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A B S T R A C T   

Aviation safety is an important part of safety science and pilot behavior is a major factor in flight safety analysis. 
However, when analyzing unsafe events, such as runway overrun, majority of studies do not quantify the impact 
of pilot behavior on flight safety. The aim of this paper is to discover the pilot behavioral characteristics from 
actual flight data and apply them to construct a takeoff runway overrun risk assessment model. Concretely, the 
time series clustering is used to mine the pilot behavioral characteristics based on pilot operating data. Then, the 
similarity theory is introduced to construct a data-based man–machine-environment system expression including 
pilot behavioral characteristics to get the takeoff distance for the runway overrun risk assessment. The results of 
case study showed that 3 types of pilot behavioral characteristics were found in selected fleet, which mainly 
differ in the pilot reaction time after VR and operation input speed of the control column, and RO is more likely to 
happen under the combined influence of longer reaction time and slower operation input speed. The proposed 
method makes full use of real flight data from airlines under different conditions incorporating pilot behavior 
characteristics and can inform risk analysis of other unsafe events such as hard landing, tail strike, etc.    

Abbreviations 
A Aircraft performance parameters [\] 
ALT The altitude of an aircraft relative to the ground [m] 
B Pilot behavior parameters [\] 
B Boundary conditions [\] 
CAAC Civil Aviation Administration of China [\] 
CCP Control column position [deg] 
CCP_TS Time series of control column position [\] 
CD Drag coefficient [\] 
CL Lift coefficient [\] 
D Reference datasets 
E Environment parameters [\] 
Flap Flaps configuration [\] 
F(X) Takeoff system expression, F(X)= {f1, f2,…, fi } [\] 
g Gravity acceleration [m/s2] 
G Geometric conditions [\] 
IATA International Air Transport Association [\] 
I Initial conditions [\] 
k k-SC clustering number [\] 
K Dimensional conversion factor [\] 

m Gross weight of aircraft [kg] 
M Media conditions [\] 
N The compressor speed ratio of aircraft engine [\] 
O Pilot behavioral characteristics [\] 
P Thrust [N] 
PS Static pressure [Pa] 
QAR Quick Access Recorder [\] 
RO Runway overrun [\] 
S Takeoff distance [m] 
SW Wing reference area [m2] 
SOP Standard Operating Procedure [\] 
TS Static temperature [◦C] 
t Time of operations [s] 
VT The speed of aircraft relative to the air [m/s] 
VR The VT when aircraft starts rotation [m/s] 
VLOF The VT when aircraft lift-off [m/s] 
V2 The VT when aircraft’s ALT over 10.70 m [m/s] 
VG The speed of aircraft relative to the ground [m/s] 
VW Tailwind speed [m/s] 
ρ Atmospheric density [Kg/m3] 
μ Runway friction coefficient [\] 
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φ Runway inclination (gradient) [deg] 
X Dimensionless index of F(X), X={x1, x2,…, xi } [\] 

1. Introduction 

Air transport has contributed to the growth of the social, political, 
and economic globalization process during the last decade by being one 
of the fastest and safest methods of long-distance travel. The commercial 
aviation sector deployed 37 million planes every year and carried 4 
billion passengers annually before the current coronavirus pandemic hit, 
and the number could reach 2019 levels as early as 2024 (Madeira et al., 
2021). The fast development has brought safety concerns into aircraft 
industry, and the increase in workload is not accompanied by a pro
portional gain in personnel. Therefore, employees are often subjected to 
an enormous quantity of rigorous requests, under pressured time frames, 
and complex environments. Moreover, compounded factors, such as 
career uncertainty and frequent demand for overtime, have contributed 
to an increasing risk of personnel capabilities detriment and, hence, 
mistakes in safety sensitive tasks (Santos and Melicio, 2019). These 
circumstances have been further aggravated by the effects of the current 
pandemic, where companies had to forgo large portions of their em
ployees in order to reduce cash burns and regain profit margins, while 
maintaining contractual obligations and preparing for a resurgence of 
traffic demand. In the current context, therefore, the aviation industry 
needs to pay more attention to the balance between profit and safety by 
taking the beforementioned factors into account, especially the human 
factors. Human factors play a critical role in flight safety system 
(Dolores, 2018; Reason, 1990). Some researchers have suggested that 
human pilot error has led to over 60 % of flight accidents (Jarvis and 
Harris, 2010; Shappell et al., 2017). The statistics of the International 
Air Transport Association (IATA) from 2016 to 2020 indicated that flight 
crew factors caused about 46 % of aircraft accidents (IATA, 2021). In 
China, no fatal accidents happened between 2011 and 2020 while 67.90 
% of incidents were derived from the flight crew (CAAC, 2021). 

