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Human Reliability Analysis (HRA) is a critical issue for addressing human error in system reliability. There are
numerous tasks for which human factors-related data are not available, rendering expert knowledge the only
basis for assessing such tasks. However, the knowledge obtained from experts is subject to ambiguity and
vagueness, which affects the usability of the assessment results. To overcome this challenge, in this paper a
reference task based HRA method is proposed and the intuitionistic fuzzy set (IFS) is adopted because of its
advantage of being able to handle ambiguous information. Firstly, to analyze the human error probability (HEP)
of the target task, a reference task-based human error analysis model is introduced. Two solutions are provided:
calculating the performance shaping factors (PSFs) distance between the reference task and the target task and
establishing a quantitative relationship between PSFs and HEP. Secondly, the PSFs evaluation and inference
methods based on triangular intuitionistic fuzzy numbers (TIFNs) are developed. Finally, the effectiveness and
consistency of the two solutions of TIFN-HRA are demonstrated through a spaceflight refueling mission analysis.
The distances between the results of the two solutions and the expert linguistic are compared and both results

have the shortest distance to “Low”. However, solution I is simpler and the result is clearer.

1. Introduction

In recent years, the number of accidents due to technical failures
decreases due to the development and progress in terms of redundancy
and protection, which have made system more reliable (Zhan et al.,
2019). However, the reliability of human, a significant component of
system reliability, has not been effectively guaranteed. Despite diffi-
culties in obtaining accurate data, it is estimated that nearly 60 %~90 %
of errors can be attributed to human factors, either directly or indirectly
(Kelly & Efthymiou, 2019; Schiraldi, 2013). Therefore, the role of
human should be considered in accident dynamics to ensure effective
prevention of hazardous events (Jo & Lee, 2024).

In order to reduce the risk caused by Human factors, the research on
Human Reliability Analysis (HRA), a proactive method to identify,
quantify, and reduce the human error probability (HEP) in human-
—-machine system (Hou et al., 2021), has emerged. With the introduction
of HRA by (Swain & Guttmann, 1983) in the field of nuclear engineer-
ing, various methods, theories and models for HRA have been gradually
developed and perfected, and theoretical studies and model applications

have been carried out by experts in other fields such as transportation
(Chen et al., 2021), marine engineering (Uflaz et al., 2023), aerospace
industry (DeMott & Bigler, 2017), and chemical industry (Aliabadi,
2021). Through decades of efforts, more than 35 HRA techniques are
developed, such as, Technique For Human Error Rate Prediction
(THERP) (Zimolong, 1992), Success Likelihood Index Method (SLIM)
(Vestrucci, 1988), Standardized Plant Analysis Risk-Human reliability
analysis (SPAR-H) (Gertman et al., 2005), Cognitive Reliability and
Error Analysis Method (CREAM) (Hollnagel, 1998). In these widely-
applied HRA methods, a prevalent perspective suggests that human er-
rors stem from the context surrounding human task execution. Perfor-
mance shaping factors (PSFs) serve as tools to define the human context,
encapsulating all elements influencing human behavior (Pan & Wu,
2018). HRA methods are dedicated to establishing human error models
that describe the relationship between PSFs and HEP. Furthermore, due
to the scarcity of HRA data, expert knowledge plays a significant role in
quantifying HEP (Tu et al., 2015). However, owing to the inherent
ambiguity and uncertainty in human knowledge, although not entirely
impossible, it is challenging for experts to provide precise probability
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values (Shen et al., 2016). Therefore, addressing the uncertainty asso-
ciated with expert knowledge is another concern of HRA community.

The existing human error models primarily leverage the fact that
PSFs directly influence HEP. They employ functions to map PSFs onto
HEP, representing a classic research paradigm (Wang et al., 2023).
However, the generalization capability of such functional relationships
is limited, particularly when applied to human operational tasks in novel
domains. This paper introduces an alternative research paradigm, as
illustrated in Fig. 1, namely a reference task based human error model.
Unlike directly establishing a mathematical representation between
PSFs and HEP, this model utilizes relevant information from reference
task to assess human error in target task. In addressing the uncertainty
quantification issue in HRA, fuzzy sets (FS) theory (Zadeh, 1965) has
been employed to tackle the uncertainty and ambiguity in expert
knowledge. However, such an approach may be inadequate in handling
uncertainty in human cognitive functions such as reasoning and hesi-
tation. A potential solution to this issue lies in intuitionistic fuzzy sets
(IFS) (Atanassov & Atanassov, 1999). As an extension of FS, IFS not only
considers the membership degrees of expert opinions but also takes into
account non-membership degrees and hesitancy, effectively capturing
the uncertainty and ambiguity of human knowledge. Therefore, this
study develops a method based on IFS for quantifying HEP.

The aim of this paper is to evaluate the HEP of the target task using
the information of reference task, while incorporating IFS theory to
address the uncertainty associated with expert knowledge in the quan-
tification process of HRA. The main contributions of this study are as
follows:

(1) A reference task based human error model is proposed, which
offers two solutions for assessing the HEP of the target task. In this
model, the reference task is a task similar to the target task (the
task under evaluation), with known PSFs and HEP.

(2) The IFS theory is utilized to address the uncertainty in expert
knowledge during the quantification process of HRA, introducing
a novel method termed TIFN-HRA.

(3) The TIFN-HRA method is employed to quantify the two solutions
within the proposed human error model: considering the PSFs
distance and establishing a quantitative relationship between
PSFs and HEP. The effectiveness and feasibility of this approach
are validated using a space refueling task as a case study.

The remaining organization of this paper is as follows. Section 2
reviews the literature concerning HRA. Section 3 will detail the pro-
posed human error model and the TIFN-HRA method. Section 4 vali-
dates the effectiveness and feasibility of this method using a space
refueling task as an example. Section 5 discusses the research findings,
while Section 6 concludes the paper and suggests future directions for
improvement.
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Fig.1. Research ideas.
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2. Literature review

Human error is an important factor leading to the overall risk of
safety—critical systems (Zhao, 2022). The focus of this study lies in
establishing a novel human error model and devising methods to address
the uncertainty in expert knowledge during HRA quantification.
Simultaneously, given its paramount importance in contributing to
human error, existing research has consistently evaluated HRA by
quantifying the PSF. Therefore, in addition to providing a brief overview
of the evolution of HRA methods and PSF categorization, it is crucial to
comprehensively review human error models and quantification
methods within HRA.

2.1. Evolution of HRA methods

Various HRA methods have been proposed over time to enhance
human reliability. These methods can be categorized by generation. The
first-generation HRA methods encompass THERP (Zimolong, 1992),
Human Cognitive Reliability (HCR) (Apostolakis et al., 1988) and SLIM
(Vestrucci, 1988). These methods notably lack consideration for the
influence of human cognitive activities, and their calculation of HEP
mirrors that of equipment failures. Consequently, the first-generation
HRA methods fail to address the exploration of human error mecha-
nisms. The second-generation of HRA methods emerged in the 1990 s
and are currently undergoing further development. Representative
methods include the CREAM (Hollnagel, 1998), a technique for human
error analysis (ATHEANA) (Cooper et al., 1996), and the accident dy-
namics simulator — information, decision, action in crew context (ADS-
IDAC) (Chang & Mosleh, 2007). These methods incorporate cognitive
models of human behavior into HRA approaches, aiming to elucidate the
mechanisms underlying human errors. With the rapid advancement of
computer technology, HRA methods such as ADS-IDAC have employed
simulation techniques to predict human error. These methods are
referred to as third-generation or next-generation HRA methods (Coyne,
2009). Regardless of the generation of HRA method, they all strive to
construct a human error model elucidating the mechanisms by which
PSFs influence HEP. Additionally, emphasis has been placed on the ac-
curacy and credibility of HRA quantification.

2.2. PSF categorization

Definitions of PSF differ between HRA methods. Swain divides PSFs
into three broad categories: external PSFs, stressor PSFs, and internal
PSFs in THERP approach, where external PSFs also include situational
characteristics, operational and task instructions, and task and equip-
ment characteristic, stressor PSFs include psychological stress and
physiological stress, and internal PSFs include organismal factors (Swain
& Guttmann, 1983). The CREAM approach categorizes factors that in-
fluence human performance into nine types named common perfor-
mance conditions (CPCs) (Hollnagel, 1998). In the Technique for the
Retrospective and Predictive Analysis of Cognitive Errors (TRACEr)
approach, PSFs are divided into human factors, information/commu-
nication factors, ability/training factors, internal/external environ-
mental factors, organizational factors, and other factors (Said & Noor,
2013). Due to the significant impact of PSFs and the variability in its
interpretation, this study begins by systematically categorizing PSFs as
all contextual factors that contribute to or result in human errors during
the interaction between human and the task (Pan & Wu, 2018).

Based on the discussion above, PSFs are organized and summarized
into five categories in this study: environmental factors, equipment
factors, task factors, team and organizational factors, and personal fac-
tors, as shown in Table 1.

