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A B S T R A C T

The advancement of Artificial Intelligence (AI) technology has made human-AI collaboration increasingly 
common. Trust is a decisive factor influencing the quality of such collaboration, as uncalibrated trust may lead to 
task failure or even catastrophic consequences, significantly jeopardizing the safety of human–machine systems. 
Therefore, this paper proposes a Bayesian model for predicting human trust behavior towards AI based on human 
self-confidence and confidence in AI. Grounding in human cognition processes, the model simultaneously con
siders task difficulty and AI ability. Specifically designed within the context of multiple decision-making tasks 
with AI assistance, we introduce a task called Multi-Ball Motion (MBM), where participants collaborate with AIs 
of varying abilities to complete tasks under different levels of difficulty. We report experimental results involving 
21 participants, demonstrating that our model effectively explains both the behavioral and subjective data of 
participants. It captures the dynamic changes in participants’ two types of confidence during the experiment and 
personalized predictions of their trust behavior, achieving an average prediction accuracy of 97.6%. Further
more, the model adeptly elucidates the cognition processes underlying participants’ trust behavior formation. 
This work lays a solid foundation for trust calibration and risk analysis of human-AI systems.

1. Introduction

Humans frequently encounter collaborative decision-making tasks, 
especially in today’s rapidly evolving landscape of artificial intelligence 
(AI), where the trend of human operators collaborating with intelligent 
systems (machines embedded with AI) to achieve common task objec
tives is increasingly evident (Amini et al., 2022; Huang & Rust, 2022). 
However, applications across diverse domains underscore that while AI 
enhances human convenience, it also inevitably introduces novel 
interaction risks (Alozi & Hussein, 2024), exemplified by incidents like 
the Tesla autopilot accident (Morando et al., 2021; Westphal et al., 
2023). Establishing appropriate trust between humans and machines 
significantly influences the likelihood of operators accepting AI de
cisions (Ma & Zhang, 2021; Vinanzi et al., 2019) (for example, whether 
the driver takes over the automated vehicle). Over-trust may culminate 
in the misuse of intelligent systems, impeding operators from promptly 
intervening during critical failures. Conversely, under-trust may pre
cipitate the abandonment of intelligent systems, thereby adversely 
affecting task performance (Lee & See, 2004; Hoff & Bashir, 2015). 
Hence, calibrated trust holds paramount scientific significance in 

enhancing the efficacy of Human-AI collaborative decision-making and 
ensuring the safety of human-AI systems (Zhou & Liao, 2023; Pai, 2023; 
Delmas et al., 2024; Liu et al., 2019). Developing a quantitative model to 
predict human trust behavior stands as an indispensable stride toward 
overcoming this challenge.

Trust encompasses two key aspects: trust level and trust behavior. 
Trust level, typically considered a continuous variable ranging from 0 to 
1, is most commonly referred to as “trust” in the literature, and this is the 
term we use in this paper as well. Various definitions of trust exist (Lee & 
See, 2004; Hoff & Bashir, 2015; Wagner et al., 2018), all reflecting the 
trustor’s confidence and belief in the trustee’s ability to fulfill delegated 
tasks, as well as their attitude or expectations towards the trustee’s 
reliability and ability in the face of uncertainty (Fahnenstich et al., 2024; 
Guo et al., 2021).

However, the alignment between human trust and the ability of AI is 
not always consistent. This mismatch can lead to the misuse or aban
donment of intelligent agents (Lee & See, 2004; Lai & Rau, 2021). Re
searchers in human-AI interaction (HAI) strive to develop trust 
prediction models (Hu et al., 2018; Xu & Dudek, 2015), aiming to 
capture the dynamic evolution of trust during interactions between 
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humans and AI. Whether anchored in probabilistic models or relying on 
machine learning models which leverage physiological data, a widely 
accepted perspective posits that trust undergoes dynamic fluctuations 
(Hoff & Bashir, 2015; Hoogendoorn et al., 2014) and manifests itself in 
inter-individual variation (Cheng et al., 2013). These models are pivotal 
in trust-aware decision-making, as they enable robots to anticipate 
human trust levels and adapt their strategies accordingly, thereby 
optimizing interaction outcomes (Azevedo-Sa et al., 2021; Li et al., 
2023).

Although research on trust between humans and AI has garnered 
increasing attention, existing trust models have certain limitations that 
hinder their application in the field of AI. Firstly, a commonly over
looked aspect is the scant consideration of human cognitive processes 
(Wickens, 1984), especially the modeling of human trust in AI from a 
perception-decision perspective. Secondly, current trust models fall 
short in characterizing the competence levels of AI under varying task 
difficulties—a critical aspect since human trust is significantly influ
enced by the knowledge of an AI’s ability to tackle tasks of current 
difficulty[0, 30]. Finally, a key issue is the limited modeling of trust 
behavior in existing models. Most models focus primarily on quantifying 
human trust levels, while research on modeling trust behavior as a bi
nary decision is somewhat lacking (Hu et al., 2018; Patacchiola & 
Cangelosi, 2020). Therefore, there remains a pressing need for further 
refinement of trust models to better adapt to the increasingly intricate 
tasks in HAI.

From the perspectives of psychology and cognitive science, in
dividuals possess the metacognitive ability to assess the accuracy of their 
decisions based on the quality of perceived evidence (Lisi et al., 2021). 
They can articulate confidence related to their performance. This con
fidence constitutes a vital component of decision-making, as it reflects 
the human evaluation of decision accuracy (Kepecs & Mainen, 2012). 
Concurrently, the quality of perceived evidence is influenced by task 
difficulty; when tasks become more challenging, the perceived evidence 
quality diminishes, leading to a corresponding decrease in decision 
confidence. According to a prevalent perspective (Aitchison et al., 2015; 
Meyniel et al., 2015; Fleming & Daw, 2017), confidence follows a 
Bayesian framework, signifying that individuals calculate the posterior 
probability of decision accuracy based on the perceived evidence. A 
recent neuroscientific study validating this viewpoint on the neural 
mechanisms of confidence has been reported (Geurts et al., 2022).