1.1. Human factors and pilot behavioral characteristics 

A view expressed widely in the safety literature is that human factors 
have not always had such a primary place in accident causation but 
emerged as a residual problem as aircraft became more reliable (Hobbs, 
2004). Human factors have always taken the lead as the main latent 
cause of accidents, and between 70 % and 80 % of all aviation accidents 
have a human factor somewhere in the chain of causation, according to 
human factors specialists and aviation researchers (De Sant and De Hilal, 
2021). Studies have found pressure, fatigue, miscommunication, and a 
lack of technical knowledge on crucial personnel such as human pilots, 
maintenance workers, and air traffic controllers to be some of the main 
probable causes for aviation mishaps (Jensen, 2017; Lee and Kim, 2018; 
Lee and Kim, 2018; Thorpe et al., 2022; Volz et al., 2016; Yazgan and 
Kavsaoğlu, 2017). Therefore, human factors should be examined in 
order to minimize aviation mishaps, and one access is to understand the 
pilot behavior (Dekker, 2001; Xu et al., 2022). Pilot Behavior involves 
factors which affect personal performance but also affect interaction 
with others, which often defines overall safety performance. Since 
several specific pilot behaviors have been considered significant 
contributing factors to many accidents, it is critical to identify the ele
ments that may enhance these pilot performance regarding safety 
behavior (Chen and Chen, 2014). 

The concept of pilot behavioral characteristics (O), which reflects the 
representative maneuvers embedded in their operational inputs to the 
aircraft that have an impact on the aircraft takeoff system, firstly 
appeared in the literature (Wang et al., 2013). O is primarily influenced 
by flight training and pilot behavioral style (Sagberg et al., 2015), so 
there are differences in O between different airlines even different fleets. 
From a system safety point of view, the operational risks associated with 
O are expected to be acceptable, but there are undeniably that O in 

practice might pose risks to flight operations and cause incidences even 
accidents (Hong et al., 2011; Wang et al., 2018; Zhu and Tong, 2021). 
For instance, reference (Wang et al., 2018) has shown that O can have an 
influence on aircraft long landing as well as hard landing. Therefore, 
with the gradual increase in equipment reliability, it is important to pay 
more attention to the influence of O for continuously improving flight 
safety. 

Theoretically, the thorough pilot behavior model can be developed 
by a detailed human-pilot model included the control-theoretic model, 
neuromuscular system, and sensory system (Lone and Cooke, 2014; Xu 
et al., 2017). Nevertheless, it is quite time-consuming and costly for 
normal airlines to do that. Noteworthily, all commercial airplanes in 
China are required to install Quick Access Recorders (QAR) or similar 
flight data recording equipment under the Flight Operations Quality 
Assurance (FOQA) program of the Civil Aviation Administration of 
China (CAAC). QAR can record pilot operating data like control column 
position, throttle resolver angle, flap handle position, and so on, which 
means it is feasible for us to discover O based on QAR (Sun and Xiao, 
2012). Further, by combining aircraft performance data and environ
mental data of QAR, a human–machine-environment based approach to 
system safety analysis can be developed to quantify the impact of O on 
flight safety. 

1.2. Runway overrun risk assessment 

Runway overrun (RO) is a type of runway excursions considered by 
the European Aviation Safety Agency (EASA, 2016a, b), which occurs 
when an aircraft departs the end of the runway surface during a takeoff 
or a landing and is the most severe among runway excursions (Gan
dhewar and Sonkusare, 2014). Reference (Bateman, 2008) described 
that the growth of surrounding buildings, the advent of the turbojet 
aircraft, and the large increase in air traffic were not totally anticipated 
before, with all of these contributing to an escalation in overrun and 
their impact. Due to these reasons, regulatory authorities and the avia
tion industry continue to investigate ways to improve runway safety 
(IATA, 2011a, b; ICAO, 2013). It would take more sophisticated tools 
and methods to achieve breakthrough improvements in commercial 
aviation, however, since commercial aviation operates at such a high 
level of safety (Ayres, 2011). Currently, research focuses on assessing RO 
risk from accident statistics and aircraft performance analysis. 

Based on RO statistics, research in the literature has examined var
iables associated with RO and their categories of severity (Natalia and 
Salvatore, 2020), probability (Galagedera et al., 2019; Szabo et al., 
2017) and operational risk (Galagedera et al., 2020). Specifically, a 
variety of approaches have been suggested to analyze risks in RO, such 
as Bayesian-network based (Calle-Alonso et al., 2019), multiple Logistic 
regression method (Wei et al., 2018), and the frequency model (Moretti 
et al., 2017b, c; Moretti et al., 2018; Yousefi et al., 2020) which has been 
applied to quantitative risk assessment of RO in some international 
airports (Di Mascio et al., 2020; Moretti et al., 2017a). Some studies have 
already shown that the most frequent causes for RO are inappropriate 
pilot performance and aircraft condition. For example, the literature 
(Chang et al., 2016) delivered an empirical study based on experts’ 
evaluation suggests that the most important dimension is the pilot’s core 
ability. Similarly, the report of Netherlands Aerospace Centre shows that 
the “Crew performance inaccurate” and the “Inaccurate information to 
crew” show a relatively high frequency of RO occurrence (NLR, 2015). 
The literature (Moretti et al., 2017b; Moretti et al., 2018) based on 
statistical analysis concludes that pilot performance is a significant 
cause of RO, mainly in terms of misunderstanding, inattention, inexpe
rience and wrong maneuver. The Skybrary knowledgebase points to the 
inappropriate aircraft handling technique as a cause of RO (Skybrary, 
2022). While the current study has found that pilot behavior does have 
an impact on RO risk based on accident statistics, there has been no 
further analysis of specific pilot behavior characteristics and quantifi
cation of their impact on RO risk. 
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Calculation or prediction of operating distances based on aircraft 
performance analysis is another common access of assessing RO risk. An 
accurate expression of the dynamics of takeoff system is an important 
basis for calculating operating distances. In previous studies, aircraft 
performance analysis based on Newton’s Laws of Motion is an important 
approach to analyze aircraft operation, in which the aircraft takeoff 
/landing distance is an important parameter as the result of performance 
analysis to evaluate the risk of RO (Cai et al., 2013; Chen and Xiang, 
2013; Song et al., 2007). Meanwhile, considering the uncertainties in 
actual aircraft operations and the use of vast amounts of flight data, 
some researches evaluate the aircraft takeoff/landing distance based on 
artificial intelligence, such as neural network and support vector ma
chine regression (Qian et al., 2017; Ruiying et al., 2017). However, 
nearly all the above studies regarded human pilot as “standard pilots”, 
which means they assumed that the pilots are all perfect followers of the 
standard operating procedure (SOP) while ignoring the O of them. Be
sides, the artificial intelligence models may have higher accuracy while 
lacking interpretation and generalization to some extent. In general, 
airlines require a risk analysis model that clearly reflects the physical 
mechanism of the unsafety event and can also be widely used by 
leveraging existing real flight data. 