2.3. Human error models in HRA

The challenge of human error model is to establish the relationship
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Table 1
Categorization of PSFs.
PSFs Category PSFs
Environmental Working hours, Climate, Temperature

Equipment Equipment Availability, Maintenance equipment availability
Task Operation program availability, Operation program
availability, Number of simultaneous operation tasks

Team and Information Adequacy, Information Accuracy, Training,
organizational Organizational Culture, Organizational Structure, Available
times, Supervision
Personal Cognitive factors, Physiological factors, Psychological

factors, Stress, Experience, Age

between PSFs and HEP, aiming to describe the mechanisms underlying
human errors. Specifically, these models provide a foundational
framework for the quantification methods of HRA (Hou et al., 2021),
which can be categorized into three main types: parameter-based
models, cognitive-behavioral models, and computer simulation models.

Parameter-based models, rooted in system parameters, primarily
focus on the task level of human error mechanisms. They address the
HEP from a global and systemic perspective, linking PSFs to HEP
through implicit functions (Apostolakis et al., 1988; Vestrucci, 1988;
Zimolong, 1992). This approach parallels the analysis methods for
equipment failure probabilities. The first-generation HRA methods
commonly employ parameter-based models, such as THERP and HCR.

In cognitive-behavioral models, the modulation of PSFs on HEP starts
to delve into human cognitive activities and even cognitive functions
(Cooper et al., 1996; Hollnagel, 1998). Among these, the most repre-
sentative is the Contextual Control Model (COCOM) provided by the
CREAM. COCOM assesses operator control using four cognitive control
modes: Scrambled, Opportunistic, Tactical, and Strategic, categorized
based on the evaluation levels of nine CPCs representing the context
influencing human error. Despite significant progress compared to
parameter-based models, cognitive-behavioral models lack sufficient
theoretical and experimental foundations, and none of these methods
has yet established a comprehensive underlying causal mechanism
model linking PSFs and HEP.

With the assistance of computer simulation technology, the next-
generation HRA methods can simulate human cognitive activities in
specific task context through computers (Chang & Mosleh, 2007; Li &
Mosleh, 2019). In these methods, human error models are closely linked
with simulation programs, enabling more accurate HEP by adjusting
simulation task context. A representative approach is ADS-IDAC. How-
ever, these approaches face significant challenges in describing uncer-
tainty, particularly regarding human cognitive ambiguity.

2.4. Quantification methods of HRA

HRA is a domain characterized by scarcity of data. In practice,
although methodologies vary depending on tasks being addressed, these
methods all aim to quantify HEP under conditions of uncertainty.
Currently, Bayesian networks-based methods and fuzzy-based ap-
proaches are highly favored by HRA researchers.

Bayesian Networks (BNs) possess the capability to model complex
relationships among influencing factors. Moreover, their ability to
integrate multiple sources of information enables researchers to develop
HRA models with stronger cognitive theoretical and empirical founda-
tions (Mkrtchyan et al., 2015). Additionally, BNs are regarded as a
method for handling data scarcity and multiple data sources, thus their
utilization in quantifying HRA has steadily increased over the past
decade (Li et al., 2012; Shirley et al., 2020; Zhao, 2022). BNs can inte-
grate traditional fault tree and event tree models and capture the
probabilistic relationships between PSFs and HEP. Despite numerous
advantages, however, BNs may encounter limitations in handling expert
knowledge within a probabilistic framework, as they require experts to
provide precise probability values and may not adequately account for
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the vagueness and uncertainty in expert knowledge.

Zadeh’s (Zadeh, 1965) FS theory has been utilized as an effective tool
for addressing uncertainty and ambiguity, achieving significant success
in the field of HRA. Table 2 summarizes some of the latest HRA methods
using fuzzy approaches. For instance, (Konstandinidou et al., 2006) in-
tegrated FS theory with CREAM methods to determine the HEP based on
the data acquired from experts. (Ung, 2015) applied a weighted fuzzy
CREAM method considering the importance of PSFs to obtain HEP in the
HRA of maritime transportation. In another study, (Li et al., 2010)
proposed a new Fuzzy Human Error Risk Assessment Methodology
(FHERAM) to measure the importance of human errors in risk analysis.
(Casamirra et al., 2009) integrates fault tree analysis, HEART and fuzzy
set theory to analyze the probability of human error in irradiation
process.

The classical FS theory assigns a degree of membership to each
element in a set to indicate the degree of belongingness to that set. This
leads to an “either/or” representation in the universe of discourse.
However, there is hesitation in the linguistics of the experts due to
personal errors and lack of knowledge. In other words, the membership
degree and non-membership degree of human natural language are not
complementary, which is noted in the theory of intuitionistic fuzzy set
developed by (Atanassov & Atanassov, 1999). As an extend to classical
fuzzy set, IFS suggest that non-membership is not always equal to one
minus the degree of membership, providing a robust solution to the
situation when human language is “neither/nor” (uncertainty, hesita-
tion neutral) (Aliabadi, 2021). Therefore, IFS theory with triangular
intuitionistic fuzzy number (TIFN) is adopted as the method of quanti-
fying HEP in this study.

3. Material and methods

This section presents a reference task based human error model and a
HRA quantification method named TIFN-HRA based on IFS theory.

3.1. A reference task based human error model

The relationship between PSFs and HEP is an indispensable part of
research on the HRA model, however, this relationship is difficult to
quantify explicitly. For example, in the information-processing model
proposed by Wickens, although it is known that there is a connection
between the influencing factors and actions, it is difficult to characterize
the exact form of the connection and express it quantitatively as a
function (Wickens et al., 2021).

Existing research has indicated that human behavior and perfor-
mance are highly complex and challenging to measure directly (Pan &
Wu, 2018). Therefore, in HRA, most studies focus on identifying and
quantifying PSFs to infer HEP. In this paper, the influence of PSFs on
HEP should be divided into two parts: 1) PSFs level (the level of the PSFs
itself), and 2) PSFs weight (the importance of PSFs to HEP). This

Table 2
Some Fuzzy-HRA methods.

Methods Applications

Fuzzy-CREAM Human error in maintenance tasks of a chemical plant (

Konstandinidou et al., 2006)

FHERAM Crew reliability in the maritime field (Ung, 2015)
Human reliability in ship cabin fire emergency response (Ahn &
Kurt, 2020)
Human errors in risk analysis (Li et al., 2010)
Human reliability assessment for medical devices (Lin et al., 2014)
Fuzzy-FMEA

Fuzzy-SPAR-H Human reliability during emergency response drill for man

overboard on ships (Ahn et al., 2022)

IT2FS-SLIM Human error in maritime transportation (Erdem & Akyuz, 2021)
Fuzzy-BN- Human error in oil tank collision (Ung, 2019)

CREAM
Fuzzy- HEART Human error in irradiation process (Casamirra et al., 2009)
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introduces a novel concept into HEP evaluation, suggesting that the HEP
of a target task can be estimated by leveraging the distance between the
PSFs of the reference task and the target task.

Hence, with reference to a previous study (Tyagi & Akram, 2013),
this study proposes a reference task based human error model. An
innovative solution is proposed to evaluate the HEP of the target task
based on the distance between PSFs of reference task and target task,
while considering expert credibility.

The proposed model is built upon the following assumptions:

Assumption 1. PSFs of the same type can have different effects on tasks
depending on the context.

Assumption 2:. The distance relationship between the PSFs of the refer-
ence task and the target task is believed to be consistent with the distance
relationship between their corresponding HEPs.

Assumption 3:. The quantitative relationship between the PSFs and HEP
in the reference task can be mapped to the target task.

The motivation of this article is to infer the HEP of the target task
from the information of the reference task. However, the reference task
and the target task are almost impossible to be identical. Otherwise, the
contexts of these two tasks would be the same (i.e., the types and
measurement of PSFs are the same), and their HEPs would also be equal.
Therefore, our research implies an assumption that the same type of
PSFs can be used to measure different tasks. In other words, the premise
of this analysis is that the key types of PSFs between the reference and
target tasks should be fundamentally similar. Before assessing the HEP
of the target task, relevant PSFs for the task context should be identified
based on historical statistical data or expert assessment.

With the discussion above, this study provides two solutions to
establish the link between the reference task and the target task
(quantitative relationship f). Solution I: Calculating the distance of PSFs
between the reference task and the target task. Solution II: Establishing a
quantitative relationship between PSFs and HEP in the reference task, as
shown in Fig. 2.

3.1.1. Solution I:Calculating the PSFs distance

Since the reference task selected is highly similar to the target task, it
is feasible and plausible to conduct a distance analysis at the level of
PSFs. Depending on assumption 2, the distance relationship between the
PSFs of the target task and the reference task in this study is consistent
with the distance relationship between their HEP. This means that the
HEP of the target task can be determined once the PSFs distance is
assessed. Fig. 3 illustrates the concept of calculating the PSFs distance to
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integrated level of PSFs 7 7 7 ) HEP of Reference task
of the Reference task | I IFSy | HEPy (Known)
(Known) ‘ T ' ) '
D, L
integrated level of PSFs \ . ' HEPof T sk
of the Target task of Target tasl
(Knmfn) I IFS; . HEPr ) (To be evaluated)

Fig.3. The concept of calculating PSFs distance (where D; represents the PSFs
distance, Ips, and Ijs, represent the integrated evaluation results of the PSFs for
the reference task and the target task, respectively., HEPg and HEPt represents
the HEP of reference task and target task, respectively.).

evaluate the HEP of the target task.