Understanding how trust behavior manifests as a decision is crucial 
for exploring the dynamics of human-AI interaction, especially in com
plex decision-making scenarios where tasks often involve multiple de
cisions. In such situations, individuals must choose from numerous 
options to identify the most likely candidates for successfully completing 
the task (e.g., selecting high-potential stocks for investment or inter
cepting the most threatening targets). Generally, when deciding 
whether to trust AI, humans simultaneously consider the accuracy of 
their decisions and the AI’s decision accuracy, synthesizing these con
siderations with the rewards associated with the decision. From this 
viewpoint, human trust behavior is accompanied by two forms of con
fidence: confidence in oneself and confidence in AI. Despite a recent 
study into the evolutionary process of human confidence in AI, the au
thors did not provide a modeling approach for trust behavior (Hoxha 
et al., 2023). Literature (Williams et al., 2023) employs a partially 
observable Markov process to capture the probabilistic relationships 
among trust level, self-confidence, and trust behavior. However, this 
model does not account for variations in AI abilities across different task 
difficulties. Similarly, literature (Saeidi & Wang, 2018) models self- 
confidence and trust in AI, integrating these factors into robotic con
trol strategies, but still does not consider the influence of task difficulty 
or human cognitive processes. Thus, to date, there has been insufficient 
exploration of modeling trust behavior mechanism in multiple decision- 
making tasks from the perspectives of human self-confidence and con
fidence in AI.

To bridge this gap, the present work puts forward a model for 

predicting human trust behavior towards AI in multiple decision tasks 
based on human self-confidence and confidence in AI. The model em
ploys a Bayesian probability modeling approach, taking into account 
individual differences among participants. Specifically, the study ex
amines when humans are likely to choose to trust (or distrust) AI in the 
context of AI-assisted multiple decision-making tasks. We designed a 
multiple decision-making task with AI assistance, conducted human 
factor experiments to gather data on human trust behavior, and 
considered the impact of variations in task difficulty and AI ability on 
human trust behavior. This work presents an experimental study and 
establishes a quantitative model to explore the following questions: 1) 
How does task difficulty influence human self-confidence and confi
dence in AI? 2) How does human confidence in AI (trust) dynamically 
change when interacting with AIs of different abilities? 3) How do 
human self-confidence and confidence in AI influence the probability of 
accepting AI’s suggestions? The insights gained from this model have 
significant real-world applications. The proposed model can be applied 
in fields such as autonomous driving, healthcare, and military decision- 
making, where understanding and predicting human trust in AI systems 
is crucial for enhancing safety, performance, and collaboration between 
human operators and AI.

The remaining sections of this paper are as follows: Section 2 pro
vides an introduction to the modeling methods for self-confidence and 
confidence in AI. Section 3 presents the experimental design and pro
tocol for the multiple decision-making experiment. Section 4 displays 
the statistical analysis results of the experiments and the model’s pre
dictive outcomes. Section 5 discusses the results and concludes this 
study.

2. Method

Bayesian models have been widely applied in the literatures on 
neural computation due to their unique advantages (Bang et al., 2022; 
Geurts et al., 2022; Lake et al., 2015). First, Bayesian methods express 
uncertainty through probability distributions, allowing the model to 
make reasonable inferences in the face of noise and incomplete infor
mation. Second, they can flexibly update beliefs about events by inte
grating prior knowledge with new evidence. Ultimately, Bayesian 
models capture individual differences and complex behaviors, making 
them suitable for modeling various cognitive processes such as learning 
(Lake et al., 2015) and decision-making (Fleming & Daw, 2017). Addi
tionally, they provide a natural framework for understanding the 
decision-making processes and the underlying mechanisms of behavior.

Therefore, this study establishes a Bayesian model from the 
perspective of perceptual decision-making to predict human trust 
behavior. It first proposes methods for calculating confidence in oneself 
and confidence in AI, using these as inputs. The model of human trust 
behavior is constructed based on the expected utility theory (EUT). Ul
timately, variational Bayesian inference is employed to estimate the 
parameters within the model, with posterior predictive checks used to 
assess the model’s fit. The technical flowchart of the method is shown in 
Fig. 1.

2.1. Computation model of confidence in self and AI

This section presents computational models for self-confidence and 
confidence in AI. Prior research (Amini et al., 2022; Huang & Rust, 
2022; Lai & Rau, 2021) has characterized human decision confidence as 
Bayesian and substantiated this theory through experiments involving 
binary decisions. In our study, we advance the application of Bayesian 
confidence computation to the realm of multiple decision-making tasks. 
The computation of confidence in AI similarly follows the Bayesian 
probability framework. It is imperative to underscore a pivotal 
assumption in our model, positing that all participants are rational 
decision-makers. Table 1 describes the concepts involved in the model.
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2.1.1. Computation model of confidence in self
Human often possess the ability to assess the quality of their de

cisions and report their confidence in their choices, a crucial assessment 
for guiding human behavior (for instance, whether to undergo a sig
nificant surgery) (Bach & Dolan, 2012). Mostly, human confidence 
levels can be regarded as a function of the perceived quality of evidence 
(or uncertainty). Simultaneously, individual differences in the ability to 
perceive evidence exist, leading to significant variations in confidence 
levels among different individuals at the same task difficulty level 
(Fleming & Daw, 2017). For instance, in the same task, professionals 
may demonstrate higher confidence levels than novices. Therefore, our 
model needs to capture two features pertaining to confidence: (1) in
dividuals’ self-confidence decreases with an increase in task difficulty, 
ranging from 0 to 1. (2) There are variations in confidence levels among 
individuals at the same task difficulty level. Definitions 1 through 4 in 

Table 1 show the terms and concepts necessary for developing the model 
for confidence in self.