1.3. Aim and structure of study 

The objective of this study is to examine the effects of O on the risk of 
RO based on real flight data. As shown in Fig. 1, we will mine O based on 
the real pilot operational parameters in QAR and calculate the key 
parameter S of takeoff RO risk evaluation by describing the man
–machine-environment system of the takeoff process. The study will 
help airlines to pay more attention to the potential risk of RO from pilot 
behavior and to be able to make full use of actual flight data to make a 
more accurate assessment to reduce the likelihood of high-risk O causing 
RO. Our research is divided into the following specific sections. Section 
2 implements the construction of the method, including the selection of 
the QAR parameters, the analysis method of O and the parameters 
calculation method of RO risk assessment. Section 3 presents the case 

study followed by the discussions in Section 4 and the conclusions in 
Section 5. 

2. Method 

This section presents the methodological approach to studying the 
impact of O on RO. According to Fig. 1, Section 2.2 gives the analysis of 
O based on time series clustering algorithm of pilot operating data, and 
the result O is used as a parameter in the construction of F(X) based on 
similarity theory in section 2.3. Then, the method are applied to RO risk 
evaluation by calculating S of F(X) in section 2.4. Prior to above anal
ysis, in section 2.1, the main system parameters B,A,E used in this study 
are selected based on aircraft takeoff dynamics analysis and pilot 
operating behavior analysis. 

2.1. Model parameters selection 

QAR is currently capable of recording hundreds or even thousands of 
flight parameters, each of which will affect the aircraft operation. 
Therefore, flight parameters should be selected to highlight the main 
features of RO in order to improve model interpretation and reduce the 
cost of the study. In current study, the flight data of takeoff is selected to 
analyze O and describe the aircraft takeoff system F(X), and the risk of 
RO is assessed by calculating S in F(X). Based on the Newton’s Laws of 
Motion, the aircraft takeoff with all engines is shown in Fig. 2 and the 
calculation method of S is shown in formula (1). 

S =

∫ VR

VW

m(V − VW)dV

[P − (μ + φ)mg −
1
2
(CD − μCL)ρV2SW]

+K
(

VR + VLOF

2
− VW

)

(tVR∼V2 − tVLOF∼V2 ) + K
(

VLOF + V2

2
− VW

)

tVLOF∼V2

(1) 

It is based on formula (1) that existing studies have investigated S of 
aircraft by analyzing runway conditions, engine thrust, wind speed and 
other perspectives under the assumption of standard operating 

Fig. 1. Overview of the study.  

Fig. 2. Takeoff with all engines operating.  
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procedures (SOP). However, as discussed in introduction, SOP ignores 
the effect of O on S. For instance, by maneuvering devices like control 
column and thrust lever, O can affect VR, VLOF and V2, and the variation 
in engine thrust, CD and CL, operation interval, altitude per unit time, 
etc. If it’s not able to identify well the O that makes S increase, the risk 
RO could rise. Therefore, an analysis of the pilot takeoff maneuvers is 
required. 

As shown in Fig. 2, during takeoff, the pilot accelerates the aircraft by 
setting required thrust and keeps the control column in Down position 
which allows the aircraft to accelerate steadily on the runway. At the 

Rotation point, pilot pulls the control column to make the lift of aircraft 
greater than gravity and bring the aircraft safely off the ground at the 
Lift off, the whole takeoff process ends when the aircraft above 10.7 m. It 
is concluded that the pilot operation of control column dominates the 
takeoff. Besides, the pilot pushes the thrust lever within almost same 
speed in current QAR sampling frequency in China, so the thrust lever is 
out of consideration. Other behavioral parameters are also excluded for 
the low using frequency in takeoff, such as pedal angle and control 
wheel angle. Finally, the control column position (CCP) is chosen to 
mine from QAR data to mine O. During takeoff, the O is affected by 
many factors such as external atmospheric environments, aircraft type, 
pilot basic capabilities and skills, etc. Regardless of how these factors 
change, their effects ultimately are reflected in the change of aircraft 
kinematic parameters. Therefore, according to Fig. 2 and formula (1), 
the flight parameters of QAR in takeoff RO risk analysis are selected 
from three aspects: pilot behavior (B), aircraft performance (A), and 
external environment (E). Finally, 18 flight parameter variables are 
chosen from QAR and calculated as shown in Table 1. 