3.1.2. Solution II: Establishing a quantitative relationship between PSFs-
HEP

Most current HRA methods acknowledge that PSFs play a critical role
in affecting HEP, (Xing Pan & Wu, 2020) summarized the role of PSFs in
the perceived error quantification process and proposed that PSFs
consist of personal factors and external factors, which collectively
constitute the task context. Therefore, HEP can be considered as being
determined by the task context, which is characterized and evaluated by
PSFs.

Assuming that the operators involved in the reference task and the
target task are the same, so the quantitative relationship between the
external PSFs and HEP in the reference task is equally applicable to the

,_____l

|
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|

| |

I |
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Fig.4. The concept of establishing a quantitative PSFs-HEP relationship.
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Fig.2. The reference task-based human error analysis model.
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target task (assumption 3). Fig. 4 indicates the concept of establishing a
PSFs-HEP quantitative relationship to assess the HEP of the target task.
Where F(Ijps) represents the quantitative relationship between PSFs and
HEP, Ijps represents the comprehensive assessment result of PSFs.

3.2. Intuitionistic fuzzy set

Building upon the two solutions, it’s crucial to note that assessing
HEP in a target task necessitates expert input. This study aims to address
the uncertainty inherent in expert knowledge by employing the IFS
theory, which will be elucidated further below.

3.2.1. Definitions, rules and properties
The IFS can be represented as follows (Atanassov & Atanassov, 1999;
Yazdi, 2018).

Definition 1. Intuitionistic Fuzzy Set.

Suppose X is a given discourse domain, where X:[0,1] and x € X,
then IFS A on X is expressed by:

A= {(ruy(x0), vax) ) lx €X'} @

where pu,(x) € [0,1] and va(x) € [0,1] denote membership and non-
membership, respectively, and:

0L, (x) +va(x)<1 (2)

7a(x) =1 —py(x) —va(x) is also introduced as hesitation degree (Intui-
tionistic index) of whether x belongs to A or not, which always equals
0 in classical fuzzy set.

Definition 2. Intuitionistic Fuzzy Number.

An ordered pair (u,(x),va(x)) from an IFS A = {(x,p,(x),
va(x))|x € X} is called intuitionistic fuzzy numbers (IFN) if it follows:

() (p4(x) must be convex and v (x) must be concave, if and only if
they satisfy following functions (Tyagi & Akram, 2013):

Ha(Axy 4 (1= A)x ) <Ay (1) + (1 = Dpy (x2) 3
Z/A(AXI + (1 7}.))(32 )ZAVA(X1)+(1 7/1)1/,4()(2) (4)

where 1 € [0,1] and Vx;,x2 € X.

(i) (iD)An IFS is normalized if and only if 3x, € X,which makes
Ha(xo) =1 and va(xp) = 0.

(iii) (iii)Support S(A) = {x € E : va(x) < 1} is bounded.

(iv) (iv)u,(x) is upper semi-continuous and va(x) is lower semi-
continuous.

Assuming that A and B are IFSs on a given domain X, the following
properties and rules exist (Atanassov, 1994):

Rule 1:ANB = {{x, pu,(x) A pg(x),va(x) Vup(x))|vx € X};

Rule 2:AUB = {(x, s (x) V pg(x),va(x) Avg(x) )|Vx € X};

Rule 3:A = {(x,va(x), pa(x) }|Vx € X};

Property 1. A C B < ifandonlyif (Vx € X)(p, (x)<pp(x)&va(x)2vp(x));

Property 2:.
vg(X));

A = Besifandonlyif (Vx € X)(us(x) = pp(x)&va(x) =

Where 15 (%) A p(x) = min(uy (%), pup(x)), va(x) V vp(x) = max(va(x),
v(x))-

The three rules give the operational forms of the membership and
non-membership functions under the conditions of intersecting, merg-
ing, and taking the inverse operation among IFSs, respectively.

3.2.2. TIFN and arithmetic rules
In this study, triangular intuitionistic fuzzy sets (TIFNs) are used for
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the evaluation and inference of PSFs. A TIFN is an IFN that considers
both membership and non-membership functions, represented as fol-
lows:

X —a

,AISX < @y
a —a
—J az—x
”A(‘x) 37, a<x < as (5)
as —a

0, otherwise

by —x
ﬁ:1b1<x<bz

I//\(x)— x—by
— b, b
S Ly 02X < D3

0, otherwise

(6)

where bi<a;<az(b2)<as<bs, and when p,(x;) = va(x;), there exists
Ua(xi), va(xi) <0.5. TIFN can then be illustrated as A =
(a1, az,as;b1,bz,bs). Fig. 5 gives a schematic representation of a TIFN.

To represent the quantified relationship of the PSFs and HEP, a TIFN-
based inference method is established as below.

Assume that M = (my,mp,ms;ni,ng,n3) and T = (1, t2, t3;51,52,53),
then for the operation between TIFNs is defined as follows (Atanassov,
1994; Dengfeng & Chuntian, 2002).

1) 6§ x M = (6my,dmy, dms; ény, éng, dng), and the result is still a TIFN.
Where § is a constant ands > 0.

2) M& T = (my +t;,mg +ty,m3 + t3;n1 +51,N2 + 52,3 +53), and the
result is still a TIFN.

3) M® T = (myt;, maty, mats; ny 51, N2Sa, N3s3), and the result is still a
TIFN.

Moreover, in order to solve intuitionistic fuzzy relations among
TIFNSs, certain functions need to be employed.

3.2.3. Relation function between two TIFNs

The relation function between two TIFNs represents the mapping
relationship between input and output in the IFS system. Define D as an
intuitionistic fuzzy(IF) relation from M to T:

D=MNT = {((x,y); up(x,y), vp(x,y) )|x € M,y € T} ™

Then there exist
vpm(x) V vr(y).

When the IFS M and the intuitionistic fuzzy relation D are known, the
IFS T can be calculated by the following equations (Tyagi & Akram,
2013):

Hr(v) = Vi (6) Apip(x,7) ] ®

Hp(%,¥) = py(X) Apr(y)  and  up(x,y) =

vr(y) = Alum(x) V up(x,y) ] ©)

3.2.4. Distance between two TIFNs

The measurement of IFS distance is an important part of the expert-
based IFS system. The distance between two continuous and discrete
TIFNs can be calculated by Egs. (10) and (11), respectively, which
contain three parameters: membership, non-membership, and intui-
tionistic index. The traditional Euclidean distance (Szmidt & Kacprzyk,
2000) considers the Intuitionistic index (z(x)) equally with the mem-
bership degree (u(x)) and the non-membership degree (v(x)), which is
somewhat unreasonable. Because the Intuitionistic index (z(x)) is an
important parameter that represents the degree of hesitation of experts,
it needs to be corrected.
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dM,T) = \/ﬁ/ (g (6) = pr (6) )+ (W () = v (x) )* + p(mu (x) = 77(x) )? ] (10)

d(M, T) = \/21 S [0 5) = ) + () = 2 3))?) + (s () = 3, (3) )] an

i=1

0 bl a, a,(b,) a, b,

Fig.5. Membership and non-membership functions of a TIFN.

where a and b are constants and 0 < a < b, [a, b] is the interval over

— which membership functions and non-membership functions need to be
Drzglrgl:cl(t); ;E € ) integrated. p is a correction coefficient, and p € [0,1]. When p = 0, the
i influence of #(x) on distance is ignored. When p = 1, Eq. (11) becomes

- the traditional Euclidean distance. The Intuitionistic index n(x) contains
both membership and non-membership information. In the absence of

s ~

(* Selection of Critical PSFs |

) v any other prior information, we take p = 0.5 to represent the maximum
(Calculation of HRA-related uncertainty in hesitation.
\ statistics for reference task/

PSFs Evaluation 3.3. The proposed TIFN-HRA

I

| (Based on TIFN)

(= ~ S
it PSFs ) ‘ PSFs \‘ ‘ Expert
I

I

D Grounded in the analysis of the human error model discussed earlier
_ Llevel ][ Weighting || Credibility | and the IFS theory introduced, we present a novel method named TIFL-
————————————— v HRA for effectively evaluating HEP in a target task. The routine steps of

: __________ PSFs Aggregation } the integrated TIFN-HRA method are summarized as follows (Fig. 6).
I - (Based on TIFN) | Step 1: Definition of the reference task.
: | PSFs Integrated H PSFs Integrated \H n ‘ The goal of this paper is to evaluate the HEP of target task using a
1 Level JAN Weighting JAN } reference task with known data. Therefore, the first step is to find a
reference task which is highly similar to the target task.
r———————-— “ ****** T oo —— * ****** — Step 2: Selection of critical PSFs.
/ Determining PSFs-HEP The proposed methodology begins with the selection of PSFs. Given
| Intuitionistic Fuzzy ‘ the large number of PSFs that exist in reality, it is important to identify

Define the
tuitionistic Fuzzy
_ Success Index /

| Il |
I Il |
| Il . . |
AN ZRE AN Relationship |
I I ) |
} ) l } } l } Table 3
} HEP evaluation for } } ‘ HEP evaluation for } Expert Credibility Value and Judgment Basis.
RN the target task Il the target task | No. Level Judgment basis values
\ T - —~
[ | . . S 1 1 Very Believable 10 years or more of work experience or a 1.0
| Solution I:Calculating PSFs || Sqlut!onéll Egtablrl]s.hwt;g a | (VB) PhD
‘ Distance | | Quantitative Relationship between | 2 Believable (B) 5-10 years of work experience or amaster’s 0.9
\ || PSFs and Human Error Probability | 3 ¥ P :
———————————————————————————————————— egree
) X X 3 Relative Believable Less than 5 years of work experience or a 0.8
Fig.6. The detailed algorithm of TIFN-HRA methodology. (RB) bachelor’s degree
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those that have the greatest influence on HEP. While some PSFs may
have a negligible effect, others may be critical and contribute signifi-
cantly to overall performance. Therefore, it is essential to accurately
identify and prioritize these critical PSFs.