The computational model of self-confidence is depicted in Fig. 2. In a 
given task instance, participants generate an internal variable ŝi based 
on the task’s difficulty level si, incorporating sensory noise σh, where ̂si 

follows a normal distribution with mean si and variance σ2
h , as shown 

below: 

ŝi ∼ N
(
si, σ2

h
)

(1) 

For the participants, si is randomly sampled from a uniform distri
bution, with the assumption that there exist n discrete possibilities, thus, 
the probability of any given si occurring is P(si) = 1/n. Consequently, 
employing Bayesian theorem, the probability of a participant encoun
tering the actual task difficulty si, given their perceived task difficulty ̂si, 
can be formally expressed as: 

P(si |̂si) =
P(ŝi|si)P(si)

∑
si∈SP(ŝi|si)P(si)

=
P(ŝi|si)

∑
si∈SP(ŝi|si)

(2) 

Where P(ŝi|si) = 1
σh
̅̅̅̅
2π

√ ⋅exp

[

− (̂si − si)
2

2σ2
h

]

.

To articulate when participants make correct decisions, we posit the 
existence of a threshold for task difficulty, denoted as sth. According to 
this hypothesis, when the perceived task difficulty ŝi falls below this 
threshold (ŝi < sth), the participant is expected to make a correct (cor
rect = 1) decision. Conversely, when ŝi > sth, the participant makes a 
wrong (wrong = 0) decision. The confidence in a participant’s decision 
can thus be conceptualized as the probability of making a correct deci
sion given the perceived task difficulty ŝi, Eqs. (3) and (4) are used to 
respectively express the probabilities of the participant making a correct 
decision or a wrong decision: 

P(dh = 1| ŝi) =

∑
si<sth

P(ŝi|si)
∑

si∈SP(ŝi|si)
(3) 

P(dh = 0| ŝi) = 1 − P(dh = 1| ŝi) (4) 

The correctness of a participant’s decision can be articulated through 
the following Eq. (5): 

Fig. 1. The technical flowchart of the method.

Table 1 
Definitions involved in the model.

Number Definition Description

1 Task difficulty The task difficulty is denoted by si ∈ S = [s1 , s2, ..., sn], 
where S represents the set of all task difficulties human 
can perform. A larger si means a more difficult task.

2 Sensory noise The variable σh represents individual differences in the 
ability to perceive evidence. A larger value indicates 
lower ability.

3 Internal 
variable

The level of evidence quality perceived by participants 
is denoted by the internal variable. It is noteworthy 
that as the value of ̂si increases, the perceived evidence 
quality level decreases. Therefore, ŝi can be 
interpreted as the participants’ perception of task 
difficulty.

4 Decision The decisions made by participants and AI are 
represented by dh and dAI, respectively.

5 AI ability It is the probability, denoted by the conditional 
probability P(dAI = 1|si), that AI correctly 
accomplishes a task under the true task difficulty level 
si.

6 Sensory noise 
of AI

In this study, the AI ability is proposed to be modeled 
as a normal distribution with a mean of si and a 
variance of σ2

AI, where σ2
AI measures its level, with 

higher values indicating lower AI ability.
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{
dh = 1ifP(dh = 1|̂si) > P(dh = 0|̂si)

dh = 0otherwise (5) 

Ultimately, the participant’s confidence in their decision can be 
formulated as: 

Cself = P(dh = 1|ŝi) (6) 

2.1.2. Computation model of confidence in AI
As previously mentioned, the definition of trust encompasses two key 

elements: (1) the trustor faces uncertainty, which may arise from the 
task itself or from limitations in the trustor’s own knowledge, and (2) the 
trustor’s expectation or confidence in the trustee’s ability to complete 
the task. Therefore, in this study, the confidence in AI is operationally 
defined as equivalent to human trust in AI, which refers to the expec
tation that AI can make a correct decision given the perceived task 
difficulty condition, denoted mathematically as the conditional proba
bility P(dAI = 1|̂si). Unlike previous trust models, our research ac
knowledges the influence of task difficulty on trust, a factor overlooked 
in these earlier models that limited their generalizability. In practical 
scenarios, AI ability may decrease for more difficult tasks, leading to a 
corresponding decline in participants’ confidence in AI. Thus, building 
upon prior research on binary decision tasks (Bang et al., 2022), this 
study presents a Bayesian framework for calculating confidence in AI 
within the context of multiple decision-making tasks. Definition 5 in 
Table 1 shows the term and concept of AI ability.

The computational model of confidence in AI is illustrated in Fig. 3. 
Confidence in AI should be dynamically changing as participants need to 
estimate AI abilities through interaction with it. In the model for 
computing self-confidence, σh is used to represent the participants’ 
abilities to perceive evidence level. Similarly, assuming AI also possesses 
sensory noise σAI to measure its ability level (definition 6 in Table 1). For 
instance, in real-world scenarios, the noise in AI’s input data frequently 
emanates from sensor noise. A greater σAI indicates less precise input 
data and diminished AI ability. Thus, according to the definitions, par
ticipants’ confidence in AI is determined by the following equation: 

P(dAI = 1|̂si) =
∑

si∈S
P(dAI = 1|si)P(si |̂si) (7) 

Where the term P(si |̂si) reflects the task difficulty, while P(dAI = 1|si)

denotes the probability of AI making correct decisions under the real 
task difficulty si, thereby indicating AI ability, which can be computed 
using Eq. (8). 