2.2. Pilot behavioral characteristics mining 

In practice, pilot operates the control column at different times ac
cording to the feedback from the instruments, so the pilot behavior is 
time-sensitive and the operation input speed may vary from pilot to 
pilot. Therefore, the time series of CCP (CCP_TS) is further used to 
discover O and the k-SC time series clustering algorithm is introduced. 
By analyzing the shape of the cluster centers, time series clustering can 
reveal patterns of change in the time-series data at different moments in 
time. k-SC is a better time series clustering algorithm because its shape 
similarity measurement is more efficient and robust compared with 
other algorithms based on Euclidean Distance and Dynamic Time 
Warping(Yang and Leskovec, 2011). 

Firstly, the CCP_TS when pilot manipulate the control column at the 
Rotation point is obtained and normalized, and the length of it is 10 s to 
guarantee the takeoff being finished and the requirement of k-SC for the 
same length to cluster. The optimal clustering number k is determined 
by loop based on the Elbow rule, which means the best k is chosen if the 
corresponding value of the loss function gets biggest change (Thorndike, 
1953). Finally, the S of clustering results are analyzed by difference 
analysis to verify whether O has impacts on S. The whole process to get 
O is shown in Fig. 3. 

2.3. The expression of F(X) based on similarity theory 

With the consideration of O, the RO risk assessment depends on an 
accurate description of the F(X) to get S. However, as a classical method, 
formula (1) does not consider the influence of O on A, such asP,VR,VLOF,

V2, t,CL,CD, which prevents formula (1) from giving a more accurate S. 
Therefore, in order to make F(X) comprehensively reflect the influence 
of O, A, E, and can be well generalized to unknow takeoff, the similarity 
theory based on actual flight data is introduced, which can reflect the 
features of RO, and be widely applied for airlines under different oper
ation conditions. As an important scientific research method, similarity 
theory has been widely used in engineering field, which gives a unified 
expression of the system that meet same physical laws in nature. 
Therefore, similarity theory can make people understand the essential 
features between similar systems and guide people to carry out 

Table 1 
Selection of parameters.  

Classification Symbol Description 

Pilot Behavior(B) CCP The angle of control column deviated from original 
point 

Aircraft 
Performance(A) 

m Gross weight of aircraft  

VG The speed of aircraft relative to the ground  
ALT The altitude of an aircraft relative to the ground  
VA The speed of aircraft indicated by instrument  
VT The speed of aircraft relative to the air  
VR The VT when aircraft starts rotation  
VLOF The VT when aircraft lift-off  
V2 The VT when aircraft’s ALT over 10.70 m  
N The compressor speed ratio of aircraft engine  
P The thrust of aircraft, which is calculated based on 

N  
S The horizontal distance from the point where 

VG = 0 to ALT = 10.7 m, which is the integral of 
VG against time  

SW Wing reference area  
FLAP The setting position of flap handle 

Environment(E) VW The wind speed along the longitudinal axis of the 
aircraft  

PS The static pressure of air  
TS The static temperature of air  
ρ The density of air, calculated byρ =

PS

RTS
,where R 

= 287.15 J/(kg⋅k)

Fig. 3. Pilot behavioral characteristics mining.  

Table 2 
Parameters’ dimension expressions based on ‘LMT’ dimension system.  

Parameter m g V2 S P VW ρ SW 

Unit kg m⋅s - 2 m⋅s - 1 m kg⋅m⋅s - 2 m⋅s - 1 kg⋅m - 3 m2 

M 1 1 0 0 1 0 1 0 
L 0 0 1 1 1 1 − 3 2 
T 0 − 2 − 1 0 − 2 − 1 0 0  
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experiments scientifically and effectively (Anderson, 2004; Pucciarelli 
et al., 2020; Xiao et al., 2019). Similarity theory consists mainly of the 
dimensional analysis and the necessary conditions which make system 
processes to be similar (Sedov and Volkovets, 2018). Dimensional 
analysis involves the construction of dimensionless index X using system 

parameters and the construction of F(X) based on the Buckingham Π 
Theorem. Similarity conditions include geometric conditions (G), media 
conditions (M), initial conditions (I) and boundary conditions (B). When 
the similarity conditions are equal, the systems are regarded as similar 
systems so can be analyzed by same F(X). 

Fig. 4. Flowchart of the method.  

Fig. 5. The relationship between k and the value of loss function.  

Fig. 6. Cluster centroid of CCP_TS.  
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Hence, in this study, the F(X) is quantified based on dimensional 
analysis of flight data to build a dimensionless F(X). Then, based on the 
similarity conditions, all takeoffs are regarded as similar systems, 
including those already recorded by flight data and those planned in 
future. In this regard, O is innovatively considered as one of the simi
larity conditions. Finally, airlines can evaluate the risk of RO by calcu
lating S in F(X), which well considers the effects of the impacts of O as 
well as fit the requirements of accuracy and generalization. The specific 
steps are detailed below. 

