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ARTICLE INFO ABSTRACT
Keywords: Aviation safety is an important part of safety science and pilot behavior is a major factor in flight safety analysis.
Flight safety However, when analyzing unsafe events, such as runway overrun, majority of studies do not quantify the impact

Pilot behavior

Flight data

Time series clustering
Similarity theory
Risk assessment

of pilot behavior on flight safety. The aim of this paper is to discover the pilot behavioral characteristics from
actual flight data and apply them to construct a takeoff runway overrun risk assessment model. Concretely, the
time series clustering is used to mine the pilot behavioral characteristics based on pilot operating data. Then, the
similarity theory is introduced to construct a data-based man-machine-environment system expression including
pilot behavioral characteristics to get the takeoff distance for the runway overrun risk assessment. The results of
case study showed that 3 types of pilot behavioral characteristics were found in selected fleet, which mainly
differ in the pilot reaction time after V and operation input speed of the control column, and RO is more likely to
happen under the combined influence of longer reaction time and slower operation input speed. The proposed
method makes full use of real flight data from airlines under different conditions incorporating pilot behavior
characteristics and can inform risk analysis of other unsafe events such as hard landing, tail strike, etc.

m Gross weight of aircraft [kg]
Abbreviations M Media conditions [\]
A Aircraft performance parameters [\] N The compressor speed ratio of aircraft engine [\]
ALT The altitude of an aircraft relative to the ground [m] o Pilot behavioral characteristics [\]
B Pilot behavior parameters [\] P Thrust [N]
B Boundary conditions [\] Pg Static pressure [Pa]
CAAC Civil Aviation Administration of China [\] QAR Quick Access Recorder [\]
CcCP Control column position [deg] RO Runway overrun [\]
CCP_.TS Time series of control column position [\] S Takeoff distance [m]
Cp Drag coefficient [\] Sw Wing reference area [m?]
CL Lift coefficient [\] SOP Standard Operating Procedure [\]
D Reference datasets Ts Static temperature [°C]
E Environment parameters [\] t Time of operations [s]
Flap Flaps configuration [\] Vr The speed of aircraft relative to the air [m/s]
FX) Takeoff system expression, F(X)= {f1, fo,..., fi } [\] VR The V¢ when aircraft starts rotation [m/s]
g Gravity acceleration [m/s%] Vior The V¢ when aircraft lift-off [m/s]
G Geometric conditions [\] Vs The V¢ when aircraft’s ALT over 10.70 m [m/s]
IATA International Air Transport Association [\] Vg The speed of aircraft relative to the ground [m/s]
I Initial conditions [\] Vw Tailwind speed [m/s]
k k-SC clustering number \] p Atmospheric density [Kg/m>]
K Dimensional conversion factor [\] p Runway friction coefficient [\]

* Corresponding author.
E-mail address: panxing@buaa.edu.cn (X. Pan).

https://doi.org/10.1016/j.ss¢i.2022.105992
Received 28 July 2022; Received in revised form 3 October 2022; Accepted 25 October 2022

Available online 14 November 2022
0925-7535/© 2022 Elsevier Ltd. All rights reserved.


mailto:panxing@buaa.edu.cn
www.sciencedirect.com/science/journal/09257535
https://www.elsevier.com/locate/safety
https://doi.org/10.1016/j.ssci.2022.105992
https://doi.org/10.1016/j.ssci.2022.105992
https://doi.org/10.1016/j.ssci.2022.105992
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssci.2022.105992&domain=pdf

C. Liet al
0 Runway inclination (gradient) [deg]
X Dimensionless index of F(X), X={x1, X2,..., X; } [\]

1. Introduction

Air transport has contributed to the growth of the social, political,
and economic globalization process during the last decade by being one
of the fastest and safest methods of long-distance travel. The commercial
aviation sector deployed 37 million planes every year and carried 4
billion passengers annually before the current coronavirus pandemic hit,
and the number could reach 2019 levels as early as 2024 (Madeira et al.,
2021). The fast development has brought safety concerns into aircraft
industry, and the increase in workload is not accompanied by a pro-
portional gain in personnel. Therefore, employees are often subjected to
an enormous quantity of rigorous requests, under pressured time frames,
and complex environments. Moreover, compounded factors, such as
career uncertainty and frequent demand for overtime, have contributed
to an increasing risk of personnel capabilities detriment and, hence,
mistakes in safety sensitive tasks (Santos and Melicio, 2019). These
circumstances have been further aggravated by the effects of the current
pandemic, where companies had to forgo large portions of their em-
ployees in order to reduce cash burns and regain profit margins, while
maintaining contractual obligations and preparing for a resurgence of
traffic demand. In the current context, therefore, the aviation industry
needs to pay more attention to the balance between profit and safety by
taking the beforementioned factors into account, especially the human
factors. Human factors play a critical role in flight safety system
(Dolores, 2018; Reason, 1990). Some researchers have suggested that
human pilot error has led to over 60 % of flight accidents (Jarvis and
Harris, 2010; Shappell et al., 2017). The statistics of the International
Air Transport Association (IATA) from 2016 to 2020 indicated that flight
crew factors caused about 46 % of aircraft accidents (IATA, 2021). In
China, no fatal accidents happened between 2011 and 2020 while 67.90
% of incidents were derived from the flight crew (CAAC, 2021).