P(dAI = 1|si) =
1

σAI,t
̅̅̅̅̅̅
2π

√

∫ sth

− ∞
exp

[
− (z − si)

2

2σ2
AI,t

]

dz = Φ
(
sth; si, σAI,t

)
(8) 

Where Φ(⋅) denotes the cumulative normal distribution function, σAI,t 
represents the participant’s estimation of the sensory noise of AI during 
the tth task.

Participants continuously update their estimates of AI’s sensory 
noise based on the feedback, constituting an ongoing learning process. 

Fig. 2. Computation model of confidence in self.

Fig. 3. Computation model of confidence in AI.
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In cognitive psychology, the Rescorla-Wagner rule is commonly 
employed to describe the learning curves of humans or animals. In this 
study, an approximation of the Rescorla-Wagner model is utilized to 
depict this behavior, as expressed by equation (9). 

σAI,t = σAI,t− 1 +α
(
ot− 1 − σAI,t− 1

)/
D
(
ŝi, σAI,t− 1

)
(9) 

Where α represents the learning rate, ot− 1 denotes whether AI’s decision 
was correct in the (t − 1)th iteration (correct = 1, wrong = 0), and D

(
ŝi,

σAI,t− 1
)

signifies the following derivative. This derivative is introduced 
for the ease of parameter estimation of α in Eq. (9). 

D
(
ŝi, σAI,t− 1

)
=

dP(dAI = 1|̂si)

dσAI,t− 1
(10) 

More specifically, Eq. (9) simplifies Eq. (10), leading to the validity of 
Eq. (11). 

P
(
dAI = 1

⃒
⃒ŝi, σAI,t− 1 + ηt

)
= P

(
dAI = 1

⃒
⃒ŝi, σAI,t− 1

)
+ α
(
ot − σAI,t− 1

)
(11) 

Here, ηt = σAI,t − σAI,t− 1, expressing the left-hand side of Eq. (11) linearly 
with Eq. (10), we derive Eq. (12): 

P
(
dAI = 1

⃒
⃒ŝi, σAI,t− 1

)
+D

(
ŝi, σAI,t− 1

)
ηt = P

(
dAI

= 1
⃒
⃒ŝi, σAI,t− 1

)
+α
(
ot − σAI,t− 1

)
(12) 

Simplification of Eq. (12) yields Eq. (9). Eq. (13) is derived accordingly, 
with the derivation process elaborated in Appendix A. 

D
(
ŝi, σAI,t− 1

)
=
∑

si∈S
P(si|ŝi)

sth − si

σAI,t− 1
ϕ
(
sth; si, σAI,t− 1

)
(13) 

Where ϕ() denotes the probability density function of the standard 
normal distribution.

2.2. Trust behavior predictions

How do participants make decisions based on their confidence in 
themselves and in AI? EUT is a psychological framework commonly used 
to describe decision-making behavior under uncertainty, wherein par
ticipants evaluate decisions according to the probability of events and 
their associated rewards. The expected utility for participants trusting 
and distrusting AI is formulated as follows: 
⎧
⎨

⎩

EUtrust = P(dAI = 1|ŝi)⋅Vtrust − (1 − P(dAI = 1|̂si))⋅Vtrust
EUdistrust = P(dh = 1|ŝi)⋅Vdistrust − (1 − P(dh = 1| ŝi))⋅Vdistrust

ΔEU = EUtrust − EUdistrust

(14) 

Where, Vtrust represents the reward when trusting AI, while Vdistrust de
notes the reward when distrusting AI, ΔEU expected utility difference 
between trusting and distrusting AI.

To personalize the quantification of the probability of participants 
choosing to trust AI, we employ the SoftMax function for modeling: 

P(trust) =
1

1 + e− (β0+β1ΔEU)
(15) 

We assume the existence of a trust threshold for participants, denoted as 
“Threshold”, participants trust AI when their trust level surpasses this 
threshold; conversely, when it falls below the threshold, participants do 
distrust AI, this approach is similar to that used in literature (Edelson 
et al., 2018). As expressed by the following equation: 

Ypredict =

{
1ifP(trsut) > Threshold

0otherwise (16) 

Where Ypredict represents the model-predicted trust behavior of the par
ticipants. And the true labels are denoted by Y (Trust = 1, Distrust = 0), 
we aim to find the “Threshold” by maximizing the predictive accuracy, 
that is: 

Threshold = arg max
Threshold

∑N
j ω(j)
N

(17) 

Where N is the number of samples, ω(j) =

{
1ifYpredict = Y

0otherwise .

To ensure clarity and facilitate understanding, we have summarized 
the key assumptions and hypotheses underlying our model at the end of 
this section, as shown in Table 2.

2.3. Model fitting and evaluation

Combining Sections 2.1 and 2.2, it is evident that the parameters to 
be estimated by the model are Θ = {σh,α,β0,β1}. We utilize variational 
Bayesian inference algorithms from the Stan library in R to fit the 
behavioral data of participants and estimate the parameters in the 
model. The specifications used during the fitting process are outlined in 
Table 3. To predict the behavior of each participant, we extract 500 
samples from the posterior distribution of the fitted parameters using the 
“generate quantities” module in Stan, followed by averaging these 
samples over the 500 iterations. The model is executed four times with 
different random seeds, and all outputs are averaged.

3. Experiment

Human factor studies are utilized to establish an experimental 
framework that involves decision-making with AI assistance. Aligned 
with the research questions addressed in this paper, the task should 
exhibit the following characteristics: 

(1) The task entails multiple decision-making, where participants 
select the most likely correct choice from multiple options.