1) Derivation of X based on dimensional analysis. The dimensional 
analysis g(t) uses fundamental dimension of the takeoff system to 
represent the other variables and gives dimensionless indicators X. Ac
cording the formula (1) and Table 1, X is shown in formula (2): 

X = g(O,A,E) = g(m, g,V2,P, SW,VW, ρ,O, μ,φ) (2) 

In formula (2), length(L), mass(M), and time(T) are taken as basic 
dimensions, and other parameters’ dimensions expressed by the ‘LMT’ 

dimension system are shown in Table 2. 
Select dimension independent m, g, V2 as the basic variables. Five xi 

based on dimensional analysis are shown in equations (3) ~ (7): 

x1 = Sma1 gb1 Vc1
2 (3)  

x2 = Pma3 gb3 Vc3
2 (4)  

x3 = VWma2 gb2 Vc2
2 (5)  

x4 = ρma4 gb4 Vc4
2 (6)  

x5 = SWma5 gb5 Vc5
2 (7) 

Take formula (3) as an example, from the Table 2 we can get formula 
(8): 

M0⋅L0⋅T0 = L⋅(M)
a1
(
L⋅T− 2)b1 ( L⋅T− 1)c1 (8) 

According to the dimensional homogeneous theorem, we have for
mula (9): 
⎧
⎨

⎩

a1 = 0
1 + b1 + c1 = 0
− 2b1 − c1 = 0

(9) 

Solved formula (9) we geta1 = 0,b1 = 1,c1 = − 2. Similarly, we can 
solve other formulas from (4) ~ (7). Five similar criterions are shown in 
formula (10): 

x1 =
Sg
V2

2
, x2 =

P
mg

, x3 =
VW

V2
, x4 =

ρV6
2

mg3, x5 =
SWg2

V4
2

(10) 

Since the power product of multiple similarity criteria is still the 
similarity criterion, the Π4 and Π5 are transformed. According to the B in 

Table 3 
One-Sample Kolmogorov-Smirnov Test.  

parameter  S 

N  689 
Normal Parameters Mean 1162.261  

Std. Deviation 96.832 
Most Extreme Differences Absolute 0.023  

Positive 0.019  
Negative − 0.023 

Test Statistic  0.023 
Asymp. Sig. (2-tailed)  0.200  

Table 4 
Student-Newman-Keuls Test.  

Cluster centroids N Subset for alpha = 0.05   

1 2 3 

1 261  1133.927   
2 238   1167.931  
3 190    1194.078 
Sig.   1.000  1.000  1.000  

Table 5 
Descriptive of F(X).  

O N Mean Std. Deviation Std. Error 

O1 261  1133.927  97.332  6.024 
O2 238  1167.931  87.762  5.688 
O3 190  1194.078  96.304  6.986 
Total 689  1162.261  96.832  3.689  

Fig. 7. Scatterplot matrices.  

Table 6 
ANOVA.  

Model  Sum of 
Squares 

df Mean 
Square 

F Sig. 

O1 Regression  2.228 2 1.114 212.293 3.19 ×
10-55  

Residual  1.354 258 0.005 \ \  
Total  3.582 260 \ \ \ 

O2 Regression  1.254 2 0.627 188.890 1.23 ×
10-49  

Residual  0.780 235 0.003 \ \  
Total  2.033 237 \ \ \ 

O3 Regression  1.294 2 0.647 156.213 1.28 ×
10-40  

Residual  0.774 187 0.004 \ \  
Total  2.068 189 \ \ \  
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similarity conditions, O is also regarded as xk like μ andφ, finally we 
obtain 7 system indexes, as shown in formula (11): 

x1 =
Sg
V2

2
, x2 =

P
mg

, x3 =
VW

V2
, x4 =

ρSWV2
2

mg
, x5 = O, x6 = μ, x7 = φ (11) 

2) The construction of F(X). Based on the Buckingham 
∏

theorem in 
similarity theory, F(X) is shown in formula (12). Buckingham 

∏
theo

rem is expressed as follows: the physical quantities can be expressed as a 
functional relationship between xi, so we can get: 

F(X) = F(x1, x2, x3, x4, x5, x6, x7) = 0 (12) 

Regard x1 as the output of the system, we have: 

x1 = F(x2, x3, x4, x5, x6, x7) (13) 

Formula (13) synthesizes the methodological innovations proposed 
in this paper, namely the construction of F(X) containing O in a 
dimensionless formula that express the aircraft takeoff system. In the 
next section, formula (13) will be further applied to assess the risk of RO. 

2.4. The risk evaluation model of RO 

As discussed in the introduction section, S is an important parameter 
in assessing RO. So, based on formula (10) and (13), we have: 

S =
V2

2

g
F(x2, x3, x4, x5, x6, x7) (14) 

S can be calculated based on formula (14) and thus assess the risk of 
RO by comparing it to the set risk threshold. However, formula (14) only 
reflects the essential principle of motion embedded between takeoff 
systems. For the F(X) fitted based on known takeoff data (Know- 
Takeoff), the similarity between Know-Takeoff and Unknow-Takeoff 
must be satisfied to more accuracy describe the Unknow-Takeoff. Sim
ilarity theory states that systems are similar if the similarity conditions 
are numerically equal. So, based on the similarity conditions, we divide 

the original takeoff dataset D into the reference dataset Di, then Know- 
Takeoff and Unknow-Takeoff are similar withinDi. Therefore, the F(X) 
fitted based on the reference dataset can be generalized to the Unknow- 
Takeoff. 

