) = μHEPR
(0.05) ∧ μIFSRR

(0.58) = 0.1667 ∧ 0.1078 = 0.1078  

νF(0.05, 0.61) = νHEPR (0.05) ∨ νIFSR (0.61) = 0.4545 ∨ 0.8624 = 0.8624 

(2) HEP evaluation for the target task. 
The intuitionistic fuzzy success index of the target task is: 

IIFST = (0.4396, 0.5330, 0.6195, 0.4077, 0.5330, 0.6598)

d(ItR, ItT) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2

∫ 1

0

[(
μItR

(x) − μItT
(x)

)2
+ (νItR (x) − νItT (x) )

2
+ 0.5(πItR (x) − πItT (x) )

2
]

√

= 0.2429   

IIFSR =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0.4, 0, 0.8850), (0.43, 0.1569, 0.6314), (0.46, 0.4955, 0.3779),
(0.49, 0.8341, 0.1243), (0.52, 0.8187, 0.1253), (0.55, 0.4633, 0.3710),

(0.58, 0.1078, 0.6167), (0.61, 0, 0.8624), (0.64, 0, 1), (0.67, 0, 1), (0.7, 0, 1),
(0.73, 0, 1), (0.76, 0, 1), (0.79, 0, 1), (0.82, 0, 1), (0.85, 0, 1), (0.88, 0, 1),

(0.91, 0, 1), (0.94, 0, 1), (0.97, 0, 1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

HEPR =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0.01, 0, 1), (0.02, 0, 0.9091), (0.03, 0, 0.7576), (0.04, 0, 0.6061),
(0.05, 0.1667, 0.4545), (0.06, 0.4444, 0.3030), (0.07, 0.7222, 0.1515),

(0.08, 1, 0), (0.09, 0.7222, 0.1515), (0.1, 0.4444, 0.3030),
(0.11, 0.1667, 0.4545), (0.12, 0, 0.6061), (0.13, 0, 0.7576),

(0.14, 0, 0.9091), (0.15, 0, 1), (0.16, 0, 1), (0.17, 0, 1), (0.18, 0, 1),

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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The set of membership and non-membership relationship that cor
responds to the discrete intuitionistic fuzzy success index of the target 
task can be obtained using the following procedure: 

Given the relationship matrix of PSFs-HEP correlations F and IIFST , 
the discrete elements on HEPT can be presented according to Eqs. (21) 
and (22). For instance, μHEPT

(0.05) = ∨
x

[
μIFST

(x) ∧ μF(x,0.05)
]
=

0.1667, νHEPT (0.05) = ∧
x
[νIFST (x) ∨ νF(x,0.05) ] = 0.4545. 

Fig. 12 gives the evaluation results of the HEP of the target task 
considering quantitative relationship between PSFs and HEP. 

4.3. Linguistic distance of the target task 

The distances between the results of the two solutions and the expert 
linguistic are calculated for a better understanding of the obtained re
sults. The experts initially give a linguistic evaluation of the HEP, 
divided into five levels: G= {VL(Very Low), L(Low), RL(Rather low), M 
(Medium), H(High), RH(rather high), VH(Very High)}. TIFNs of the HEP 
is demonstrated in Table 14. 

The result obtained by solution I is continuous, while the result ob
tained by solution 2 is discrete. Hence, Eq. (10) and Eq. (11) were used 
to calculate the distance between each result and the expert linguistic, 
respectively. It can be observed from Table 15 that the results of both 
solution I and solution II have the shortest distance to “Low” in the 

expert linguistic. Therefore, we can get the level of HEP of the target task 
is “Low”. 

5. Discussion 

This study is dedicated to the advancement and refinement of HRA 
methods. It introduces a novel HRA research paradigm, in which a 

reference task based human error model is proposed to evaluate the 
target task. Meanwhile. the IFS theory is used to deal with the uncer
tainty of expert knowledge in the quantitation of HRA. The novelty of 
the developed method and the discussion of the results is as follows.  