(2) Task difficulty should exhibit distinct differentiation.
(3) AI ability should diminish with escalating task difficulty, and 

adjustments to AI ability should be feasible across various 
experimental blocks.

3.1. Experiment task

This study developed a Multi-Ball Motion (MBM) task, as depicted in 
Fig. 4, implemented using the Expyriment library in Python. In this task, 
participants were tasked with selecting the ball that reached the center 
point first among five balls moving towards it. The balls moved at a 
constant speed, with random radii and initial positions assigned to each 
ball. Task difficulty was assessed based on the time intervals between the 
balls reaching the center point. For a trial, the time interval Δti for each 
ball reaching the center point was consistent, for example, the time in
terval between the first ball reaching the center point and the second 
ball is equal to the interval between the second ball and the third ball. 
Where Δti ∈ T = {Δt1, Δt2...Δtn}, and n represents the number of Δti. 
Task difficulty was determined using the following equation: 

mi = 1 −
Δti

maxT
(18) 

For computational convenience, we define 

Table 2 
Assumptions in our model.

Number Assumption

1 Humans in our model are rational decision-makers.
2 There exists a threshold sth such that when ŝ i < sth, humans were able to 

make correct decisions.
3 Humans estimate the abilities of an AI by estimating its sensory noise σAI .
4 There exists a trust threshold, denoted as “Threshold”, humans trust AI 

when their trust level surpasses this threshold
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si = mi − 1 ∈ S = [s1, s2, ..., sn] ∈ [ − 1, 0] and set sth = 0. As our model 
requires computing the cumulative distribution function of the normal 
distribution, we linearize the task difficulty space in Stan, with a range 
of [− 1,1].

Furthermore, participants are required to collaborate with AI in AI- 
assisted decision-making experiments to make optimal decisions. We 
developed a program to simulate the recommendations provided by AI. 
The AI ability is measured by its decision accuracy under the current 
task difficulty. Specifically, in each trial, AI perceives the distance and 
velocity of the ball relative to the center point, then calculates the time 
for the ball to reach the center. However, in real-world scenarios, 
training data may be lacking for some more challenging tasks, leading to 
a reduction in AI ability, with variations in ability observed among 
different AI models (differences in accuracy when different AI complete 
the same task). To simulate this characteristic, we introduce Gaussian 
noise λ to the perceived data of AI, controlling the magnitude of λ to alter 
the abilities of different AI. To be specific, when λ is fixed, higher task 
difficulty increases the likelihood of errors made by AI. For different AI, 
within the same task difficulty, larger λ values correspond to higher 
error probabilities.

3.2. Experiment design

Each participant is required to undergo two experiments. Experiment 
1 involves self-decision-making, while Experiment 2 entails AI-assisted 
decision-making and is divided into three blocks.

The experimental procedure for Experiment 1 is illustrated in Fig. 5. 

Participants are first presented with a MBM task stimulus, lasting for 3 s. 
Subsequently, participants need to select the ball that reaches the center 
point first. To prevent participants from forgetting the task, the screen 
displays the relative positions of the balls at the last frame of the stim
ulus when making decisions. Following this, a 7-point Likert scale is 
provided for participants to indicate their subjective confidence, ranging 
from 1 to 7 (discrete). It is worth noting that our confidence computation 
model does not incorporate participants’ subjective confidence, as this 
data is reserved for subsequent model validation. Finally, participants 
receive feedback on their performance in the task. Participants are 
required to complete 100 trials, with task difficulties uniformly sampled 
from S = [s1, s2, ..., sn], and the initial positions, colors, and radii of the 
balls are randomly generated. The aim of this experiment is to estimate 
participants’ sensory noise σh when performing the MBM task.

The experimental protocol for Experiment 2 is illustrated in Fig. 6. In 
this experiment, participants are assigned the task of completing 
decision-making tasks with AI assistance. During each trial, participants 
initially undertake the same task as in Experiment 1. Following the 
expression of their subjective confidence, an AI offers its recommenda
tion. Consistent with Experiment 1, the screen presents the relative 
positions of the balls at the final frame of the stimulus. Subsequently, 
participants are prompted to provide their subjective confidence in the 
AI with a 7-point Likert scale. Then, participants are asked to evaluate 
their trust in the AI; if they trust the AI, the ultimate decision is made by 
the AI, otherwise by the participant. Ultimately, participants receive 
corresponding scores. It is important to note that we want participants to 
trust AI when it is correct and to distrust when it is not, rather than 
making arbitrary choices. In other words, if participants believe that the 
AI is capable of making the right decision and they can also do so, we 
hope they will choose to trust AI. To encourage participants to put in the 
effort to estimate the AI’s abilities, we establish a reward-penalty 
mechanism: Participants gain 30 points if they trust AI and it makes a 
correct decision; otherwise, they lose 30 points. Conversely, if they 
distrust AI and make the correct decision themselves, they earn 10 
points; otherwise, they lose 10 points. Participants are informed that 
their overall rewards depend on their cumulative scores, encouraging 
them to strive for higher scores in each trial to minimize deductions and 
prompting careful consideration of whether to trust the AI.

Experiment 2 consisted of three blocks, each comprising 100 trials of 
MBM tasks with AI-assisted decision-making. The overall accuracy of AI 
in the three blocks were 90 %, 80 %, and 60 %, respectively. Participants 
were informed that the AI is more prone to errors as tasks become more 
challenging; however, the AI abilities varied across the three blocks. 
Before commencing each block, participants were instructed to disre
gard any biases from the preceding block regarding the AI and to assume 
equal abilities between themselves and the AI at the first trial of the 
block. The sequence of blocks was randomized for each participant, and 
task difficulty was uniformly sampled from S = [s1, s2, ..., sn] for each 
block. Additionally, a new random seed was employed for each block to 
prevent participants from memorizing the correct answers based on 
repeated random seeds.