Step 3: Calculation of HRA-related statistics for reference task.

In this step, statistics on HRA-related data for the reference task are
calculated.

Step 4: PSFs evaluation based on TIFN.

The goal of this step is to perform the evaluation of PSFs (for both the
reference task and the target task) with TIFNs, including the expert
credibility, the evaluation of PSFs level and PSFs weight.

(1) Expert credibility evaluation

It is necessary to assess the credibility of the experts (the importance
of the expert’s evaluations in the universe of discourse), because the
credibility of their assessments varies depending on the expert’s
knowledge level (Zhang et al., 2016). The credibility of experts is
divided into three levels in this study C = {Relative Believable (RB),
Believable (B), Very Believable (VB)}. Table 3 illustrates the criteria of
determining the expert credibility and the values of each level of
credibility.

(2) PSF level evaluation

PSF level represents the level of its own. In this study, there are five
levels for PSFs, which are defined as L = {Very Poor (VP), Poor(P),
Medium(M), Good(G), Very Good (VG)}. For example, comparable to
the concept of CPCs in CREAM, the PSF level in this study is gauged
relative to its influence on HEP. When the PSF exhibits a “Very good”
level, it exerts a favorable influence on HEP, thereby enhancing human
performance; conversely, at a “Very poor” PSF level, it bears a detri-
mental effect on HEP, potentially escalating the likelihood of human
error occurrence.

The PSF level is determined by expert linguistic and subsequently
translated into TIFN.

The TIFN representing expert linguistic is given by the following
equation in terms of Very Poor (VP):

vp:lx(E+E~z+...+EZ) 12)
m

where Ei(i = 1, 2, ..., m) is the TIFN given by the i expert, m is the
number of experts.

(3) PSFs weight evaluation

Different PSFs have different effects on the human error, and
considering the importance of the PSFs means considering the weight of
each PSF for the task. The weight of PSFs in this study is divided into five
levels W = {Very Unimportant (VU), Unimportant(U), Fair(F), Impor-
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The integrated level of each PSF I,,t =1,2,...,n is represented as
below:

L= % X [(er X In) @ (c2 X T) @ - @ (c X Ion) ] as)

where I; represents the i expert’s assessment of the t PSF level, and
I,; corresponds to a TIFN in L. ¢; represents i expert’s credibility, n is the
number of PSFs and m is the number of experts. According to the ag-
gregation algorithm mentioned in 3.2.2, the result of the calculation is
still a TIFN, from which we can obtain the integrated level of each PSF.

(2) Integrated weight of PSFs

Similar to the aggregation process of the PSF level, the aggregation of
the PSF weight W,,i=1,2,...,n is the integration of each expert’s
evaluation of the importance of the PSF by considering the expert
credibility c;, which is represented as below.

W= [(er X Wa)  (e2 X Wa) & = ® (e X War)] 14)

where W, represents the i expert’s assessment of the t" PSF weight.
Similarly, it can be seen that the result of the calculation is still a TIFN,
which gives the integrated weight of each PSF.

(3) Definition of the IFS index

In order to make a comprehensive assessment of each PSF, this study
defined the Intuitionistic fuzzy success index (Ijzs) as a comprehensive
assessment result of the PSFs, which contains the weights of the PSF, the
levels of the PSFs, and the credibility of the expert. Iirs can be obtained
by aggregating the integrated level and integrated weight of the PSFs,
and the equation is as follows:

1
Ilps:;X [(W]@I])@(Wz ®12)@"'6(Wn ®In)} (15)

Step 6: Solution I: Calculation of the PSF distance.

The goal of this step is to assess the HEP of the target task by
calculating the distance of PSFs.

Step 6-1: PSFs distance calculation

Following the assessment of the PSFs for both the target and refer-
ence tasks, the comprehensive assessment results for each PSF must be
compared. Specifically, if the level of a PSF (Irs,) in the target task is
higher, it suggests that the PSF will have a more positive impact on the
target task and hence, a lower HEP.

Suppose that the integrated evaluation result of a PSF for the refer-
ence task is I,, and that for the target task is I;,. In this context, the
distance between the two tasks for the ¢ PSF can be expressed as follows
using Eq. (10):

(. 1) = \/ s (=, 0) (01,00 =0, 0) 0, 00 =, )| ae)

tant(), Very Important (VI)}. Similarly, PSFs weights are given by ex-
perts linguistic and transformed into TIFNs.

Step 5: PSFs aggregation based on TIFN.

This step is the process of aggregating several TIFNs into a single
TIFN, and ultimately obtaining the integrated level and integrated
weight of PSFs.

(1) Integrated level of PSFs

The integrated distance of all PSFs is:
1
Dl:;X [(dl1 X W) @ (d, x W) @ -+ @ (d, ><Wn)] a7)

where n is the number of PSFs.
According to the aggregation algorithm, the result of the calculation
is still a TIFN.
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Step 6-2: HEP evaluation for the target task.
As the HEP of the reference task HEPg is known and represented in
the form of TIFN, it can be calculated as:

{ HEP; = HEPy + D; @ HEPIps, > Iirs, as)

HEP; = HEPg — D; @ HEPgIjps, < Iips,

Step 7: Solution II: Establishment of a quantitative relationship be-
tween PSFs and HEP.

The goal of this step is to assess the HEP of the target task by
establishing a quantitative relationship between PSFs and HEP.

Step 7-1: Determining the PSF-HEP intuitionistic fuzzy relationship.

It is assumed that the HEP of the reference task HEPr can be deter-
mined and reflected in the form of TIFN as shown below:

HEPg = (r1,r2,13;€1, €2, €3)

Then, on this basis, the IF relationship between HEPy and Ijs, can be
determined.

Fuzzy logic and fuzzy approximate inference are useful for the pro-
cess of deriving imprecise conclusions from an imprecise set of data, and
this study extends the concept of fuzzy logic to intuitionistic fuzzy logic.
In the conditional propositions and integrated inference rules, the
reference task-related indicators are evaluated using TIFN to establish
an intuitionistic fuzzy relationship F between Ijzs, and HEPg. The con-
ditional statement is “if Ijzs,, then HEPR”, where Ijss, is the cause event
and HEPg is the result event. The elements in the fuzzy relation F
represent the possibility of mapping from the intuitionistic fuzzy success
index Ijrs, to the human error probability HEPg.

Let Ej,,, and Eg represent the set of discrete elements on the intui-
tionistic fuzzy success index Ijrs, and the HEPg, respectively, defined as
Elpr = {X1,%1,, %1}, Er = {xg,,Xg,, ", Xg, }, where a, § are finite
certain integers. An intuitionistic fuzzy relation F is an intuitionistic
fuzzy set on Ej,, NEg and its elements are element pairs consisting of
elements corresponding to Ej,, and Eg, respectively. Given that the
element pairs on F is (x,z), the membership function and the non-
membership function of F can be defined as Eq. (19) and Eq. (20),
respectively.

He(x,2) = {ﬂl,m (%) A pg(2) } (19)

I/F(x7 Z) = {I/’IFSR (X) Vg (Z) } (20)

Based on (19) and (20), the membership and non-membership
matrices about F can be acquired, and the IF relation F is established.
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Step 7-2: HEP evaluation for the target task.

The relationship between PSFs and HEP for the target task consid-
ered in this study is the same as the relationship in the reference task.
Because the IF relationship F between Ijrs, and HEPg has been deter-
mined (the membership and non-membership matrixes of F have been
established), we can find the set of discrete elements on the IF relation F
corresponding to the Ijrs, and then identify the set of discrete elements
on HEP of the target task.

Therefore, according to the Egs. (8) and (9), and from the evaluation
results of the known Iz, and the IF relationship F obtained from the
reference task, the HEP of the target task can be calculated as follows:

Hugp, (2) = \X/{ﬂl,“,. () A pp(x, Z)} 21

Vrer, () = é\[l/l,m,, () Vvp(x, Z)] (22)

where Eq. (21) means: the membership degree yyyp, (2) of HEPy takes the
maximum value among the minimum values between the membership
degree yp . (x) of all Is, and the membership degree matrix yy(x, ) of F.

