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The advancement of Artificial Intelligence (AI) technology has made human-Al collaboration increasingly
common. Trust is a decisive factor influencing the quality of such collaboration, as uncalibrated trust may lead to
task failure or even catastrophic consequences, significantly jeopardizing the safety of human-machine systems.
Therefore, this paper proposes a Bayesian model for predicting human trust behavior towards Al based on human
self-confidence and confidence in Al Grounding in human cognition processes, the model simultaneously con-
siders task difficulty and Al ability. Specifically designed within the context of multiple decision-making tasks
with Al assistance, we introduce a task called Multi-Ball Motion (MBM), where participants collaborate with Als
of varying abilities to complete tasks under different levels of difficulty. We report experimental results involving
21 participants, demonstrating that our model effectively explains both the behavioral and subjective data of
participants. It captures the dynamic changes in participants’ two types of confidence during the experiment and
personalized predictions of their trust behavior, achieving an average prediction accuracy of 97.6%. Further-
more, the model adeptly elucidates the cognition processes underlying participants’ trust behavior formation.

This work lays a solid foundation for trust calibration and risk analysis of human-AI systems.

1. Introduction

Humans frequently encounter collaborative decision-making tasks,
especially in today’s rapidly evolving landscape of artificial intelligence
(AID), where the trend of human operators collaborating with intelligent
systems (machines embedded with AI) to achieve common task objec-
tives is increasingly evident (Amini et al., 2022; Huang & Rust, 2022).
However, applications across diverse domains underscore that while Al
enhances human convenience, it also inevitably introduces novel
interaction risks (Alozi & Hussein, 2024), exemplified by incidents like
the Tesla autopilot accident (Morando et al., 2021; Westphal et al.,
2023). Establishing appropriate trust between humans and machines
significantly influences the likelihood of operators accepting Al de-
cisions (Ma & Zhang, 2021; Vinanzi et al., 2019) (for example, whether
the driver takes over the automated vehicle). Over-trust may culminate
in the misuse of intelligent systems, impeding operators from promptly
intervening during critical failures. Conversely, under-trust may pre-
cipitate the abandonment of intelligent systems, thereby adversely
affecting task performance (Lee & See, 2004; Hoff & Bashir, 2015).
Hence, calibrated trust holds paramount scientific significance in

enhancing the efficacy of Human-Al collaborative decision-making and
ensuring the safety of human-Al systems (Zhou & Liao, 2023; Pai, 2023;
Delmas et al., 2024; Liu et al., 2019). Developing a quantitative model to
predict human trust behavior stands as an indispensable stride toward
overcoming this challenge.

Trust encompasses two key aspects: trust level and trust behavior.
Trust level, typically considered a continuous variable ranging from O to
1, is most commonly referred to as “trust” in the literature, and this is the
term we use in this paper as well. Various definitions of trust exist (Lee &
See, 2004; Hoff & Bashir, 2015; Wagner et al., 2018), all reflecting the
trustor’s confidence and belief in the trustee’s ability to fulfill delegated
tasks, as well as their attitude or expectations towards the trustee’s
reliability and ability in the face of uncertainty (Fahnenstich et al., 2024;
Guo et al., 2021).

However, the alignment between human trust and the ability of Al is
not always consistent. This mismatch can lead to the misuse or aban-
donment of intelligent agents (Lee & See, 2004; Lai & Rau, 2021). Re-
searchers in human-Al interaction (HAI) strive to develop trust
prediction models (Hu et al., 2018; Xu & Dudek, 2015), aiming to
capture the dynamic evolution of trust during interactions between
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humans and AL Whether anchored in probabilistic models or relying on
machine learning models which leverage physiological data, a widely
accepted perspective posits that trust undergoes dynamic fluctuations
(Hoff & Bashir, 2015; Hoogendoorn et al., 2014) and manifests itself in
inter-individual variation (Cheng et al., 2013). These models are pivotal
in trust-aware decision-making, as they enable robots to anticipate
human trust levels and adapt their strategies accordingly, thereby
optimizing interaction outcomes (Azevedo-Sa et al., 2021; Li et al.,
2023).

Although research on trust between humans and Al has garnered
increasing attention, existing trust models have certain limitations that
hinder their application in the field of AL Firstly, a commonly over-
looked aspect is the scant consideration of human cognitive processes
(Wickens, 1984), especially the modeling of human trust in Al from a
perception-decision perspective. Secondly, current trust models fall
short in characterizing the competence levels of AI under varying task
difficulties—a critical aspect since human trust is significantly influ-
enced by the knowledge of an AI's ability to tackle tasks of current
difficulty[0, 30]. Finally, a key issue is the limited modeling of trust
behavior in existing models. Most models focus primarily on quantifying
human trust levels, while research on modeling trust behavior as a bi-
nary decision is somewhat lacking (Hu et al., 2018; Patacchiola &
Cangelosi, 2020). Therefore, there remains a pressing need for further
refinement of trust models to better adapt to the increasingly intricate
tasks in HAIL

From the perspectives of psychology and cognitive science, in-
dividuals possess the metacognitive ability to assess the accuracy of their
decisions based on the quality of perceived evidence (Lisi et al., 2021).
They can articulate confidence related to their performance. This con-
fidence constitutes a vital component of decision-making, as it reflects
the human evaluation of decision accuracy (Kepecs & Mainen, 2012).
Concurrently, the quality of perceived evidence is influenced by task
difficulty; when tasks become more challenging, the perceived evidence
quality diminishes, leading to a corresponding decrease in decision
confidence. According to a prevalent perspective (Aitchison et al., 2015;
Meyniel et al., 2015; Fleming & Daw, 2017), confidence follows a
Bayesian framework, signifying that individuals calculate the posterior
probability of decision accuracy based on the perceived evidence. A
recent neuroscientific study validating this viewpoint on the neural
mechanisms of confidence has been reported (Geurts et al., 2022).