Table 3 
Specifications used in Stan fitting.

Specification Value

Maximum Iterations 5000
Number of Samples for MC Estimation 300
Iterations between Evaluation 100
Convergence Tolerance (Absolute) 0.0001

Fig. 4. Multi-Ball Motion (MBM) task.

Fig. 5. Self-decision experiment.
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3.3. Participants

Previous laboratory experiments on individual decision-making 
models have typically involved 19 to 30 participants (Bang et al., 
2022; Lisi et al., 2021; Hoxha et al., 2023; Weindel et al., 2021). In our 
experiment, twenty-one participants, including 11 males and 10 fe
males, aged between 24 ± 3, were recruited for and completed the 
experiment. Before the experiment, all participants ensured they had 
adequate rest and underwent a 10-minute pre-experiment session to 
familiarize themselves with the experimental procedures. Informed 
consent was obtained from all participants prior to the experiment, and 
the study received approval from the Institutional Review Board of 
Beihang University.

4. Results

4.1. The influence of task difficulty and AI ability on subjective self- 
confidence and confidence in AI

Participants’ task is to select the ball most likely to reach the center 
point first. They calculate the posterior probability of the perceived task 
difficulty based on the true task difficulty, which also corresponds to 
their decision confidence. This confidence is a mapping of decision ac
curacy. To explore the correlation between participants’ subjective 
confidence in themselves and decision accuracy, task difficulty, and 
response time, we gathered data from Experiment 1 and performed 
statistical analysis. The results indicated that as task difficulty increased, 
participants’ subjective self-confidence decreased (Fig. 7(a), Spearman 
rank correlation coefficient r = − 0.730, P = 2.832× 10− 36), and 
longer response times were associated with lower subjective self- 
confidence (Fig. 7(b), r = − 0.664, P = 4.762× 10− 28). Moreover, 
participants’ decision accuracy exhibited a positive correlation with 

Fig. 6. AI-assisted decision experiment.

Fig. 7. (a) Correlation between subjective self-confidence and task difficulty (b) Correlation between response time and subjective self-confidence (c) Correlation 
between decision accuracy and subjective self-confidence. (a), (b) and (c) divide each participant’s data into 10 bins based on the horizontal axis, with each data 
point representing the average value of the participant’s data within that bin. Each participant’s data was divided into 10 bins based on the horizontal axis. All scatter 
plots are derived from Experiment 1, with solid lines indicating the best linear fit regression line using least squares method, and shaded areas representing 95% 
prediction intervals estimated based on new out-of-sample data points. Spearman rank correlation coefficients and p-values were calculated using non- 
parametric methods.
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their subjective self-confidence (Fig. 7(c),r = 0.725, P = 1.404×

10− 35). These findings are in line with previous research (Bang et al., 
2022; Lisi et al., 2021; Kepecs & Mainen, 2012), suggesting that higher 
task difficulty leads to decreased decision confidence, longer response 
times, and reduced decision accuracy.

Additionally, how does AI ability influence participants’ confidence 
in themselves and in AI? We conducted a statistical analysis of data from 
Dataset 2 (obtained in Experiment 2). Fig. 8(a) and (b) depict the 
changes in participants’ subjective confidence in themselves and in AI 
with increasing task difficulty. From Fig. 8, it can be observed that lower 
levels of AI ability significantly decrease participants’ subjective confi
dence in AI. Specifically, AI ability does not affect participants’ self- 
confidence (comparing AI correctness = 0.9 with AI correctness = 0.6, 
t-test, P = 0.49), while poorer AI ability significantly reduces human 
confidence in AI (comparing AI correctness = 0.9 with AI correctness =
0.6, t-test, P < 0.001). However, when AI ability is high (AI correctness 
= 0.9) or medium (AI correctness = 0.8), there is no significant impact 
on participants’ self-confidence (t-test, P = 0.88) or in AI (t-test, P =
0.26).

Additionally, our experimental data indicate that there is no signif
icant difference in confidence in AI between male and female partici
pants, as shown in Fig. 9.

4.2. Model captures the dynamic changes in participants’ self-confidence 
and confidence in AI

Model parameters were estimated from experimental data to assess 
the dynamic changes in participants’ confidence in themselves and in AI 
during AI-assisted decision-making. Specifically, sensory noise σh of 
each participant was estimated from Dataset 1, while the learning rate α, 
β0 and β1 were estimated from Dataset 2, as shown in Table 4. In Stan 
(generated quantities module), 500 samples were drawn from the pos
terior distributions of the fitted parameters, and the trial-by-trial 
average of each sample was computed for posterior predictive checks 
to evaluate the model’s fit to new data. Fig. 10(a) and (b) illustrate 
participants’ confidence in themselves and in AI during Experiment 2. 
The results indicate that there was no significant change in participants’ 
self-confidence across different levels of AI ability (Fig. 10(a), 
comparing AI correctness = 0.9 with AI correctness = 0.6, t-test, P =
0.64). However, participants’ confidence in AI significantly decreased 
when AI ability was lower (Fig. 10(b), comparing AI correctness = 0.9 
with AI correctness = 0.6, t-test, P < 0.001). These findings align with 

the results of participants’ subjective confidence, despite our model not 
incorporating subjective confidence as input, thus validating the 
model’s validity.

Additionally, Fig. 10(c) depicts the ongoing adjustment of partici
pants’ estimations of AI sensory noise during their interactions with AI. 
Since σAI is updated based on an approximation of the Rescorla-Wagner 
model, more frequent errors made by low-ability AI result in a higher 
estimate of σAI. The model adeptly captures this pattern, as participants’ 
estimations of σAI for low-ability AI significantly surpass those for high- 
ability AI as trials progress (t test, P < 0.001).