Finally, HEPr with discrete element pairs as set elements can be
obtained and shown as below:

HEPr = {(xlvﬂxwyn)?( 27:“)@’”-’(2)7 '“(x'””x,ﬂyxu)}

4. Case study
4.1. Background

Human factors play a crucial role in various phases of spaceflight,
ranging from design and implementation to launch and maintenance.
Studies have demonstrated that human error is the primary cause of
hazardous incidents in the spaceflight launch field(Forsbacka & Helton,
2023; Pan et al., 2022), and can even lead to catastrophic consequences
sometimes, such as core equipment damage or even personnel injury.
Therefore, in order to improve the reliability of the entire launch
mission, the HEP must be fully considered in advance (Calhoun et al.,
2013). HRA of space refueling missions can provide a decision basis for
the analysis, measurement and prevention of human errors during space
launch.

In this study, the refueling task in the spaceflight launch process is
selected as a specific object of study, and a simulation experiment is
designed as a reference task to analyze the HEP of the refueling task.
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Fig.7. Interface of the spaceflight refueling mission simulation experiment.
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Fig.8. PSFs in spaceflight fuel refueling missions.
Table 4

Description of the PSFs.

PSFs Description

Training (T) PSF relates to team and organizations, which offers guidance
and skill-building for people to improve task performance and

minimize human errors.

Experience(E) PSFs that impact personal competence involve honing intuitive
understanding and skills through practice, encountering
situations, and learning from successes and failures.

Stress (S) PSF influencing timely completion of collective actions safely,

primarily shaped by initiators’ perceptions of consequences for
task non-completion.
Working hours PSF related to the environment. The duration and scheduling of
(WH) working hours, which affect individuals’ cognitive abilities,
fatigue levels, and overall productivity, are crucial factors.

4.2. HEP during spaceflight refueling mission

4.2.1. Preliminary

Step 1: Definition of the reference task.

To assess the HEP of the target task, this study utilizes human factor
experiment as a reference task for the spaceflight refueling mission.
Based on field investigation conducted at the space launch site, relevant
information pertaining to the equipment and the refueling process was
collected. Using this information, the refueling task was decomposed
into 13 specific steps, with each step consisting of a certain number of
actions. A simulation program was then developed to capture various
actions of the operator and compare them with the set error judgment
criteria to detect any human errors. Fig. 7 illustrates the interface of the
refueling simulation experiment.

Step 2: Selection of critical PSFs.

By conducting field investigation and collecting data at a spaceflight

Table 5
Expert Credibility Evaluation.
Experts  Judgement basis Credibility
E; Expert 1 has a master’s degree and have 6 years work 0.9
experience in aerospace field.
E, Expert 2 has a PhD degree and work for 15 years in the field 1.0
of reliability of space refueling systems.
Es Expert 3 has a master’s degree and work for 8 years in the 0.9
field of safety management of space refueling systems.
E4 Expert 4 has a bachelor’s degree and work for 2 yearsinthe 0.8
field of safety management of space refueling systems.
Es Expert 5 has a master’s degree and work for 9 years in the 0.9

field of reliability of space refueling systems.
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Table 6
Reference task PSFs level evaluation.
PSFs Experts
E; E, E3 E4 Es
Training M G M M G
Experience M M M G G
Stress P VG \%3 G G
Working hours VG G VG M P
Table 7
TIFN for each level of PSFs.
Levels TIFN values
VP (0.58, 0.64, 0.68; 0.57, 0.64, 0.70)
P (0.66, 0.72, 0.77; 0.64, 0.72, 0.79)
M (0.73, 0.78, 0.84; 0.71, 0.78, 0.86)
G (0.80, 0.86, 0.90; 0.79, 0.86, 0.92)
VG (0.85, 0.92, 0.97; 0.82, 0.92, 1.00)

launch site, we analyzed accident reports from four years (2004, 2008,
2011, and 2012) to obtain the number of human errors and identify the
primary influencing factors, as depicted in Fig. 8.

Among the various PSFs associated with the spaceflight launch
mission, four factors are found to have a significant impact on human
errors in the space refueling mission, namely training (T), experience
(E), stress (S), and working hours (WH). It’s important to note that, even
though supervision appears to have a similar impact as working hours,
expert indicates that its effect might be relatively minor. This is because
it’s less common and has less influence in practice compared to working
hours. These PSFs correspond to team and organizational factors, per-
sonal factors, and environmental factors, respectively, as described in
Section 2.1. Consequently, this case study focuses on analyzing these
four PSFs, which are described in detail in Table 4.

Step 3: HRA-related statistics for reference task.

According to the human factor experiment based on the space refu-
eling mission and the analysis of the experimental data, the probability
interval of human error probability is [0.044,0.116] (Pan et al., 2020).
Subsequently, similar to the approach for obtaining TIFNs used to
represent expert linguistics, we can get the TIFN of the reference task as
HEPy = [0.044,0.08,0.116;0.014,0.08,0.146] with the expert’s
suggestion.

4.2.2. PSF evaluation and aggregation based on TIFN
Step 4:PSF evaluation based on TIFN.

(1) Expert credibility evaluation

After considering the experts’ experience and education, the credi-
bility and detailed information of the experts are obtained in Table 5.

(2) PSFs level evaluation

The evaluation of the four PSFs by experts for the reference task are
listed in Table 6 below.

Table 7 gives the TIFN for each level of PSF by expert evaluation.

At the same time, PSFs levels for target tasks are also given by expert

Table 8

Target task PSFs influence level assessment.
PSFs Experts

E; E, Es E4 Es

Training G VG VG G G
Experience G M G VG M
Stress M VG G M VG
Working hours VG G VG G M




X. Pan et al.

Table 9
TIFN for each weight of PSFs.

Levels TIFN values

vu (0.33, 0.42, 0.51; 0.31, 0.42, 0.53)
U (0.45, 0.56, 0.66; 0.42, 0.56, 0.68)
F (0.62, 0.70, 0.78; 0.59, 0.70, 0.81)
I

(0.72, 0.81, 0.89; 0.68, 0.81, 0.93)

VI (0.85, 0.92, 0.97; 0.82, 0.92, 1.00)
Table 10
PSFs weight evaluation.
PSFs Experts
E; E, E3 E4 Es
Training \%4 I \%8 1 F
Experience F I vI F U
Stress 1 VI I U I
Working hours F F U 1 F

Table 11
TIFN of each PSF integrated influence level of reference task.

PSFs TIFN values

I, (0.6836, 0.7324, 0.7788; 0.6694, 0.7324, 0.7968)
I, (0.6808, 0.7292, 0.7764; 0.6662, 0.7292, 0.7944)

Is, (0.6652, 0.7212, 0.7610; 0.6504, 0.7212, 0.7810)
Ty, (0.7016, 0.7576, 0.8022; 0.6820 0.7576, 0.8238)
Table 12

TIFN of each PSF integrated influence level of target task.

PSFs TIFN values

Ir, (0.7390, 0.7968, 0.8366; 0.7224, 0.7968, 0.8584)

Ig, (0.7014, 0.7532, 0.7984; 0.6854, 0.7532, 0.8180)

I, (0.7152, 0.7696, 0.8162; 0.6952, 0.7696, 0.8380)

Twn, (0.7254, 0.7812, 0.8244; 0.7074, 0.7812, 0.8460)
Table 13

TIFN of the integrated weight of each PSF.

PSFs TIFN values

Wr (0.6768, 0.7488, 0.8100; 0.6462, 0.7488, 0.8406)
Wi (0.5888, 0.6664, 0.7366; 0.5598, 0.6664, 0.7638)
Ws (0.6308, 0.7110, 0.7802; 0.5984, 0.7110, 0.8110)
Wwu (0.5434, 0.6224, 0.6980; 0.5148, 0.6224, 0.7248)

assessment, and the results are listed in Table 8.
(3) PSFs weight evaluation

Table 9 gives the TIFN for each weight level of PSFs by expert
evaluation.

The weight of each PSF is evaluated by experts and shown in
Table 10 below.

Step 5: PSF aggregation based on TIFN.

On the basis of the evaluation results of the PSFs, the aggregation of
the PSFs of the reference task and the target task are performed.

(1) Integrated level of PSFs

According to Eq. (13), the integrated TIFN of each PSF can be
obtained.

For the reference task, the integrated evaluation results for each PSF
are shown in Table 11.

For instance, the TIFN of the “Training” of the reference task can be

10
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calculated as follows:

1
Ir, =5 [(c1t X M) ® (2 x G) D (¢35 x M) @& (ca X M) @ (c5 x G) ]
= (0.6836,0.7324,0.7788; 0.6694, 0.7324, 0.7968)
For the target task, the combined evaluation results of each PSF are
shown in Table 12.

(2) Integrated weight of PSFs

According to Eq. (14), the TIFNs of the integrated weight of each PSF
can be obtained (Table 13).