Understanding how trust behavior manifests as a decision is crucial
for exploring the dynamics of human-Al interaction, especially in com-
plex decision-making scenarios where tasks often involve multiple de-
cisions. In such situations, individuals must choose from numerous
options to identify the most likely candidates for successfully completing
the task (e.g., selecting high-potential stocks for investment or inter-
cepting the most threatening targets). Generally, when deciding
whether to trust Al, humans simultaneously consider the accuracy of
their decisions and the AI's decision accuracy, synthesizing these con-
siderations with the rewards associated with the decision. From this
viewpoint, human trust behavior is accompanied by two forms of con-
fidence: confidence in oneself and confidence in AI. Despite a recent
study into the evolutionary process of human confidence in Al the au-
thors did not provide a modeling approach for trust behavior (Hoxha
et al., 2023). Literature (Williams et al., 2023) employs a partially
observable Markov process to capture the probabilistic relationships
among trust level, self-confidence, and trust behavior. However, this
model does not account for variations in Al abilities across different task
difficulties. Similarly, literature (Saeidi & Wang, 2018) models self-
confidence and trust in Al, integrating these factors into robotic con-
trol strategies, but still does not consider the influence of task difficulty
or human cognitive processes. Thus, to date, there has been insufficient
exploration of modeling trust behavior mechanism in multiple decision-
making tasks from the perspectives of human self-confidence and con-
fidence in Al

To bridge this gap, the present work puts forward a model for
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predicting human trust behavior towards Al in multiple decision tasks
based on human self-confidence and confidence in Al. The model em-
ploys a Bayesian probability modeling approach, taking into account
individual differences among participants. Specifically, the study ex-
amines when humans are likely to choose to trust (or distrust) Al in the
context of Al-assisted multiple decision-making tasks. We designed a
multiple decision-making task with AI assistance, conducted human
factor experiments to gather data on human trust behavior, and
considered the impact of variations in task difficulty and Al ability on
human trust behavior. This work presents an experimental study and
establishes a quantitative model to explore the following questions: 1)
How does task difficulty influence human self-confidence and confi-
dence in AI? 2) How does human confidence in Al (trust) dynamically
change when interacting with Als of different abilities? 3) How do
human self-confidence and confidence in Al influence the probability of
accepting AI's suggestions? The insights gained from this model have
significant real-world applications. The proposed model can be applied
in fields such as autonomous driving, healthcare, and military decision-
making, where understanding and predicting human trust in Al systems
is crucial for enhancing safety, performance, and collaboration between
human operators and Al

The remaining sections of this paper are as follows: Section 2 pro-
vides an introduction to the modeling methods for self-confidence and
confidence in Al Section 3 presents the experimental design and pro-
tocol for the multiple decision-making experiment. Section 4 displays
the statistical analysis results of the experiments and the model’s pre-
dictive outcomes. Section 5 discusses the results and concludes this
study.

2. Method

Bayesian models have been widely applied in the literatures on
neural computation due to their unique advantages (Bang et al., 2022;
Geurts et al., 2022; Lake et al., 2015). First, Bayesian methods express
uncertainty through probability distributions, allowing the model to
make reasonable inferences in the face of noise and incomplete infor-
mation. Second, they can flexibly update beliefs about events by inte-
grating prior knowledge with new evidence. Ultimately, Bayesian
models capture individual differences and complex behaviors, making
them suitable for modeling various cognitive processes such as learning
(Lake et al., 2015) and decision-making (Fleming & Daw, 2017). Addi-
tionally, they provide a natural framework for understanding the
decision-making processes and the underlying mechanisms of behavior.

Therefore, this study establishes a Bayesian model from the
perspective of perceptual decision-making to predict human trust
behavior. It first proposes methods for calculating confidence in oneself
and confidence in Al, using these as inputs. The model of human trust
behavior is constructed based on the expected utility theory (EUT). Ul-
timately, variational Bayesian inference is employed to estimate the
parameters within the model, with posterior predictive checks used to
assess the model’s fit. The technical flowchart of the method is shown in
Fig. 1.