Concretely, according to the B in similarity conditions, we set O, μ,φ 
in formula (14) as in category quantities based on original dataset. 
Meanwhile, other similarity conditions are set as follows:  

• M: operating in the atmosphere, the system has been satisfied.  
• G: same specific aircraft type and Flap.  
• I: this condition has been met by the system as the aircraft starts 

takeoff from standstill. 

Then, the original QAR dataset D can be divided into a set of refer
ence dataset Di, i = 1, 2, ...n, and the physical process of takeoff is 
assumed to be similar in Di. In Di we have: 

x1 = fi(x2, x3, x4) (15)  

S =
V2

2

g
fi(x2, x3, x4) (16) 

Therefore, based on Di and the formula (15), a series of equations of 
F = {f1, f2, ..., fn} can be fitted in Di. By using the fitted formulas and the 
similar relationship between Know-Takeoff and Unknow-Takeoff, S 
under specific similarity conditions based on formula (16) can be eval
uated. Thus far, based on similarity theory, we have obtained the 
necessary conditions and a calculation model for assessing future RO 
risk based on the available QAR data. The flowchart process of the entire 
method is shown in Fig. 4. 

3. Case study 

Overall, the real flight data for our study were obtained from an 
airline in Tianjin, China, whose main operating aircraft is Boeing 
737–800 and is based at Tianjin Binhai International Airport. We ob
tained approximately 1000 cases of raw QAR samples, each recording 
real flight parameters includes B, A and E of a complete flight process. In 
order to verify the feasibility of the method proposed in this study, the 
raw data are screened based on the necessary conditions presented in 
section 2.4. As the study objectives already satisfied the medium and 
initial conditions(M&I), we further filtered the raw data based on geo
metric and boundary conditions(G&B) as follows: 

1) Same aircraft type and takeoff configuration. In sample data, the 
aircraft type is B737-800 and the flaps configuration is 5; 

2) The slope of runway is same and the runway is dry. Screening of 
airports with same slope based on the Departure Airport parameter in 
QAR and filtering the cases by Departure Date parameter in QAR for 
precipitation and foggy weather to maximize dry runway conditions and 
departure visibility requirements. Takeoff samples on sunny days from 
June to August is selected to adequately meet dry runway conditions; 

3) The tailwind component at the airport is less than 5 m/s. Usually 
too much wind speed may have a negative impact on the takeoff. For 

Table 7 
Coefficients.  

Model  Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity Statistics   

B Std. Error Beta   Tolerance VIF 

O1 (Constant)  2.269  0.065 \  35.166 2.08 × 10-100  \  
x2  − 4.480  0.356 − 0.482  − 12.580 1.26 × 10-28 0.997 1.004  
x3  2.796  0.180 0.596  15.548 6.51 × 10-39 0.997 1.004 

O2 (Constant)  2.297  0.071 \  32.383 1.31 × 10-88 \ \  
x2  − 4.504  0.396 − 0.461  − 11.366 3.82 × 10-24 0.992 1.008  
x3  2.885  0.172 0.679  16.728 6.73 × 10-42 0.992 1.008 

O3 (Constant)  2.425  0.084   28.959 4.98 × 10-71 \ \  
x2  − 5.258  0.469 − 0.502  − 11.211 1.21 × 10-22 0.999 1.001  
x3  2.802  0.211 0.594  13.276 9.05 × 10-29 0.999 1.001  

Table 8 
Aircraft physcial system expression F(X).  

O f 

O1 x1 = 2.269 − 4.48x2 + 2.796x3 

O2 x1 = 2.297 − 4.504x2 + 2.885x3 

O3 x1 = 2.425 − 5.258x2 + 2.802x3  

Table 9 
Model Summary.  

Model R R 
Square 

Adjusted R 
Square 

Std. Error of the 
Estimate 

Durbin-Watson 
Statistic 

O1  0.789  0.622  0.619  0.072  1.598 
O2  0.785  0.617  0.613  0.057  1.762 
O3  0.791  0.626  0.622  0.064  1.493  
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instance, a downwind takeoff increases the takeoff distance and a 
sidewind takeoff increases the pilot’s operational load. Conversely, a 
headwind helps the aircraft to get off the ground quickly. The case study 
considers normal conditions to discover the general O, so we left out 
excessive wind speeds for the time being. Based on the performance 
reference data for the B737-800 (BRADY, 2021), no effects on aircraft 
takeoff safety when the tailwind speed is below 10 kts (5.14 m/s). 
Therefore, we artificially set the tailwind component threshold as 5 m/s 

in the case study section, with the tailwind being calculated based on 
Wind Speed and Wind Direction in QAR. 

Finally, 689 flight samples were selected, which supports two parts 
of results presented in this section. The section 3.1 shows the results of k- 
SC clustering analysis and the final derived O. In section 3.2, the F(X) is 
delivered based on multipule regression, and the RO risk assessment 
results are given by calculating S in section 3.3. 

Fig. 8. Residual analysis diagram.  
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3.1. Pilot behavioral characteristics 

According to Fig. 3, 689 CCP_TS samples were normalised and the 
kmin in k-SC was settled as 2. The k-SC algorithm was executed until k =
10. Fig. 5 shows the relationship between the value of loss function and 
k, and the biggest change of the curve appears when k equals 3. The 
result of k-SC based on k = 3 is shown in Fig. 6. 