For instance, the TIFN of the integrated weight of “Training” can be
calculated as follows:

WT:§><[(CI><V1)®(c2><1)®(c3><V1)®(c4><l)®(c5><F)]

= (0.6768,0.7488,0.8100; 0.6462, 0.7488, 0.8406)

(3) Intuitionistic fuzzy success index

To compare PSFs levels more intuitively between the reference task
and the target task, it is first necessary to determine the intuitionistic
fuzzy success index, which is an integrated level of all PSFs. In accor-
dance with the results of integrated level and integrated weight of the
PSFs and Eq. (15), aggregation can be performed to obtain the intuitive
fuzzy success index of the reference task and the target task as:

1
Lips, :Z x [(Wr ®ITR) @ (WE®IER) ® (WP®IPR) D Wy ®IWHR)]

= (0.4161,0.5047,0.5891;0.3864,0.5047, 0.6268)

X [(Wr®Ir,) & (We @1g,) & (Wp @1Ip,) & Wiy & Iy, )]

1
Iirs, = P

= (0.4396,0.5330, 0.6195; 0.4077,0.5330, 0.6598)

The I s, and Iz, are still TIFNs.

4.2.3. Evaluation of the HEP of the target task
Step 6: Solution I: Calculating the PSFs distance.

(1) PSFs distance calculation

According to Eq. (16), the distance between each PSF of the target

Solution l:Membership
Solution I:Non-Membership i
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Fig.9. HEP of the target task considering the PSFs distance.
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task and the reference task can be calculated as: d;, = 0.2429, d;, = the form of TIFNs, the relationship between them can be established by
0.1241, d;, = 0.2237, and df,,, = 0.1399. treating the PSF evaluation results as independent variables and the HEP

For example, the distance between “Training” of the reference task as the dependent variable. Intuitive fuzzy reasoning is used as an
and the target task can be calculated as follows: assessment tool to measure the relationship F of given integrated PSFs

d(l, ) = \/é {00 =1, )+ 0100) = 13" + 0501, (0) = 3y ()| = 02429

Through Eq. (17), the combined distance of all PSFs is: level and HEP, which means “if the I, is, then the human reliability is
1 HEPR”. Thus, it can be determined that there is a quantified relationship
D, = 2% ((di, x Wr) @ (di, x Wg) @ (di, X Wp) @ (diyy X Wim) | between them, and the elements in the relationship F determined by

using intuitive fuzzy inference represent the fuzzy possibilities from Iy,

mapping to HEPg.

And the result of the calculation is still a TIEN. The IFS Ijrs, and HEPg, in the reference task need to be discretized to
determine this IF relationship. It may be useful to take Ej,, and Eg as

=(0.1136,0.1277,0.1401; 0.1081,0.1277,0.1454)

(2) HEP evaluation for the target task discrete subsets of the Iz, and the HEPy of the reference task, respec-
tively, and the two sets are given as follows:
The HEP of the reference task is already known and the HEP evalu-
ation result is expressed as TIFN. Additionally, the PSF levels of the Eips, = {
target task are better than those of the reference task, as indicated by the
intuitionistic fuzzy success index. Therefore, the target task is expected
to be more reliable. The HEP of the target task can be determined by
calculating the PSFs distance between the target and reference tasks
using Eq. (18). Then the set of discrete intuitionistic fuzzy success index and the set
of membership and non-membership relations for HEP corresponding to
the reference task can be obtained as follows:

0.4,0.43,0.46,0.49,0.52,0.55,0.58,061,0.64,0.67,0.7,
0.73,0.76,0.79,0.82,0.85,0.88,0.91,0.94,0.97

. _ [0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,
k= 0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19, 20

(0.4,0,0.8850), (0.43,0.1569, 0.6314), (0.46, 0.4955, 0.3779),
(0.49,0.8341,0.1243), (0.52,0.8187,0.1253), (0.55, 0.4633,0.3710),
s, = 4 (0.58,0.1078,0.6167), (0.61,0,0.8624), (0.64,0, 1), (0.67,0, 1), (0.7,0,1),
(0.73,0,1),(0.76,0, 1), (0.79,0, 1), (0.82,0, 1), (0.85,0, 1), (0.88,0, 1),
(0.91,0,1),(0.94,0,1),(0.97,0,1)

(0.01,0, 1), (0.02,0,0.9091), (0.03,0,0.7576), (0.04, 0, 0.6061),
(0.05,0.1667,0.4545), (0.06,0.4444, 0.3030), (0.07,0.7222,0.1515),
HEPg = (0.08, 1,0), (0.09,0.7222,0.1515), (0.1,0.4444, 0.3030),

(0.11,0.1667,0.4545), (0.12,0,0.6061), (0.13,0,0.7576),
(0.14,0,0.9091), (0.15,0, 1), (0.16,0, 1), (0.17,0, 1), (0.18,0, 1),

In this way, the IF relationship F between PSFs and HEP is solved,
HEP; = HEP, — d; ® HEPy and the membership and non-membership matrices of the PSFs-HEP
correlation can be obtained according to Egs. (19) and (20), as shown
in Figs. 10 and 11.
Fig. 9 gives the evaluation results of the HEP of the target task For example, we can obtain y(0.05,0.61) and vr(0.05,0.61) ac-
calculating the PSFs distance. cording to Egs. (19) and (20), respectively:
pspit:ﬁd7;_l S;Etl)al.utlon II: Establishing a quantitative relationship between 17(0.05,0.58) = tyep, (0.05) A i, (0.58) = 0.1667 A 0.1078 = 0.1078

The second solution, est.abhshlng a guantltative relationship be- Ue(0.05,0.61) = Upsp, (0.05) V vis, (0.61) = 0.4545 v 0.8624 — 0.8624
tween PSFs and HEP, works in the following way.

= (0.0390,0.0698, 0.0998; 0.0125, 0.0698,0.1248)

(2) HEP evaluation for the target task.
(1) Determining the PSFs-HEP intuitionistic fuzzy relationship The intuitionistic fuzzy success index of the target task is:

_ ‘ Lirs, = (0.4396,0.5330,0.6195, 0.4077, 0.5330, 0.6598)
Given that the PSFs and HEP of the reference task are presented in

11
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Fig.10. The membership matrix of the PSFs-HEP correlation F.

The set of membership and non-membership relationship that cor-
responds to the discrete intuitionistic fuzzy success index of the target
task can be obtained using the following procedure:

(0.4,0,1), (0.43,0,0.8220), (0.46,0.2184,0.5826),

(0.49,0.5396, 0.3432), (0.52, 0.8608, 0.1038), (0.55,0.8035,0.1341),

Ep, = (0.58,0.4566,0.3707), (0.61,0.1098,0.6073), (0.64, 0, 0.8438),

(0.67,0,1),(0.7,0, 1), (0.73,0,1), (0.76,0, 1), (0.79,0, 1), (0.82,0, 1),

(0.85,0,1),(0.88,0,1),(0.91,0,1), (0.94,0, 1), (0.97,0, 1)

Given the relationship matrix of PSFs-HEP correlations F and Ijs,,
the discrete elements on HEPy can be presented according to Egs. (21)
and (22). For instance, pygp (0.05) = V|, (X) A pp(x,0.05) ]

X

01667, VHEP; (005) = /\[I./[FST (X) V l/}:‘(.)(7 005)] = 0.4545.
x

(0.01,0,1),(0.02,0,9091), (0.03,0,0.7576), (0.04,0, 6061),
(0.05,0.1667,0.4545), (0.06, 0.4444,0.3030),

HEP, — (0.07,0.7222,0.1515), (0.08,0.8187,0.1253),

expert linguistic. Therefore, we can get the level of HEP of the target task
is “Low”.

5. Discussion

This study is dedicated to the advancement and refinement of HRA
methods. It introduces a novel HRA research paradigm, in which a

(0.09,0.7222,0.1515), (0.10, 0.4444, 0.3030), (0.11,0.1667, 0.4545),
(0.12,0,0.6061), (0.13,0,0.7576), (0.14,0,0.9091), (0.15,0, 1), (0.16,0, 1),

(0.17,0,1),(0.18,0, 1), (0.19,0, 1), (0.20,0, 1)

Fig. 12 gives the evaluation results of the HEP of the target task
considering quantitative relationship between PSFs and HEP.

4.3. Linguistic distance of the target task

The distances between the results of the two solutions and the expert
linguistic are calculated for a better understanding of the obtained re-
sults. The experts initially give a linguistic evaluation of the HEP,
divided into five levels: G= {VL(Very Low), L(Low), RL(Rather low), M
(Medium), H(High), RH(rather high), VH(Very High)}. TIFNs of the HEP
is demonstrated in Table 14.

The result obtained by solution I is continuous, while the result ob-
tained by solution 2 is discrete. Hence, Eq. (10) and Eq. (11) were used
to calculate the distance between each result and the expert linguistic,
respectively. It can be observed from Table 15 that the results of both
solution I and solution II have the shortest distance to “Low” in the

12

reference task based human error model is proposed to evaluate the
target task. Meanwhile. the IFS theory is used to deal with the uncer-
tainty of expert knowledge in the quantitation of HRA. The novelty of
the developed method and the discussion of the results is as follows.