2.1. Computation model of confidence in self and AI

This section presents computational models for self-confidence and
confidence in Al Prior research (Amini et al., 2022; Huang & Rust,
2022; Lai & Rau, 2021) has characterized human decision confidence as
Bayesian and substantiated this theory through experiments involving
binary decisions. In our study, we advance the application of Bayesian
confidence computation to the realm of multiple decision-making tasks.
The computation of confidence in Al similarly follows the Bayesian
probability framework. It is imperative to underscore a pivotal
assumption in our model, positing that all participants are rational
decision-makers. Table 1 describes the concepts involved in the model.
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Fig. 1. The technical flowchart of the method.
bl Table 1 show the terms and concepts necessary for developing the model
;aﬁ € : involved in th el for confidence in self.
efinitions involved in the model. . . . . -
The computational model of self-confidence is depicted in Fig. 2. In a
Number  Definition Description given task instance, participants generate an internal variable 5; based
1 Task difficulty ~ The task difficulty is denoted by s; € S = [s1,52, ..., 5n), on the task’s difficulty level s;, incorporating sensory noise o, where ;
where S represents the set of all task difficulties human follows a normal distribution with mean s; and variance o2, as shown
can perform. A larger s; means a more difficult task. below:
2 Sensory noise The variable o, represents individual differences in the elow:
ability to perceive evidence. A larger value indicates ~ 5
lower ability. Siry N(S“ 6’1) M
3 Int 1 The level of evid lit ived b ticipant: .. . . o
nterna e ever o] evidence qua ity percelvec by participants For the participants, s; is randomly sampled from a uniform distri-
variable is denoted by the internal variable. It is noteworthy . R X N R o
that as the value of §; increases, the perceived evidence bution, with the assumption that there exist n discrete possibilities, thus,
quality level decreases. Therefore, §; can be the probability of any given s; occurring is P(s;) = 1/n. Consequently,
interpreted as the participants’ perception of task employing Bayesian theorem, the probability of a participant encoun-
- difficulty. o tering the actual task difficulty s;, given their perceived task difficulty 5,
4 Decision The decisions made by participants and Al are
. can be formally expressed as:
represented by dj, and dy, respectively.
5 Al abili It is the probability, denoted by the conditional ~ ~
ty P Rk Y - P(5isi)P(si) P(sils:)
probability P(da; = 1|s;), that Al correctly P(si|si) = — = = 2)
accomplishes a task under the true task difficulty level ZsiESp (Silsi)P(s1) ZsiESP (ils:)
Si.
6 Sensory noise In this study, the Al ability is proposed to be modeled
of Al as a normal distribution with a mean of s; and a

variance of ¢%;, where ¢%; measures its level, with
higher values indicating lower Al ability.

2.1.1. Computation model of confidence in self

Human often possess the ability to assess the quality of their de-
cisions and report their confidence in their choices, a crucial assessment
for guiding human behavior (for instance, whether to undergo a sig-
nificant surgery) (Bach & Dolan, 2012). Mostly, human confidence
levels can be regarded as a function of the perceived quality of evidence
(or uncertainty). Simultaneously, individual differences in the ability to
perceive evidence exist, leading to significant variations in confidence
levels among different individuals at the same task difficulty level
(Fleming & Daw, 2017). For instance, in the same task, professionals
may demonstrate higher confidence levels than novices. Therefore, our
model needs to capture two features pertaining to confidence: (1) in-
dividuals’ self-confidence decreases with an increase in task difficulty,
ranging from 0 to 1. (2) There are variations in confidence levels among
individuals at the same task difficulty level. Definitions 1 through 4 in

~ _ 1 ~(si—s)®
Where P(si|si) = Vo 22|

To articulate when participants make correct decisions, we posit the
existence of a threshold for task difficulty, denoted as sy. According to
this hypothesis, when the perceived task difficulty §; falls below this
threshold (5; < sg), the participant is expected to make a correct (cor-
rect = 1) decision. Conversely, when §; > sy, the participant makes a
wrong (wrong = 0) decision. The confidence in a participant’s decision
can thus be conceptualized as the probability of making a correct deci-
sion given the perceived task difficulty s;, Egs. (3) and (4) are used to
respectively express the probabilities of the participant making a correct
decision or a wrong decision:

-~ Zs-<s P(§i|3i)
P(d, =15;) = ==~ ~ 5
(e %) > siesP(silsi) 3
P(d, = 0[5;) =1 —P(dy = 1[5)) @

The correctness of a participant’s decision can be articulated through
the following Eq. (5):
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Fig. 2. Computation model of confidence in self.

dn = 1ifP(dy = 1[5;) > P(d, = 0[))
d, = Ootherwise

(5)

Ultimately, the participant’s confidence in their decision can be
formulated as:

Cself = P(dh = l‘gl) (6)

2.1.2. Computation model of confidence in Al

As previously mentioned, the definition of trust encompasses two key
elements: (1) the trustor faces uncertainty, which may arise from the
task itself or from limitations in the trustor’s own knowledge, and (2) the
trustor’s expectation or confidence in the trustee’s ability to complete
the task. Therefore, in this study, the confidence in Al is operationally
defined as equivalent to human trust in Al, which refers to the expec-
tation that AI can make a correct decision given the perceived task
difficulty condition, denoted mathematically as the conditional proba-
bility P(dar = 1[5;). Unlike previous trust models, our research ac-
knowledges the influence of task difficulty on trust, a factor overlooked
in these earlier models that limited their generalizability. In practical
scenarios, Al ability may decrease for more difficult tasks, leading to a
corresponding decline in participants’ confidence in Al Thus, building
upon prior research on binary decision tasks (Bang et al., 2022), this
study presents a Bayesian framework for calculating confidence in Al
within the context of multiple decision-making tasks. Definition 5 in
Table 1 shows the term and concept of Al ability.

CD(S,h;Si,O'AI’,)

Al
ablilityf(du =115)+ i

P(Q K. .llllllll ."IIIIII---;

Task —»

Task
difficulty

The computational model of confidence in Al is illustrated in Fig. 3.
Confidence in Al should be dynamically changing as participants need to
estimate Al abilities through interaction with it. In the model for
computing self-confidence, oy, is used to represent the participants’
abilities to perceive evidence level. Similarly, assuming Al also possesses
sensory noise o, to measure its ability level (definition 6 in Table 1). For
instance, in real-world scenarios, the noise in AI's input data frequently
emanates from sensor noise. A greater o4, indicates less precise input
data and diminished Al ability. Thus, according to the definitions, par-
ticipants’ confidence in Al is determined by the following equation:

P(dAI = 1‘31) = Zsiesp(dAI = 1‘Si)P(Si|§i) (7)

Where the term P(s;[s;) reflects the task difficulty, while P(da; = 1|s;)
denotes the probability of AI making correct decisions under the real
task difficulty s;, thereby indicating Al ability, which can be computed
using Eq. (8).