As we can see from Fig. 6, all the three cluster centroids appear 
similar trend after VR. However, there are some main differences in the 
shape of the centroids, which are reflected by the initial column position 
and the change of rate. Cluster centroid 1 pulls the column lately, for the 
CCP in VR are smaller than others, and the CCP in last second is also the 
biggest one. Meanwhile, its pulling speed is fastest at VR. Cluster 
centroid 2 reflects a more rapid column change rate in average. 
Compared with others, cluster 3 represents a gender and advanced 
column operation because of the earliest and moderate column oper
ating speed. 

The difference analysis was made to further judge whether the three 
cluster centroids have differences in S. The result of the K-S test of S in 
selected samples is shown in the Table 3, which means S conforms to a 
normal distribution with a mean of 1162.261 m and a standard devia
tion of 96.832 m. The result of Student-Newman-Keuls Test is shown in 

Table 4. 
The Table 4 shows that S of three clusters have significant difference 

so that three kinds of O are got, and the descriptive in Table 5 indicates 
that O3 has the largest S compared with others and O1 does vice versa. 

3.2. The mathematical description of the aircraft takeoff system 

In sample data, the slope of runway is same and the runway is dry, so 
the reference data was divided into three groups by attained O. The 
relationships bewteen other 4 similarity crierions in formula (15) are 
shown in Fig. 7, which display linear relationship to some extent so the 
multiple liner regression was used to fit formula (15). 

The multiple linear relationship regression results of different O are 
shown in Tables 6-9. 

The ANOVA shows that it is reliable to use the multiple liner 
regression to fit f in formula (15), and the coefficients in Table 8 are all 
significant after excluded x4 in formula (15) by stepforward regression 
method. The final equations based on formula (15) are displayed in 
Table 8 and the adjusted R Square in Table 9 means that the equations 
have an acceptable performance. Besides, the Durbin-Watson Statistic 
values in Table 9 and the residual analyze in Fig. 8 further illustrate that 
the equations fit the necessary conditions of using multiple liner 
regression model, which are normality, independence, homogeneity of 
variance. No collinearity be found according the VIF in Table 7. 

3.3. The risk assessment model of RO 

Based on the Table 8 and formular (16), the assessment model of S is 
shown in Table 10. 

The evaluation results of the prediction models in test airport are 
shown in Table 11, which means the effectiveness of the model is 
acceptable to some degree. This further demonstrates that S can be 
predicted more accurately based on our model and thus the RO risk of 
the aircraft can be effectively assessed. 

Based on the distribution of S in current fleet, the threshold for RO is 
set at 1355.92 based on 2 times the standard deviation, as shown in 
Fig. 9. when S in Table 10 is higher than the threshold, the risk of RO is 
considered high. 

4. Discussion 

Pilot behavior is always an important factor in flight safety. The 
aircraft takeoff safety depends on the performance of pilot behavior so O 
should be considered when analyzing RO risk. At the same time, RO risk 
assessment methods should be highly accurate and well generalized. 
Based on real flight data, we have achieved the above objectives and the 
realization process will be fully discussed. In this part, the discussion 
about O is given in section 4.1. The aircraft takeoff system expression F 
(X) embedded O will be discussed in section 4.2, and the final risk 
assessment model of RO is discussed in section 4.3. 

4.1. Pilot behavioral characteristics based on flight data 

The definition, the analytical methods, and limitations of O will be 
fully discussed. The defined O describes the impacts of pilot behavior on 
aircraft, which comprehensively reflects the management level of the 
airline, including flight training, regulations, management culture, etc. 
All QAR operating parameters can reflect O, such as control column 
position, throttle resolver angle, pedal angle, and steering wheel angle, 
etc. Therefore, more operational data could be used to complete the 
mining of O in future studies. In current study, CCP_TS is selected to 
discover O, which can essentially reflect the time and speed of pilot 
control column manipulation during takeoff. In concrete method, the 
kmax in Fig. 3 is limited to 10 due to data volume and computing power 
limitations. In fact, the amount of QAR data from Chinese airlines can 
reach terabyte level per day, which means we can mine O with the 

Table 10 
Assessment model of S.  

O f 

O1 S =
V2

2
g
(2.269 − 4.48x2 + 2.796x3)

O2 
S =

V2
2

g
(2.297 − 4.504x2 + 2.885x3)

O3 
S =

V2
2

g
(2.425 − 5.258x2 + 2.802x3)

Table 11 
Model performance comparison in text airport.  