(1) Effectiveness of the reference task based human error model 

In engineering, the scarcity of data makes the mechanism of how 
task-context relevant PSFs affect HEP unclear, making it difficult to 
apply many classical HRA methods to new tasks. In addition, obtaining 
information from experts is often difficult in the absence of benchmarks. 
To overcome this challenge, this paper proposes a reference task based 
human error model and presents two solutions for assessing HEP of 
target task based on reference task: solution I calculates the distance 
between PSFs of target and reference tasks, while solution II determines 
the quantitative relationship between PSFs and HEP in the reference task 

R I

Fig.10. The membership matrix of the PSFs-HEP correlation F.  

EIIFST
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0.4, 0, 1), (0.43, 0, 0.8220), (0.46, 0.2184, 0.5826),
(0.49, 0.5396, 0.3432), (0.52, 0.8608, 0.1038), (0.55, 0.8035, 0.1341),

(0.58, 0.4566, 0.3707), (0.61, 0.1098, 0.6073), (0.64, 0, 0.8438),
(0.67, 0, 1), (0.7, 0, 1), (0.73, 0, 1), (0.76, 0, 1), (0.79, 0, 1), (0.82, 0, 1),

(0.85, 0, 1), (0.88, 0, 1), (0.91, 0, 1), (0.94, 0, 1), (0.97, 0, 1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

HEPT =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0.01, 0, 1), (0.02, 0, 9091), (0.03, 0, 0.7576), (0.04, 0, 6061),
(0.05, 0.1667, 0.4545), (0.06, 0.4444, 0.3030),
(0.07, 0.7222, 0.1515), (0.08, 0.8187, 0.1253),

(0.09, 0.7222, 0.1515), (0.10, 0.4444, 0.3030), (0.11, 0.1667, 0.4545),
(0.12, 0, 0.6061), (0.13, 0, 0.7576), (0.14, 0, 0.9091), (0.15, 0, 1), (0.16, 0, 1),

(0.17, 0, 1), (0.18, 0, 1), (0.19, 0, 1), (0.20, 0, 1)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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and then maps it to the target task. The reference task is a highly similar 
task to the target task, and in the case study, a simulated human-in-the- 
loop experiment is developed for the space refueling task (target task) 
process, using it as the reference task to collect task-relevant information 
such as PSFs and HEP. This research paradigm offers a new perspective 

for HRA studies in scenarios where data for target tasks are scarce.  

(2) HEP quantification using the proposed TIFN-HRA 

Expert knowledge plays a crucial role in the quantification of HRA. 
To better reflect the uncertainty in expert cognition, we propose an IFS- 
based method for evaluating the PSFs. Since IFS theory adeptly captures 
the ambiguity of expert knowledge, which is common in the assessment 

R I

Fig.11. The non-membership matrix of the PSFs-HEP correlation F.  

Fig.12. HEP evaluation of target task considering quantitative relationship between PSFs and HEP.  

Table 14 
TIFN for each level of HEP.  

Level TIFN value 

VL (0.01, 0.02, 0.03; 0, 0.02, 0.04) 
L (0.04, 0.05, 0.06; 0.03, 0.05, 0.07) 
RL (0.07, 0.08, 0.09; 0.06, 0.08, 0.1) 
M (0.1, 0.11, 0.12; 0.09, 0.11, 0.13) 
RH (0.13, 0.14, 0.15; 0.12, 0.14, 0.16) 
H (0.16, 0.18, 0.20;0.15, 0.18, 0.21) 
VH (0.20, 0.23, 0.26; 0.19, 0.23, 0.27)  

Table 15 
Distance between each result and Linguistic.  

Method VL RL L M H RH VH 

Solution I  0.204  0.172  0.158  0.195  0.232  0.243  0.259 
Solution II  0.409  0.353  0.284  0.353  0.410  0.443  0.467  
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of PSFs. The proposed method named TIFN-HRA quantifies the two 
solutions in the proposed human error model based on IFS using the 
aggregation algorithm of TIFN. In addition, solution II is an improve
ment on the literature (Tyagi & Akram, 2013), taking into account ex
perts’ credibility, and solution I is the original result of this study. The 
computational procedure of the proposed solution I is more concise 
compared to solution II.  