—(z—s)°

1 Sth
ALt —®

Where ®(-) denotes the cumulative normal distribution function, 6z,
represents the participant’s estimation of the sensory noise of Al during
the ty, task.

Participants continuously update their estimates of AI's sensory
noise based on the feedback, constituting an ongoing learning process.

}dz = O (53 81, 0ary) (8

)
2051,

Rescorla-Wagner rule: Update continuously with feedback

Cuy =0t a(o, _O-Al,z—l)/D(gno-Al,/—l)

C,=Pd, =1|Q’)
=S P(d, =1]5)P(s, |5)

5;€8

Ea sy

' Hard
Sth ar

Probability
multiplication rule

Fig. 3. Computation model of confidence in AL
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In cognitive psychology, the Rescorla-Wagner rule is commonly
employed to describe the learning curves of humans or animals. In this
study, an approximation of the Rescorla-Wagner model is utilized to
depict this behavior, as expressed by equation (9).

OaLe = Oare—1 + a(ot—l - GAI‘I—I)/D (§i7 GAI.t—l) (C)]

Where a represents the learning rate, o,_; denotes whether AI's decision
was correct in the (t — 1), iteration (correct = 1, wrong = 0), and D(?i,
O'Al,t—l) signifies the following derivative. This derivative is introduced
for the ease of parameter estimation of a in Eq. (9).
dP(dy = 1[s;)

10
do-AI,t—l (10)

D(:S\iyUAI.t—l) =
More specifically, Eq. (9) simplifies Eq. (10), leading to the validity of
Eq. (11).

P(dar = 1[8;, 0a16-1 + 1) = P(dar = 1]Si, 6ar01) +@(0c — 6a1¢-1) an

Here, 1), = oa1¢ —0a1+—1, expressing the left-hand side of Eq. (11) linearly
with Eq. (10), we derive Eq. (12):

P(dAI = 1|§i7 UAI.t—l) +D(§i«, GAI.t—l)nt = P(dAI
= 1[5}, 0a1¢-1) + a(0c — Oare-1) 12)

Simplification of Eq. (12) yields Eq. (9). Eq. (13) is derived accordingly,
with the derivation process elaborated in Appendix A.

D(:S\i, UAI.t—l) = inésp(si‘:g\i) ‘% (]S(Sth; Siy UAI.t—l) 13)

Where ¢() denotes the probability density function of the standard
normal distribution.

2.2. Trust behavior predictions

How do participants make decisions based on their confidence in
themselves and in AI? EUT is a psychological framework commonly used
to describe decision-making behavior under uncertainty, wherein par-
ticipants evaluate decisions according to the probability of events and
their associated rewards. The expected utility for participants trusting
and distrusting Al is formulated as follows:

EUpyst = P(da; = 1/|\§i)~VMt — (1 —=P(dy = 1|§))~th
EUistrust = P(dh = 1‘Si)’vdistrust — (1 — P(dh = 1‘si))'vdistrust 14
AEU = EUyyse — EU gispruse

Where, Vi represents the reward when trusting Al, while Viigs de-
notes the reward when distrusting AI, AEU expected utility difference
between trusting and distrusting AL

To personalize the quantification of the probability of participants
choosing to trust Al, we employ the SoftMax function for modeling:

1

P(trust) = 15y (15)
We assume the existence of a trust threshold for participants, denoted as
“Threshold”, participants trust AI when their trust level surpasses this
threshold; conversely, when it falls below the threshold, participants do
distrust Al, this approach is similar to that used in literature (Edelson
et al., 2018). As expressed by the following equation:

1ifP(trsut) > Threshold

Ootherwise 16)

Ypredict = {
Where Yjqi: represents the model-predicted trust behavior of the par-
ticipants. And the true labels are denoted by Y (Trust = 1, Distrust = 0),

we aim to find the “Threshold” by maximizing the predictive accuracy,
that is:
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N .
Threshold = arg max de 13}0)

a7
7 N — liprredict =Y
Where N is the number of samples, w(j) = { Ootherwise
To ensure clarity and facilitate understanding, we have summarized
the key assumptions and hypotheses underlying our model at the end of

this section, as shown in Table 2.

2.3. Model fitting and evaluation

Combining Sections 2.1 and 2.2, it is evident that the parameters to
be estimated by the model are ® = {oy,a,f,,, }- We utilize variational
Bayesian inference algorithms from the Stan library in R to fit the
behavioral data of participants and estimate the parameters in the
model. The specifications used during the fitting process are outlined in
Table 3. To predict the behavior of each participant, we extract 500
samples from the posterior distribution of the fitted parameters using the
“generate quantities” module in Stan, followed by averaging these
samples over the 500 iterations. The model is executed four times with
different random seeds, and all outputs are averaged.

3. Experiment

Human factor studies are utilized to establish an experimental
framework that involves decision-making with Al assistance. Aligned
with the research questions addressed in this paper, the task should
exhibit the following characteristics:

(1) The task entails multiple decision-making, where participants
select the most likely correct choice from multiple options.

(2) Task difficulty should exhibit distinct differentiation.

(3) AI ability should diminish with escalating task difficulty, and
adjustments to AI ability should be feasible across various
experimental blocks.