(1) Effectiveness of the reference task based human error model

In engineering, the scarcity of data makes the mechanism of how
task-context relevant PSFs affect HEP unclear, making it difficult to
apply many classical HRA methods to new tasks. In addition, obtaining
information from experts is often difficult in the absence of benchmarks.
To overcome this challenge, this paper proposes a reference task based
human error model and presents two solutions for assessing HEP of
target task based on reference task: solution I calculates the distance
between PSFs of target and reference tasks, while solution II determines
the quantitative relationship between PSFs and HEP in the reference task
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Fig.11. The non-membership matrix of the PSFs-HEP correlation F.
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Fig.12. HEP evaluation of target task considering quantitative relationship between PSFs and HEP.

Table 14
TIFN for each level of HEP.

Level TIFN value

(0.01, 0.02, 0.03; 0, 0.02, 0.04)
(0.04, 0.05, 0.06; 0.03, 0.05, 0.07)
(0.07, 0.08, 0.09; 0.06, 0.08, 0.1)
(0.1, 0.11, 0.12; 0.09, 0.11, 0.13)
(0.13, 0.14, 0.15; 0.12, 0.14, 0.16)
(0.16, 0.18, 0.20;0.15, 0.18, 0.21)
(0.20, 0.23, 0.26; 0.19, 0.23, 0.27)

$TEEE"S

and then maps it to the target task. The reference task is a highly similar
task to the target task, and in the case study, a simulated human-in-the-
loop experiment is developed for the space refueling task (target task)
process, using it as the reference task to collect task-relevant information
such as PSFs and HEP. This research paradigm offers a new perspective

13

Table 15
Distance between each result and Linguistic.

Method VL RL L M H RH VH

0.204
0.409

0.172
0.353

0.158
0.284

0.195
0.353

0.232
0.410

0.243
0.443

0.259
0.467

Solution I
Solution II

for HRA studies in scenarios where data for target tasks are scarce.
(2) HEP quantification using the proposed TIFN-HRA

Expert knowledge plays a crucial role in the quantification of HRA.
To better reflect the uncertainty in expert cognition, we propose an IFS-
based method for evaluating the PSFs. Since IFS theory adeptly captures
the ambiguity of expert knowledge, which is common in the assessment
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Fig.13. Comparison of the HEP of two solutions for target task.

of PSFs. The proposed method named TIFN-HRA quantifies the two
solutions in the proposed human error model based on IFS using the
aggregation algorithm of TIFN. In addition, solution II is an improve-
ment on the literature (Tyagi & Akram, 2013), taking into account ex-
perts’ credibility, and solution I is the original result of this study. The
computational procedure of the proposed solution I is more concise
compared to solution II.

(3) Analysis and comparison of the two solutions in TIFN-HRA

The results of the HEP analysis for the target task can be obtained
through the two solutions, as shown in Fig. 13.

Firstly, for the solution of calculating PSF distance, it is known that
the HEP with the highest confidence is around 0.0689, which is lower
than that of the reference task. The result indicates that HEP is influ-
enced by context, and the current context is determined by the level of
PSFs. Qualitatively, when the level of PSFs is higher, the result of HEP
will be lower, and the proposed method just accords with this
relationship.

Secondly, solution II calculated the quantitative relationship of PSFs-
HEP. According to the analysis, the highest membership is found when
the HEP is 0.08, which was 0.8187. However, the method is still limited
by the granularity of the given discrete set (the selected interval and the
number of elements), which needs to be studied more thoroughly to
obtain more accurate results. Additionally, the results obtained by both
solutions show the shortest distance from the “Low” level in the expert
linguistic. However, the calculation process of solution I is simpler and
gives continuous result, which can give an explicit result to the decision
maker.

6. Conclusion

In the case of unavailable or scare data, decision makers usually use
the linguistics of experts for the quantification of HRA. To deal with the
problem of knowledge/data limitations that create uncertainty in HEP
assessment, a reference task based HRA approach is proposed in this
paper. IFS theory is applied to capture hesitation degree in expert lin-
guistics, which is more in line with human perception. Then, an aggre-
gation algorithm for PSFs based on TIFN is proposed, and two solutions

14

for quantifying HEP are proposed: considering PSFs distance and
calculating PSFs-HEP relationship. A case study of a spaceflight refuel-
ing mission is conducted, and the feasibility and effectiveness of the two
methods are demonstrated. The distances between the results of the two
solutions and the expert linguistic are calculated and both results have
the shortest distance to “Low”. However, comparatively, solution I is
simpler, and the result is clearer, which is more favorable to the decision
maker. This research is expected to provide original contributions of
HRA. In future, it will be exciting to perform HRA by integrating
Bayesian networks and fault tree analysis within intuitionistic fuzzy
environment.

The proposed method in this paper expands the field of HRA but still
has its limitations. On the one hand, the premise of the reference task-
based model proposed in this paper is the need to identify a reference
task for the target task, which may require the development of human
factor experiment for the target task. On the other hand, in many cases,
HEP is dependent on human behavior and proneness, which may involve
research in human neuroscience and psychology that are beyond the
scope of this study. Therefore, our model can be viewed as a tool for
providing preliminary assessment results, supplying a basis for subse-
quent in-depth research and initial decision-making by stakeholders.
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We created a symbol table which includes the frequently used noun abbreviations and symbols in this document, as shown below:

Notation list.

Notation Interpretation

HRA Human reliability analysis

FS Fuzzy set

IFS Intuitionistic fuzzy set

IFN Intuitionistic fuzzy number

HEP Human error probability

PSFs Performance shaping factors

TIFN Triangular intuitionistic fuzzy number
m The number of experts

n The number of PSFs

Hia(x) Membership of IF set A on X

va(x) Non-membership of IF set A on X
7a(X) Intuitionistic index

Ci Credibility of i expert

F Quantitative relationship between PSFs and HEP

d;, (I Iy ), t = 1,2,+.n

2
It =1,2,-m
Ips,

Distance of each PSF between the target task and the reference task
PSFs distance between reference task and target task

Integrated level of each PSF

Integrated level of PSFs of the reference task

Irgs, Integrated level of PSFs of the target task
HEPR HEP of reference task

HEPr HEP of target task

Wit =1,2,--.m Integrated weight of each PSF

Eiy Discrete elements on Ijs,

Er Discrete elements on Eg

Ejsy Discrete elements on Ijs,

Er Discrete elements on Ep

References

Ahn, S. I, Kurt, R. E., & Akyuz, E. (2022). Application of a SPAR-H based framework to
assess human reliability during emergency response drill for man overboard on
ships. Ocean Engineering, 251, Article 111089.

Ahn, S. L., & Kurt, R. E. (2020). Application of a CREAM based framework to assess
human reliability in emergency response to engine room fires on ships. Ocean
Engineering, 216, Article 108078.

Aliabadi, M. M. (2021). Human error analysis in furnace start-up operation using HEART
under intuitionistic fuzzy environment. Journal of Loss Prevention in the Process
Industries, 69, Article 104372.

Apostolakis, G. E., Bier, V. M., & Mosleh, A. (1988). A critique of recent models for
human error rate assessment. Reliability Engineering & System Safety, 22(1-4),
201-217.

Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy
Sets and Systems, 61(2), 137-142.

Atanassov, K. T., & Atanassov, K. T. (1999). Intuitionistic fuzzy sets. Springer.

Calhoun, J., Savoie, C., Randolph Gips, M., & Bozkurt, I. (2013). Human reliability
analysis in spaceflight applications. Quality and Reliability Engineering International,
29(6), 869-882.

Casamirra, M., Castiglia, F., Giardina, M., & Tomarchio, E. (2009). Fuzzy modelling of
HEART methodology: Application in safety analyses of accidental exposure in
irradiation plants. Radiation Effects and Defects in Solids, 164(5-6), 291-296.

Chang, Y., & Mosleh, A. (2007). Cognitive modeling and dynamic probabilistic
simulation of operating crew response to complex system accidents: Part 1:
Overview of the IDAC model. Reliability Engineering & System Safety, 92(8),
997-1013.

Chen, X., Liu, X., & Qin, Y. (2021). An extended CREAM model based on analytic
network process under the type-2 fuzzy environment for human reliability analysis
in the high-speed train operation. Quality and Reliability Engineering International, 37
(1), 284-308.

Cooper, S. E., Ramey-Smith, A. M., Wreathall, J., & Parry, G. W. (1996). A technique for
human error analysis (ATHEANA): Nuclear Regulatory Commission.

Coyne, K. A. (2009). A predictive model of nuclear power plant crew decision-making and
performance in a dynamic simulation environment. College Park: University of
Maryland.

DeMott, D. L., & Bigler, M. A. (2017Human reliability assessments: Using the past (Shuttle)
to predict the future (Orion). Paper presented at the 2017 Annual Reliability and
Maintainability Symposium (RAMS).

15

Dengfeng, L., & Chuntian, C. (2002). New similarity measures of intuitionistic fuzzy sets
and application to pattern recognitions. Pattern Recognition Letters, 23(1-3),
221-225.

Erdem, P., & Akyuz, E. (2021). An interval type-2 fuzzy SLIM approach to predict human
error in maritime transportation. Ocean Engineering, 232, Article 109161.