Therefore, participants’ self-confidence correlates with task diffi
culty but not with AI ability, whereas confidence in AI is affected by both 
AI ability and task difficulty. The model effectively captures the dynamic 
fluctuations in participants’ self-confidence and their confidence in AI 
during interactions.

4.3. Model personalized predictions of human trust behavior towards AI 
in multiple decision-making

Fig. 11(a) illustrates the relationship between ΔEU and the proba
bility of participants trusting AI (P(trust)), showing an increase in P 
(trust) as ΔEU increases. A plausible interpretation is that when par
ticipants perceive a higher (lower) difference in expected utility be
tween trusting and distrusting AI, they are more likely to achieve higher 
reward by trusting (distrusting) AI. Hence, we postulate the presence of 
an individual trust threshold (Threshold) for each participant, repre
sented as a vertical line in Fig. 11(b). Participants opt to trust AI if P 
(trust) surpasses the Threshold; otherwise, they opt distrust. A higher 
Threshold suggests a more conservative approach among participants, 
indicating a tendency to trust only when they perceive a significant 
potential expected utility gain. The optimal threshold is determined by 
maximizing classification accuracy (refer to equation (17). Fig. 11(c) 
illustrates participant 7′s Threshold alongside their observed trust 
behavior.

The personalized model accurately predicted the trust behavior of 
each participant and identified their trust threshold (Threshold), as 
depicted in Table 5. The prediction accuracy for all participants excee
ded 97 %. Fig. 11(d) illustrates the confusion matrix of the model’s 
prediction for the trust behavior of participant 7.

Fig. 8. (a) The relationship between task difficulty and subjective self-confidence under AI-assisted decision-making by three different AI abilities indicates that AI 
ability has no significant effect on subjective confidence. (b) The relationship between task difficulty and participants’ subjective confidence in AI under AI-assisted 
decision-making by three different AI capabilities shows that as task difficulty increases, participants’ confidence in AI decreases. Poorer AI capability significantly 
reduces participants’ confidence in AI. (a) and (b) are from Dataset 2. Each block’s 100 trials were divided into 10 bins based on task difficulty. Mean and standard 
deviation were computed for all participants within each bin. Each scatter represents participants’ mean confidence within the bin, connected by a line. Significance 
analysis between block data groups was done using t-tests, with P-values calculated.
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5. Discussion and conclusion

We propose a method for predicting human trust behavior towards 
AI based on human self-confidence and confidence in AI. This work lays 
the foundation for subsequent trust calibration to enhance the safety 
level of human-AI systems. We consider a scenario of multiple decision- 
making with AI assistance, where participants are tasked with selecting 
the correct option from multiple choices. The difficulty varies across 
tasks. Participants collaborate with AIs of different abilities to make the 
final decision and achieve the highest reward. Such scenarios apply to 
many decision-making environments. For example, in AI-assisted clin
ical diagnosis, doctors must balance their trust in AI with their own 

expertise, much like participants in our MBM experiment weigh their 
own decisions against AI outputs. Additional efforts are required to 
quantify clinical diagnosis task difficulty on a scale from 0 to 1. This 
allows sequential decision-making experiments to fit the necessary 
model parameters, thereby predicting trust behaviors.

Furthermore, compared to existing models (Hu et al., 2018; Azevedo- 
Sa et al., 2021; Li et al., 2023; Chong et al., 2022; Williams et al., 2023), 
the current approach offers several key advantages. (1) Our modeling 
approach explores the cognitive process of trust behavior formation: 
individuals often perceive the difficulty of a task when making decisions 
and report confidence in their decisions. In scenarios involving AI- 
assisted decision-making, individuals also develop confidence in AI’s 

Fig. 9. Subjective confidence in AI by gender.

Table 4 
Personalized parameters of the model.

Participant 1 2 3 4 5 6 7 8 9 10 11

σh 0.4184 0.7415 0.2093 0.3478 0.4029 0.7373 1.0793 0.3732 0.4056 0.4645 0.4208
α 0.0339 0.0341 0.0414 0.0382 0.0328 0.0299 0.0379 0.0320 0.0322 0.0323 0.0354
β0 0.3179 1.6386 − 0.2310 − 0.0940 1.2012 0.0843 0.8217 − 0.3562 0.6414 0.2617 0.6429
β1 0.1853 0.1726 0.1915 0.1746 0.1790 0.1762 1.1774 0.1838 0.1764 0.1778 0.1812
Participant 12 13 14 15 16 17 18 19 20 21 ​
σh 0.2528 0.2988 0.4737 0.4929 0.2363 0.5521 0.4167 0.2169 0.4269 0.2620 ​
α 0.0361 0.0350 0.0339 0.0319 0.0386 0.0320 0.0286 0.0303 0.0314 0.0330 ​
β0 0.0310 0.6613 1.7312 1.3941 0.6721 2.3230 0.2674 0.4006 0.0998 0.4616 ​
β1 0.1927 0.1830 0.1734 0.1786 0.1783 0.1773 0.1763 0.1888 0.1909 1.1831 ​

Fig. 10. (a)Relationship between task difficulty and participant confidence (model-derived) under AI-assisted decision-making with three levels of AI ability (b) 
Relationship between task difficulty and participant confidence in AI (model-derived) under AI-assisted decision-making with three levels of AI ability; (c) Estimation 
of participants’ sensory noise σAI for AI under AI-assisted decision-making with three levels of AI ability. The plotting method for all figures is identical to Fig. 8.
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decisions. Both forms of confidence play a role in determining trust 
behavior in AI. We establish a cognitive model of this process from 
perception to decision-making. In particular, although the dynamic 
evolution of confidence and confidence in AI during human interaction 
with AI is studied in literature (Chong et al., 2022), the influence of task 
difficulty is ignored. (2) In modeling trust (equivalent to confidence in 
AI in this study), we simultaneously consider task difficulty and AI 
ability. This is crucial because individuals have higher confidence in AI 
when they know that the AI ability can (or cannot) address the current 
task difficulty (Azevedo-Sa et al., 2021). (3) The model offers a 
personalized approach to predicting human trust behavior while 
avoiding the reliance on subjective self-reported data (Lisi et al., 2021). 
(While we collected subjective confidence data in our experiment to 
validate our model, the model calculations did not utilize this data).