(3) Analysis and comparison of the two solutions in TIFN-HRA 

The results of the HEP analysis for the target task can be obtained 
through the two solutions, as shown in Fig. 13. 

Firstly, for the solution of calculating PSF distance, it is known that 
the HEP with the highest confidence is around 0.0689, which is lower 
than that of the reference task. The result indicates that HEP is influ
enced by context, and the current context is determined by the level of 
PSFs. Qualitatively, when the level of PSFs is higher, the result of HEP 
will be lower, and the proposed method just accords with this 
relationship. 

Secondly, solution II calculated the quantitative relationship of PSFs- 
HEP. According to the analysis, the highest membership is found when 
the HEP is 0.08, which was 0.8187. However, the method is still limited 
by the granularity of the given discrete set (the selected interval and the 
number of elements), which needs to be studied more thoroughly to 
obtain more accurate results. Additionally, the results obtained by both 
solutions show the shortest distance from the “Low” level in the expert 
linguistic. However, the calculation process of solution I is simpler and 
gives continuous result, which can give an explicit result to the decision 
maker. 

6. Conclusion 

In the case of unavailable or scare data, decision makers usually use 
the linguistics of experts for the quantification of HRA. To deal with the 
problem of knowledge/data limitations that create uncertainty in HEP 
assessment, a reference task based HRA approach is proposed in this 
paper. IFS theory is applied to capture hesitation degree in expert lin
guistics, which is more in line with human perception. Then, an aggre
gation algorithm for PSFs based on TIFN is proposed, and two solutions 

for quantifying HEP are proposed: considering PSFs distance and 
calculating PSFs-HEP relationship. A case study of a spaceflight refuel
ing mission is conducted, and the feasibility and effectiveness of the two 
methods are demonstrated. The distances between the results of the two 
solutions and the expert linguistic are calculated and both results have 
the shortest distance to “Low”. However, comparatively, solution I is 
simpler, and the result is clearer, which is more favorable to the decision 
maker. This research is expected to provide original contributions of 
HRA. In future, it will be exciting to perform HRA by integrating 
Bayesian networks and fault tree analysis within intuitionistic fuzzy 
environment. 

The proposed method in this paper expands the field of HRA but still 
has its limitations. On the one hand, the premise of the reference task- 
based model proposed in this paper is the need to identify a reference 
task for the target task, which may require the development of human 
factor experiment for the target task. On the other hand, in many cases, 
HEP is dependent on human behavior and proneness, which may involve 
research in human neuroscience and psychology that are beyond the 
scope of this study. Therefore, our model can be viewed as a tool for 
providing preliminary assessment results, supplying a basis for subse
quent in-depth research and initial decision-making by stakeholders. 
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Appendix A 

We created a symbol table which includes the frequently used noun abbreviations and symbols in this document, as shown below: 
Notation list.   

Notation Interpretation 

HRA Human reliability analysis 
FS Fuzzy set 
IFS Intuitionistic fuzzy set 
IFN Intuitionistic fuzzy number 
HEP Human error probability 
PSFs Performance shaping factors 
TIFN Triangular intuitionistic fuzzy number 
m The number of experts 
n The number of PSFs 
μA(x) Membership of IF set A on X 
vA(x) Non-membership of IF set A on X 
πA(x) Intuitionistic index 
ci Credibility of ith expert 
F Quantitative relationship between PSFs and HEP 
dIt (ItR , ItT ), t = 1,2,⋯,n Distance of each PSF between the target task and the reference task 
DI PSFs distance between reference task and target task 
It , t = 1,2,⋯,m Integrated level of each PSF 
IIFSR Integrated level of PSFs of the reference task 
IIFST Integrated level of PSFs of the target task 
HEPR HEP of reference task 
HEPT HEP of target task 
Wt , t = 1,2,⋯,m Integrated weight of each PSF 
EIIFS R Discrete elements on IIFSR 

ER Discrete elements on ER 

EIIFS T Discrete elements on IIFST 

ET Discrete elements on ET  
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