3.1. Experiment task

This study developed a Multi-Ball Motion (MBM) task, as depicted in
Fig. 4, implemented using the Expyriment library in Python. In this task,
participants were tasked with selecting the ball that reached the center
point first among five balls moving towards it. The balls moved at a
constant speed, with random radii and initial positions assigned to each
ball. Task difficulty was assessed based on the time intervals between the
balls reaching the center point. For a trial, the time interval At; for each
ball reaching the center point was consistent, for example, the time in-
terval between the first ball reaching the center point and the second
ball is equal to the interval between the second ball and the third ball.
Where At; € T = {At1, Aty...Aty}, and n represents the number of At;.
Task difficulty was determined using the following equation:

At;
m=1-——r: 18
maxT
For computational convenience, we define

Table 2
Assumptions in our model.

Number  Assumption

1 Humans in our model are rational decision-makers.

2 There exists a threshold s such that when 5; < sz, humans were able to

make correct decisions.
3 Humans estimate the abilities of an Al by estimating its sensory noise car.
4 There exists a trust threshold, denoted as “Threshold”, humans trust Al

when their trust level surpasses this threshold
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Table 3

Specifications used in Stan fitting.
Specification Value
Maximum Iterations 5000
Number of Samples for MC Estimation 300
Iterations between Evaluation 100
Convergence Tolerance (Absolute) 0.0001

(32
0\ | + O
O ©
—~ T =% What is your decision?

(4] s

3s

Fig. 4. Multi-Ball Motion (MBM) task.

Click a button

s;=m;—1€8=1Is1,82,...,5,) € [—1,0] and set s, = 0. As our model
requires computing the cumulative distribution function of the normal
distribution, we linearize the task difficulty space in Stan, with a range
of [-1,1].

Furthermore, participants are required to collaborate with Al in Al-
assisted decision-making experiments to make optimal decisions. We
developed a program to simulate the recommendations provided by Al
The AI ability is measured by its decision accuracy under the current
task difficulty. Specifically, in each trial, Al perceives the distance and
velocity of the ball relative to the center point, then calculates the time
for the ball to reach the center. However, in real-world scenarios,
training data may be lacking for some more challenging tasks, leading to
a reduction in Al ability, with variations in ability observed among
different Al models (differences in accuracy when different Al complete
the same task). To simulate this characteristic, we introduce Gaussian
noise A to the perceived data of Al, controlling the magnitude of A to alter
the abilities of different Al. To be specific, when ) is fixed, higher task
difficulty increases the likelihood of errors made by Al. For different Al,
within the same task difficulty, larger A values correspond to higher
error probabilities.

3.2. Experiment design

Each participant is required to undergo two experiments. Experiment
1 involves self-decision-making, while Experiment 2 entails Al-assisted
decision-making and is divided into three blocks.

The experimental procedure for Experiment 1 is illustrated in Fig. 5.
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Participants are first presented with a MBM task stimulus, lasting for 3 s.
Subsequently, participants need to select the ball that reaches the center
point first. To prevent participants from forgetting the task, the screen
displays the relative positions of the balls at the last frame of the stim-
ulus when making decisions. Following this, a 7-point Likert scale is
provided for participants to indicate their subjective confidence, ranging
from 1 to 7 (discrete). It is worth noting that our confidence computation
model does not incorporate participants’ subjective confidence, as this
data is reserved for subsequent model validation. Finally, participants
receive feedback on their performance in the task. Participants are
required to complete 100 trials, with task difficulties uniformly sampled
from S = [s1,52, ..., 5], and the initial positions, colors, and radii of the
balls are randomly generated. The aim of this experiment is to estimate
participants’ sensory noise o, when performing the MBM task.

The experimental protocol for Experiment 2 is illustrated in Fig. 6. In
this experiment, participants are assigned the task of completing
decision-making tasks with Al assistance. During each trial, participants
initially undertake the same task as in Experiment 1. Following the
expression of their subjective confidence, an Al offers its recommenda-
tion. Consistent with Experiment 1, the screen presents the relative
positions of the balls at the final frame of the stimulus. Subsequently,
participants are prompted to provide their subjective confidence in the
Al with a 7-point Likert scale. Then, participants are asked to evaluate
their trust in the AL if they trust the Al, the ultimate decision is made by
the AI, otherwise by the participant. Ultimately, participants receive
corresponding scores. It is important to note that we want participants to
trust AI when it is correct and to distrust when it is not, rather than
making arbitrary choices. In other words, if participants believe that the
Al is capable of making the right decision and they can also do so, we
hope they will choose to trust Al. To encourage participants to put in the
effort to estimate the AI's abilities, we establish a reward-penalty
mechanism: Participants gain 30 points if they trust Al and it makes a
correct decision; otherwise, they lose 30 points. Conversely, if they
distrust Al and make the correct decision themselves, they earn 10
points; otherwise, they lose 10 points. Participants are informed that
their overall rewards depend on their cumulative scores, encouraging
them to strive for higher scores in each trial to minimize deductions and
prompting careful consideration of whether to trust the Al

Experiment 2 consisted of three blocks, each comprising 100 trials of
MBM tasks with Al-assisted decision-making. The overall accuracy of Al
in the three blocks were 90 %, 80 %, and 60 %, respectively. Participants
were informed that the Al is more prone to errors as tasks become more
challenging; however, the Al abilities varied across the three blocks.
Before commencing each block, participants were instructed to disre-
gard any biases from the preceding block regarding the Al and to assume
equal abilities between themselves and the AI at the first trial of the
block. The sequence of blocks was randomized for each participant, and
task difficulty was uniformly sampled from S = [s1,s2, ..., s,] for each
block. Additionally, a new random seed was employed for each block to
prevent participants from memorizing the correct answers based on
repeated random seeds.

o0

9+°

What is your decision?