Model Mean 
absolute 
error/m 

Root 
Mean 
square 
error/m 

Mean 
relative 
error /%  

Maximum 
absolute 
error/m 

Maximum 
relative 
error/% 

O1  17.58  22.95  1.47   49.22  4.59 
O2  20.11  23.53  1.90   34.55  4.06 
O3  32.80  36.60  3.39   51.17  5.39  

Fig. 9. Threshold setting of RO.  
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support of high-performance computers in the future and could get more 
interesting results. From Fig. 6 and Table 5, we can conclude that timely 
and faster pulling up after the Rotation point helps to reduceS, which is 
consistent with the law of motion of aircraft. A ‘just-in-time pull’ in
dicates that the shorter pilot reaction time to make a pull when the in
struments indicate pilot to rotate, the shorter S due to inertia within the 
corresponding time. A ‘fast pull’ adds the rate of the increase in lift, 
resulting in an increase in altitude per unit time, and therefore the 
shorter the horizontal distance travelled by the aircraft. The conclusion 
is consistent with the results of the literature (Wang et al., 2018), which 
indicates that pilots’ faster and steady backward pulling on columns is 
helpful for a better flare and landing. In our cases, pilot reaction time 
and operational stability have a significant impact on aircraft operation, 
which are underlying influenced by various factors such as psycholog
ical factors, physiological factors, and airline management, making the 
mechanistic analysis of O become more complex. Therefore, future 
research needs to focus on the cognitive processes of analysts to discover 
the causes of O and to control high risk O by the methods like psycho
logical interventions and improved flight training. In practice, O can be 
annotated with pilots to analyze accident risks before his or her next 
flight, which is of great significance for the further improvement of the 
safety level of civil aviation. 

4.2. System expression based on human–machine-environment factors 

S is an important parameter in assessing the aircraft performance and 
the length of runway, so S is key to the runway safety. As the equipment 
reliability continues to increase, the pilot behavior is increasingly 
becoming a key factor influencing S while the existing studies often fail 
to incorporate pilot behavior into system safety analysis. Based on the 
obtained O and combined with the similarity theory, the study sum
marizes the human–machine-environment factors affecting S into one 
mathematical model and apply it to access RO risk. In contrast to data- 
based fitting methods, similarity theory has following advantages. First, 
the system indexes constructed by the similarity theory are dimension
less, which reducing the number and correlation of system indexes and 
the complexity of fitting F(X). Second, the similarity theory can scien
tifically guide the division of experimental data so that the fi could have 
better accuracy and generalization. The proposed model can not only 
reduce the correlation between system indexes and then built dimen
sionless F(X), but also give detailed application conditions of F(X). The 
model is constructed based on the real flight data, which objectively 
restored the real flight routine of pilots, so has practical significance. The 
result of multiple regression indicated that the F(X) is consistent with 
the physical rules of takeoff, for all the fitting equations delet the 

Fig. 10. Performance comparison diagram of O.  
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regression coefficient of indimentional critierion’s include air density, 
which is consistent to the use of true airspeed in our method. The co
efficients in Table 8 also show that, at the sameV2, an increase in thrust- 
to-weight ratio has a negative effect on the increase in S and an increase 
in runway headwind speed has a positive effect on the increase in takeoff 
distance. As we can see in Table 10, our model finally has good pre
diction preference in different O and the Fig. 10 shows intuitively that O 
does have an effect on S in different control conditions. As discussed 
previously, it is the different pilot reaction time and operation input 
speed that cause differences in S under controlled conditions. 

The case analysis didn’t further fit more fi under different runway 
friction coefficient and runway slope. At the same time, due to the data 
volume, the case analysis failed to consider more similarity conditions, 
such as different configuration settings, aircraft types, weather condi
tions, etc. In future, the model under more similarity conditions will be 
constructed based on the massive flight data of airlines, to further 
improve the application scope. Besides, as another vital stage, landing 
could also be considered and our method could be a reference to solve 
the problems like mining the landing behavioral characteristics of 
landing RO assessment and other unsafety events such as hard landing 
and tail strike. 

4.3. RO risk assessment based on pilot behavior 

Human factors are always an important aspect of flight accident risk 
analysis(Burns and Bonaceto, 2020; Erjavac et al., 2018). This study 
emphasizes the influence of human behavioral characteristics on the 
system safety and incorporates them into system expression. The 
objective of system operational risk from the perspective of human
–machine-environment is given. In the field of flight safety, the RO is 
always a high-risk incident and evaluating S is always an important 
technical tool for assessing the risk of RO. However, most studies tend to 
focus more on equipment and environmentally factors to improve sys
tem safety of runway operation while ignoring the impact of pilot 
behavior to some degree. At the same time, even though pilot behavior 
has been summarized in accident statistics as a factor influencing RO, 
there has been no quantitative analysis based on real flight data. In this 
study, the O is explored based on objective data, which improving the 
effectiveness of takeoff RO risk assessment based on the human 
behavior. For risk assessment issues, a reasonable selection of risk 
thresholds is important. There are limitations to this study in selecting a 
fixed RO risk threshold based on the distribution of S, because the 
definition of safety risk thresholds also should consider the effects of 
pilot behavior. The pilot risky behavior causes constant fluctuations in 
safety thresholds and safety managers must continuously monitor the 
behavioral characteristics of high-risk pilots and adjust existing 
thresholds for the risk of unsafe events to further ensure the flight safety. 

5. Conclusions 

Compared to the qualitative results based on statistics in the current 
study, based on real flight data, this study found that the O do have an 
impact on the risk of takeoff runway overruns in aviation safety and 
obtained a quantitative risk calculation method of RO. 3 types of O were 
discovered in selected fleet, which show that pilot reaction time after VR 
and operation input speed are the main behavioral characteristics dur
ing takeoff. Longer pilot reaction times are always accompanied by 
slower operation input speeds, which put the aircraft at increased risk of 
RO. At the same time, the proposed method can make full use of the 
huge amount of flight data from airlines with different conditions to 
construct a more accurate risk assessment model for RO. The method is 
of reference value to other aviation safety events of risk analysis 
considering human behavior. 
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