In summary, the experimental results demonstrate that our model 
effectively explains both participants’ subjective data and behavioral 
data. Initially, we conducted statistical analyses on participants’ 

subjective data and behavioral data, revealing a negative correlation 
between participants’ subjective self-confidence and task difficulty 
(Fig. 7(a)), as well as response time (Fig. 7(b)), and a positive correlation 
with decision accuracy (Fig. 7(c)), consistent with prior research (Bang 
et al., 2022; Lisi et al., 2021). That is, as tasks become more difficult, 
participants take longer to make decisions, exhibit lower confidence, 
and achieve lower accuracy. Additionally, low-ability AI significantly 
decreases participants’ subjective confidence in AI (Fig. 8(b)), while 
having no significant impact on participants’ subjective self-confidence 
(Fig. 8(a)). These two types of confidence, as computed by our model, 
capture this characteristic (Fig. 10(a) and (b)). In other words, partici
pants generate a perceived difficulty with sensory noise based on the 
true task difficulty, and calculate the posterior distribution of task dif
ficulty using Bayesian rules to form their self-confidence (Meyniel et al., 
2015). Therefore, self-confidence is a function of task difficulty and 
sensory noise, independent of AI ability. Meanwhile, participants’ con
fidence in AI is influenced by both task difficulty and AI ability. The 

Fig. 11. (a) The relationship between ΔEU and P(trust), divided into 30 bins based on ΔEU, where the mean and 95 % confidence interval (CI) of P(trust) for all 
participants in each bin were calculated and fitted using logistic regression. (b) Explanation of participants’ trust threshold, where participants trust AI when P(trust) 
> Threshold; each participant has a different Threshold. (c) Interpretation of the relationship between participant 7′s trust threshold prediction and trust behavior. 
(d) Confusion matrix of the model’s prediction of participant 7′s trust behavior.

Table 5 
The accuracy of the model in predicting participants’ trust behavior.

Participant 1 2 3 4 5 6 7 8 9 10 11

Accuracy 0.963 1.0 0.943 0.923 0.98 0.997 0.977 0.947 0.973 0.973 0.973
Threshold 0.619 0.644 0.515 0.583 0.731 0.584 0.663 0.588 0.672 0.649 0.707
Participant 12 13 14 15 16 17 18 19 20 21 ​
Accuracy 0.953 0.967 1.0 1.0 0.983 1.0 0.987 0.98 0.997 0.973 ​
Threshold 0.555 0.672 0.775 0.683 0.639 0.817 0.662 0.619 0.669 0.599 ​
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model assumes the existence of a noise parameter σAI for AI (where 
larger σAI indicates lower AI ability), and participants continuously 
update their estimate of σAI during the interaction with AI. The model 
captures the dynamic changes in σAI throughout the experiment (Fig. 10
(c)).

Ultimately, our model has obtained satisfactory prediction results. 
We estimated parameters for each participant Θ = {σh,α,β0,β1}, which 
were then used to generate the participants’ confidence in themselves 
and in AI during tasks. We calculated the expected utility difference 
between trusting and distrusting AI for each participant and subse
quently computed the probability of participants trusting AI using 
equation (15). Literature (Edelson et al., 2018) introduces the concept of 
a “deferral threshold” in a computational model of leadership decision- 
making. In that model, when participants’ confidence in their own de
cisions falls within the threshold, they tend to hesitate or defer. How
ever, beyond this threshold, participants are more likely to make 
leadership decisions themselves. Inspired by that study, we hypothesize 
that each participant has a trust threshold, above which they choose to 
trust AI. By maximizing the accuracy of the predicted outcomes, we 
identified the trust threshold for each participant, achieving an average 
prediction accuracy of 97.6 % across all participants.

This work also has some limitations, providing opportunities for 
future research. Firstly, it is assumed in the study that participants are 
rational decision-makers, capable of making decisions by maximizing 
expected utility, without considering non-rational factors such as risk 
aversion in positive prospects and risk-seeking tendencies in negative 
prospects. Therefore, potential research directions could involve 

investigating human trust decision-making behavior using prospect 
theory. Secondly, the concept of explainable AI has recently been pro
posed to enhance user trust in AI. However, the cognitive mechanisms 
through which AI explainability influences users’ perception of AI ca
pabilities and subsequently affects their trust behavior remain unclear. 
Finally, human decision-making is influenced by cognitive biases, 
emotional factors, and individual differences, such as personality traits. 
How these factors affect trust behavior remains an area for further 
research.
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Appendix A 

The derivation of Eq. (10) is presented below: 
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The function P(si |̂si) is not dependent on σAI,t− 1, thus dP(si |̂si)
dσAI,t− 1

= 0. Therefore, we have: 
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Where the calculation of P(dAI = 1|si) is as follows: 
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Then, dP(dAI=1|si)
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can be expressed as: 
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Based on 
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Ultimately, Eq. (13) is thus established: 
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