BEBEnH

—

Congratulations!
This is your reward.

How confident are you
in your decision?

- g
N
W =
si=
51
o=
N =

3s Click a button

Click a score Click the button

Fig. 5. Self-decision experiment.
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+30 Trust Distrust S ———————
o 1 2 3 45 6 7
Next trial Click a button Click a button Click a score

Fig. 6. Al-assisted decision experiment.

3.3. Participants

Previous laboratory experiments on individual decision-making
models have typically involved 19 to 30 participants (Bang et al.,
2022; Lisi et al., 2021; Hoxha et al., 2023; Weindel et al., 2021). In our
experiment, twenty-one participants, including 11 males and 10 fe-
males, aged between 24 + 3, were recruited for and completed the
experiment. Before the experiment, all participants ensured they had
adequate rest and underwent a 10-minute pre-experiment session to
familiarize themselves with the experimental procedures. Informed
consent was obtained from all participants prior to the experiment, and
the study received approval from the Institutional Review Board of
Beihang University.

4. Results

4.1. The influence of task difficulty and Al ability on subjective self-
confidence and confidence in Al

Participants’ task is to select the ball most likely to reach the center
point first. They calculate the posterior probability of the perceived task
difficulty based on the true task difficulty, which also corresponds to
their decision confidence. This confidence is a mapping of decision ac-
curacy. To explore the correlation between participants’ subjective
confidence in themselves and decision accuracy, task difficulty, and
response time, we gathered data from Experiment 1 and performed
statistical analysis. The results indicated that as task difficulty increased,
participants’ subjective self-confidence decreased (Fig. 7(a), Spearman
rank correlation coefficient r = —0.730, P =2.832x 1073°), and
longer response times were associated with lower subjective self-
confidence (Fig. 7(b), r = —0.664, P =4.762x 10-28). Moreover,
participants’ decision accuracy exhibited a positive correlation with
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Fig. 7. (a) Correlation between subjective self-confidence and task difficulty (b) Correlation between response time and subjective self-confidence (c) Correlation
between decision accuracy and subjective self-confidence. (a), (b) and (c) divide each participant’s data into 10 bins based on the horizontal axis, with each data
point representing the average value of the participant’s data within that bin. Each participant’s data was divided into 10 bins based on the horizontal axis. All scatter
plots are derived from Experiment 1, with solid lines indicating the best linear fit regression line using least squares method, and shaded areas representing 95%
prediction intervals estimated based on new out-of-sample data points. Spearman rank correlation coefficients and p-values were calculated using non-

parametric methods.
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their subjective self-confidence (Fig. 7(c),r = 0.725, P =1.404 x
1073%). These findings are in line with previous research (Bang et al.,
2022; Lisi et al., 2021; Kepecs & Mainen, 2012), suggesting that higher
task difficulty leads to decreased decision confidence, longer response
times, and reduced decision accuracy.

Additionally, how does Al ability influence participants’ confidence
in themselves and in AI? We conducted a statistical analysis of data from
Dataset 2 (obtained in Experiment 2). Fig. 8(a) and (b) depict the
changes in participants’ subjective confidence in themselves and in Al
with increasing task difficulty. From Fig. 8, it can be observed that lower
levels of Al ability significantly decrease participants’ subjective confi-
dence in Al Specifically, Al ability does not affect participants’ self-
confidence (comparing Al correctness = 0.9 with Al correctness = 0.6,
t-test, P = 0.49), while poorer Al ability significantly reduces human
confidence in Al (comparing Al correctness = 0.9 with Al correctness =
0.6, t-test, P < 0.001). However, when Al ability is high (AI correctness
= 0.9) or medium (AI correctness = 0.8), there is no significant impact
on participants’ self-confidence (t-test, P = 0.88) or in Al (t-test, P =
0.26).

Additionally, our experimental data indicate that there is no signif-
icant difference in confidence in AI between male and female partici-
pants, as shown in Fig. 9.

4.2. Model captures the dynamic changes in participants’ self-confidence
and confidence in Al

Model parameters were estimated from experimental data to assess
the dynamic changes in participants’ confidence in themselves and in Al
during Al-assisted decision-making. Specifically, sensory noise o} of
each participant was estimated from Dataset 1, while the learning rate a,
B, and p; were estimated from Dataset 2, as shown in Table 4. In Stan
(generated quantities module), 500 samples were drawn from the pos-
terior distributions of the fitted parameters, and the trial-by-trial
average of each sample was computed for posterior predictive checks
to evaluate the model’s fit to new data. Fig. 10(a) and (b) illustrate
participants’ confidence in themselves and in AI during Experiment 2.
The results indicate that there was no significant change in participants’
self-confidence across different levels of AI ability (Fig. 10(a),
comparing Al correctness = 0.9 with Al correctness = 0.6, t-test, P =
0.64). However, participants’ confidence in Al significantly decreased
when AI ability was lower (Fig. 10(b), comparing AI correctness = 0.9
with Al correctness = 0.6, t-test, P < 0.001). These findings align with

~@- Al correctness=0.9
—k— Al correctness=0.8
—A— Al correctness=0.6

0.5

Confidence in self(Subject)

0.4
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the results of participants’ subjective confidence, despite our model not
incorporating subjective confidence as input, thus validating the
model’s validity.