Forsbacka, M. J., & Helton, D. M. (2023). Evolution of NASA’s nuclear flight safety
program to infuse risk leadership and assurance framework concepts. Journal of
Space Safety Engineering, 10(1), 95-102.

Gertman, D., Blackman, H., Marble, J., Byers, J., & Smith, C. (2005). The SPAR-H human
reliability analysis method. Us Nuclear Regulatory Commission, 230(4), 35.

Hollnagel, E. (1998). Cognitive reliability and error analysis method (CREAM). Elsevier.

Hou, L., Liu, R., Liu, H., & Jiang, S. (2021). Two decades on human reliability analysis: A
bibliometric analysis and literature review. Annals of Nuclear Energy, 151, Article
107969.

Jo, W., & Lee, S. J. (2024). Human reliability evaluation method covering operator action
timing for dynamic probabilistic safety assessment. Reliability Engineering & System
Safety, 241, Article 109686.

Kelly, D., & Efthymiou, M. (2019). An analysis of human factors in fifty controlled flight
into terrain aviation accidents from 2007 to 2017. Journal of Safety Research, 69,
155-165.

Konstandinidou, M., Nivolianitou, Z., Kiranoudis, C., & Markatos, N. (2006). A fuzzy
modeling application of CREAM methodology for human reliability analysis.
Reliability Engineering & System Safety, 91(6), 706-716.

Li, P., Chen, G., Dai, L., & Li, Z. (2010). Fuzzy logic-based approach for identifying the
risk importance of human error. Safety Science, 48(7), 902-913.

Li, P., Chen, G., Dai, L., & Zhang, L. (2012). A fuzzy bayesian network approach to
improve the quantification of organizational influences in HRA frameworks. Safety
Science, 50(7), 1569-1583.

Li, Y., & Mosleh, A. (2019). Dynamic simulation of knowledge based reasoning of nuclear
power plant operator in accident conditions: Modeling and simulation foundations.
Safety Science, 119, 315-329.

Lin, Q., Wang, D., Lin, W., & Liu, H. (2014). Human reliability assessment for medical
devices based on failure mode and effects analysis and fuzzy linguistic theory. Safety
Science, 62, 248-256.

Mkrtchyan, L., Podofillini, L., & Dang, V. N. (2015). Bayesian belief networks for human
reliability analysis: A review of applications and gaps. Reliability Engineering & System
Safety, 139(jul.), 1-16.

Pan, X., Ding, S., Zhang, W., Liu, T., Wang, L., & Wang, L. (2022). Probabilistic risk
assessment in space launches using bayesian network with fuzzy method. Aerospace,
9(6), 311.

Pan, X., Zhao, X., Zhang, W., & Jiang, Y. (2020Research on Human Error in Operation Task
Under the Coupling of Time of Day and Stress. Paper presented at the.


http://refhub.elsevier.com/S0360-8352(24)00226-2/h0005
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0005
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0005
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0010
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0010
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0010
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0015
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0015
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0015
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0020
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0020
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0020
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0025
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0025
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0030
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0035
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0035
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0035
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0040
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0040
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0040
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0045
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0045
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0045
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0045
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0050
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0050
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0050
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0050
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0060
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0060
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0060
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0070
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0070
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0070
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0075
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0075
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0080
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0080
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0080
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0085
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0085
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0090
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0095
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0095
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0095
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0100
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0100
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0100
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0105
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0105
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0105
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0110
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0110
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0110
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0115
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0115
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0120
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0120
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0120
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0125
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0125
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0125
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0130
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0130
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0130
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0135
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0135
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0135
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0140
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0140
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0140

X. Pan et al.

Pan, X., & Wu, Z. (2018). Performance shaping factors in the human error probability
modification of human reliability analysis. International Journal of Occupational
Safety and Ergonomics.

Said, M. H., & Noor, M. (2013Technique for the retrospective and predictive analysis of
cognitive errors in maritime pilotage operations. Paper presented at the 12th
international UMT annual symposium* advancements in marine and freshwater
sciences.

Schiraldi, M. (2013). An Overview of Human Reliability Analysis Techniques in
Manufacturing Operations.

Shen, F., Xu, J., & Xu, Z. (2016). An outranking sorting method for multi-criteria group
decision making using intuitionistic fuzzy sets. Information Sciences, 334, 338-353.

Shirley, R. B., Smidts, C., & Zhao, Y. (2020). Development of a quantitative bayesian
network mapping objective factors to subjective performance shaping factor
evaluations: An example using student operators in a digital nuclear power plant
simulator. Reliability Engineering & System Safety, 194, Article 106416.

A.D. Swain H.E. Guttmann Handbook of human-reliability analysis with emphasis on
nuclear power plant applications. final report: Sandia National lab 1983 (SNL-NM),
Albuquerque, NM (United States).

Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets
and Systems, 114(3), 505-518.

Tu, J., Lin, W., & Lin, Y. (2015). A bayes-SLIM based methodology for human reliability
analysis of lifting operations. International Journal of Industrial Ergonomics, 45, 48-54.

Tyagi, S. K., & Akram, M. (2013). Human reliability evaluation for offshore platform
musters using intuitionistic fuzzy sets. leee Transactions On Fuzzy Systems, 21(6),
1115-1122.

Uflaz, E., Akyuz, E., Arslan, O., Gardoni, P., Turan, O., & Aydin, M. (2023). Analysing
human error contribution to ship collision risk in congested waters under the

16

Computers & Industrial Engineering 191 (2024) 110105

evidential reasoning SPAR-H extended fault tree analysis. Ocean Engineering, 287,
Article 115758.

Ung, S. (2015). A weighted CREAM model for maritime human reliability analysis. Safety
Science, 72, 144-152.

Ung, S. (2019). Evaluation of human error contribution to oil tanker collision using fault
tree analysis and modified fuzzy bayesian network based CREAM. Ocean Engineering,
179, 159-172.

Vestrucci, P. (1988). The logistic model for assessing human error probabilities using the
SLIM method. Reliability Engineering & System Safety, 21(3), 189-196.

Wang, Y., Wang, L., Dong, D., Chen, Y., & Hao, Y. (2023). Performance shaping factor
dependency assessment based on international civil aviation accident report data.
International Journal of Human-Computer Interaction, 1-15.

Wickens, C. D., Helton, W. S., Hollands, J. G., & Banbury, S. (2021). Engineering
psychology and human performance. Routledge.

Yazdi, M. (2018). Risk assessment based on novel intuitionistic fuzzy-hybrid-modified
TOPSIS approach. Safety Science, 110, 438-448.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

Zhan, Y., Tadikamalla, P. R., Craft, J. A., Lu, J., Yuan, J., Pei, Z., & Li, S. (2019). Human
reliability study on the door operation from the view of deep machine Learning.
Future Generation Computer Systems, 99, 143-153.

Zhang, L., Wu, X., Qin, Y., Skibniewski, M. J., & Liu, W. (2016). Towards a fuzzy bayesian
network based approach for safety risk analysis of tunnel-induced pipeline damage.
Risk Analysis, 36(2), 278-301.

Zhao, Y. (2022). A bayesian approach to comparing human reliability analysis methods
using human performance data. Reliability Engineering & System Safety, 219, Article
108213.

Zimolong, B. (1992). Empirical evaluation of THERP, SLIM and ranking to estimate
HEPs. Reliability Engineering & System Safety, 35(1), 1-11.


http://refhub.elsevier.com/S0360-8352(24)00226-2/h0150
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0150
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0150
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0165
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0165
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0170
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0170
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0170
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0170
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0180
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0180
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0185
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0185
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0190
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0190
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0190
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0195
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0195
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0195
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0195
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0200
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0200
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0205
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0205
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0205
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0210
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0210
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0215
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0215
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0215
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0220
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0220
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0225
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0225
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0230
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0235
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0235
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0235
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0240
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0240
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0240
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0245
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0245
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0245
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0250
http://refhub.elsevier.com/S0360-8352(24)00226-2/h0250

	Human error probability evaluation based on reference task using intuitionistic fuzzy theory
	1 Introduction
	2 Literature review
	2.1 Evolution of HRA methods
	2.2 PSF categorization
	2.3 Human error models in HRA
	2.4 Quantification methods of HRA

	3 Material and methods
	3.1 A reference task based human error model
	3.1.1 Solution I:Calculating the PSFs distance
	3.1.2 Solution II: Establishing a quantitative relationship between PSFs-HEP

	3.2 Intuitionistic fuzzy set
	3.2.1 Definitions, rules and properties
	3.2.2 TIFN and arithmetic rules
	3.2.3 Relation function between two TIFNs
	3.2.4 Distance between two TIFNs

	3.3 The proposed TIFN-HRA

	4 Case study
	4.1 Background
	4.2 HEP during spaceflight refueling mission
	4.2.1 Preliminary
	4.2.2 PSF evaluation and aggregation based on TIFN
	4.2.3 Evaluation of the HEP of the target task

	4.3 Linguistic distance of the target task

	5 Discussion
	6 Conclusion
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	Appendix A Acknowledgments
	References