Additionally, Fig. 10(c) depicts the ongoing adjustment of partici-
pants’ estimations of Al sensory noise during their interactions with Al
Since o4 is updated based on an approximation of the Rescorla-Wagner
model, more frequent errors made by low-ability Al result in a higher
estimate of 64;. The model adeptly captures this pattern, as participants’
estimations of 647 for low-ability Al significantly surpass those for high-
ability Al as trials progress (t test, P < 0.001).

Therefore, participants’ self-confidence correlates with task diffi-
culty but not with Al ability, whereas confidence in Al is affected by both
Al ability and task difficulty. The model effectively captures the dynamic
fluctuations in participants’ self-confidence and their confidence in Al
during interactions.

4.3. Model personalized predictions of human trust behavior towards Al
in multiple decision-making

Fig. 11(a) illustrates the relationship between AEU and the proba-
bility of participants trusting AI (P(trust)), showing an increase in P
(trust) as AEU increases. A plausible interpretation is that when par-
ticipants perceive a higher (lower) difference in expected utility be-
tween trusting and distrusting Al, they are more likely to achieve higher
reward by trusting (distrusting) Al. Hence, we postulate the presence of
an individual trust threshold (Threshold) for each participant, repre-
sented as a vertical line in Fig. 11(b). Participants opt to trust Al if P
(trust) surpasses the Threshold; otherwise, they opt distrust. A higher
Threshold suggests a more conservative approach among participants,
indicating a tendency to trust only when they perceive a significant
potential expected utility gain. The optimal threshold is determined by
maximizing classification accuracy (refer to equation (17). Fig. 11(c)
illustrates participant 7's Threshold alongside their observed trust
behavior.

The personalized model accurately predicted the trust behavior of
each participant and identified their trust threshold (Threshold), as
depicted in Table 5. The prediction accuracy for all participants excee-
ded 97 %. Fig. 11(d) illustrates the confusion matrix of the model’s
prediction for the trust behavior of participant 7.

—@- Al correctness=0.9
—k— Al correctness=0.8
—A— Al correctness=0.6

0.0 0.2 0.4 0.6 0.8 1.0

(a)

(b)

Fig. 8. (a) The relationship between task difficulty and subjective self-confidence under Al-assisted decision-making by three different Al abilities indicates that Al
ability has no significant effect on subjective confidence. (b) The relationship between task difficulty and participants’ subjective confidence in AI under Al-assisted
decision-making by three different Al capabilities shows that as task difficulty increases, participants’ confidence in Al decreases. Poorer Al capability significantly
reduces participants’ confidence in Al (a) and (b) are from Dataset 2. Each block’s 100 trials were divided into 10 bins based on task difficulty. Mean and standard
deviation were computed for all participants within each bin. Each scatter represents participants’ mean confidence within the bin, connected by a line. Significance
analysis between block data groups was done using t-tests, with P-values calculated.
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Table 4
Personalized parameters of the model.
Participant 1 2 3 4 5 6 7 8 9 10 11
on 0.4184 0.7415 0.2093 0.3478 0.4029 0.7373 1.0793 0.3732 0.4056 0.4645 0.4208
a 0.0339 0.0341 0.0414 0.0382 0.0328 0.0299 0.0379 0.0320 0.0322 0.0323 0.0354
Po 0.3179 1.6386 —0.2310 —0.0940 1.2012 0.0843 0.8217 —0.3562 0.6414 0.2617 0.6429
'R 0.1853 0.1726 0.1915 0.1746 0.1790 0.1762 1.1774 0.1838 0.1764 0.1778 0.1812
Participant 12 13 14 15 16 17 18 19 20 21
on 0.2528 0.2988 0.4737 0.4929 0.2363 0.5521 0.4167 0.2169 0.4269 0.2620
a 0.0361 0.0350 0.0339 0.0319 0.0386 0.0320 0.0286 0.0303 0.0314 0.0330
Po 0.0310 0.6613 1.7312 1.3941 0.6721 2.3230 0.2674 0.4006 0.0998 0.4616
IR 0.1927 0.1830 0.1734 0.1786 0.1783 0.1773 0.1763 0.1888 0.1909 1.1831
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Fig. 10. (a)Relationship between task difficulty and participant confidence (model-derived) under Al-assisted decision-making with three levels of Al ability (b)
Relationship between task difficulty and participant confidence in AI (model-derived) under Al-assisted decision-making with three levels of Al ability; (c) Estimation
of participants’ sensory noise o4; for Al under Al-assisted decision-making with three levels of Al ability. The plotting method for all figures is identical to Fig. 8.

5. Discussion and conclusion

We propose a method for predicting human trust behavior towards
Al based on human self-confidence and confidence in Al. This work lays
the foundation for subsequent trust calibration to enhance the safety
level of human-AlI systems. We consider a scenario of multiple decision-
making with Al assistance, where participants are tasked with selecting
the correct option from multiple choices. The difficulty varies across
tasks. Participants collaborate with Als of different abilities to make the
final decision and achieve the highest reward. Such scenarios apply to
many decision-making environments. For example, in Al-assisted clin-
ical diagnosis, doctors must balance their trust in AI with their own

expertise, much like participants in our MBM experiment weigh their
own decisions against Al outputs. Additional efforts are required to
quantify clinical diagnosis task difficulty on a scale from 0 to 1. This
allows sequential decision-making experiments to fit the necessary
model parameters, thereby predicting trust behaviors.

Furthermore, compared to existing models (Hu et al., 2018; Azevedo-
Sa et al., 2021; Li et al., 2023; Chong et al., 2022; Williams et al., 2023),
the current approach offers several key advantages. (1) Our modeling
approach explores the cognitive process of trust behavior formation:
individuals often perceive the difficulty of a task when making decisions
and report confidence in their decisions. In scenarios involving Al-
assisted decision-making, individuals also develop confidence in AI's
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Fig. 11. (a) The relationship between AEU and P(trust), divided into 30 bins based on AEU, where the mean and 95 % confidence interval (CI) of P(trust) for all
participants in each bin were calculated and fitted using logistic regression. (b) Explanation of participants’ trust threshold, where participants trust AI when P(trust)
> Threshold; each participant has a different Threshold. (c) Interpretation of the relationship between participant 7's trust threshold prediction and trust behavior.

(d) Confusion matrix of the model’s prediction of participant 7's trust behavior.

Table 5

The accuracy of the model in predicting participants’ trust behavior.
Participant 1 2 3 4 5 6 7 8 9 10 11
Accuracy 0.963 1.0 0.943 0.923 0.98 0.997 0.977 0.947 0.973 0.973 0.973
Threshold 0.619 0.644 0.515 0.583 0.731 0.584 0.663 0.588 0.672 0.649 0.707
Participant 12 13 14 15 16 17 18 19 20 21
Accuracy 0.953 0.967 1.0 1.0 0.983 1.0 0.987 0.98 0.997 0.973
Threshold 0.555 0.672 0.775 0.683 0.639 0.817 0.662 0.619 0.669 0.599

decisions. Both forms of confidence play a role in determining trust
behavior in AI. We establish a cognitive model of this process from
perception to decision-making. In particular, although the dynamic
evolution of confidence and confidence in AI during human interaction
with Al is studied in literature (Chong et al., 2022), the influence of task
difficulty is ignored. (2) In modeling trust (equivalent to confidence in
Al in this study), we simultaneously consider task difficulty and AI
ability. This is crucial because individuals have higher confidence in Al
when they know that the Al ability can (or cannot) address the current
task difficulty (Azevedo-Sa et al., 2021). (3) The model offers a
personalized approach to predicting human trust behavior while
avoiding the reliance on subjective self-reported data (Lisi et al., 2021).
(While we collected subjective confidence data in our experiment to
validate our model, the model calculations did not utilize this data).

In summary, the experimental results demonstrate that our model
effectively explains both participants’ subjective data and behavioral
data. Initially, we conducted statistical analyses on participants’

10

subjective data and behavioral data, revealing a negative correlation
between participants’ subjective self-confidence and task difficulty
(Fig. 7(a)), as well as response time (Fig. 7(b)), and a positive correlation
with decision accuracy (Fig. 7(c)), consistent with prior research (Bang
et al., 2022; Lisi et al., 2021). That is, as tasks become more difficult,
participants take longer to make decisions, exhibit lower confidence,
and achieve lower accuracy. Additionally, low-ability Al significantly
decreases participants’ subjective confidence in AI (Fig. 8(b)), while
having no significant impact on participants’ subjective self-confidence
(Fig. 8(a)). These two types of confidence, as computed by our model,
capture this characteristic (Fig. 10(a) and (b)). In other words, partici-
pants generate a perceived difficulty with sensory noise based on the
true task difficulty, and calculate the posterior distribution of task dif-
ficulty using Bayesian rules to form their self-confidence (Meyniel et al.,
2015). Therefore, self-confidence is a function of task difficulty and
sensory noise, independent of Al ability. Meanwhile, participants’ con-
fidence in Al is influenced by both task difficulty and AI ability. The
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model assumes the existence of a noise parameter o4; for Al (where
larger o4, indicates lower AI ability), and participants continuously
update their estimate of o4y during the interaction with Al. The model
captures the dynamic changes in 64; throughout the experiment (Fig. 10
(o).

Ultimately, our model has obtained satisfactory prediction results.
We estimated parameters for each participant ©® = {op,a,,,5; }, which
were then used to generate the participants’ confidence in themselves
and in AI during tasks. We calculated the expected utility difference
between trusting and distrusting Al for each participant and subse-
quently computed the probability of participants trusting AI using
equation (15). Literature (Edelson et al., 2018) introduces the concept of
a “deferral threshold” in a computational model of leadership decision-
making. In that model, when participants’ confidence in their own de-
cisions falls within the threshold, they tend to hesitate or defer. How-
ever, beyond this threshold, participants are more likely to make
leadership decisions themselves. Inspired by that study, we hypothesize
that each participant has a trust threshold, above which they choose to
trust Al. By maximizing the accuracy of the predicted outcomes, we
identified the trust threshold for each participant, achieving an average
prediction accuracy of 97.6 % across all participants.

This work also has some limitations, providing opportunities for
future research. Firstly, it is assumed in the study that participants are
rational decision-makers, capable of making decisions by maximizing
expected utility, without considering non-rational factors such as risk
aversion in positive prospects and risk-seeking tendencies in negative
prospects. Therefore, potential research directions could involve

Appendix A

The derivation of Eq. (10) is presented below:
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investigating human trust decision-making behavior using prospect
theory. Secondly, the concept of explainable Al has recently been pro-
posed to enhance user trust in Al. However, the cognitive mechanisms
through which AI explainability influences users’ perception of Al ca-
pabilities and subsequently affects their trust behavior remain unclear.
Finally, human decision-making is influenced by cognitive biases,
emotional factors, and individual differences, such as personality traits.
How these factors affect trust behavior remains an area for further
research.
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