1.1. Human factors and pilot behavioral characteristics

A view expressed widely in the safety literature is that human factors
have not always had such a primary place in accident causation but
emerged as a residual problem as aircraft became more reliable (Hobbs,
2004). Human factors have always taken the lead as the main latent
cause of accidents, and between 70 % and 80 % of all aviation accidents
have a human factor somewhere in the chain of causation, according to
human factors specialists and aviation researchers (De Sant and De Hilal,
2021). Studies have found pressure, fatigue, miscommunication, and a
lack of technical knowledge on crucial personnel such as human pilots,
maintenance workers, and air traffic controllers to be some of the main
probable causes for aviation mishaps (Jensen, 2017; Lee and Kim, 2018;
Lee and Kim, 2018; Thorpe et al., 2022; Volz et al., 2016; Yazgan and
Kavsaoglu, 2017). Therefore, human factors should be examined in
order to minimize aviation mishaps, and one access is to understand the
pilot behavior (Dekker, 2001; Xu et al., 2022). Pilot Behavior involves
factors which affect personal performance but also affect interaction
with others, which often defines overall safety performance. Since
several specific pilot behaviors have been considered significant
contributing factors to many accidents, it is critical to identify the ele-
ments that may enhance these pilot performance regarding safety
behavior (Chen and Chen, 2014).

The concept of pilot behavioral characteristics (0), which reflects the
representative maneuvers embedded in their operational inputs to the
aircraft that have an impact on the aircraft takeoff system, firstly
appeared in the literature (Wang et al., 2013). O is primarily influenced
by flight training and pilot behavioral style (Sagberg et al., 2015), so
there are differences in O between different airlines even different fleets.
From a system safety point of view, the operational risks associated with
O are expected to be acceptable, but there are undeniably that O in
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practice might pose risks to flight operations and cause incidences even
accidents (Hong et al., 2011; Wang et al., 2018; Zhu and Tong, 2021).
For instance, reference (Wang et al., 2018) has shown that O can have an
influence on aircraft long landing as well as hard landing. Therefore,
with the gradual increase in equipment reliability, it is important to pay
more attention to the influence of O for continuously improving flight
safety.

Theoretically, the thorough pilot behavior model can be developed
by a detailed human-pilot model included the control-theoretic model,
neuromuscular system, and sensory system (Lone and Cooke, 2014; Xu
et al., 2017). Nevertheless, it is quite time-consuming and costly for
normal airlines to do that. Noteworthily, all commercial airplanes in
China are required to install Quick Access Recorders (QAR) or similar
flight data recording equipment under the Flight Operations Quality
Assurance (FOQA) program of the Civil Aviation Administration of
China (CAAC). QAR can record pilot operating data like control column
position, throttle resolver angle, flap handle position, and so on, which
means it is feasible for us to discover O based on QAR (Sun and Xiao,
2012). Further, by combining aircraft performance data and environ-
mental data of QAR, a human-machine-environment based approach to
system safety analysis can be developed to quantify the impact of O on
flight safety.

1.2. Runway overrun risk assessment

Runway overrun (RO) is a type of runway excursions considered by
the European Aviation Safety Agency (EASA, 2016a, b), which occurs
when an aircraft departs the end of the runway surface during a takeoff
or a landing and is the most severe among runway excursions (Gan-
dhewar and Sonkusare, 2014). Reference (Bateman, 2008) described
that the growth of surrounding buildings, the advent of the turbojet
aircraft, and the large increase in air traffic were not totally anticipated
before, with all of these contributing to an escalation in overrun and
their impact. Due to these reasons, regulatory authorities and the avia-
tion industry continue to investigate ways to improve runway safety
(IATA, 2011a, b; ICAO, 2013). It would take more sophisticated tools
and methods to achieve breakthrough improvements in commercial
aviation, however, since commercial aviation operates at such a high
level of safety (Ayres, 2011). Currently, research focuses on assessing RO
risk from accident statistics and aircraft performance analysis.

Based on RO statistics, research in the literature has examined var-
iables associated with RO and their categories of severity (Natalia and
Salvatore, 2020), probability (Galagedera et al., 2019; Szabo et al.,
2017) and operational risk (Galagedera et al., 2020). Specifically, a
variety of approaches have been suggested to analyze risks in RO, such
as Bayesian-network based (Calle-Alonso et al., 2019), multiple Logistic
regression method (Wei et al., 2018), and the frequency model (Moretti
etal., 2017b, ¢; Moretti et al., 2018; Yousefi et al., 2020) which has been
applied to quantitative risk assessment of RO in some international
airports (Di Mascio et al., 2020; Moretti et al., 2017a). Some studies have
already shown that the most frequent causes for RO are inappropriate
pilot performance and aircraft condition. For example, the literature
(Chang et al., 2016) delivered an empirical study based on experts’
evaluation suggests that the most important dimension is the pilot’s core
ability. Similarly, the report of Netherlands Aerospace Centre shows that
the “Crew performance inaccurate” and the “Inaccurate information to
crew” show a relatively high frequency of RO occurrence (NLR, 2015).
The literature (Moretti et al., 2017b; Moretti et al., 2018) based on
statistical analysis concludes that pilot performance is a significant
cause of RO, mainly in terms of misunderstanding, inattention, inexpe-
rience and wrong maneuver. The Skybrary knowledgebase points to the
inappropriate aircraft handling technique as a cause of RO (Skybrary,
2022). While the current study has found that pilot behavior does have
an impact on RO risk based on accident statistics, there has been no
further analysis of specific pilot behavior characteristics and quantifi-
cation of their impact on RO risk.
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Fig. 1. Overview of the study.
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Fig. 2. Takeoff with all engines operating.

Calculation or prediction of operating distances based on aircraft
performance analysis is another common access of assessing RO risk. An
accurate expression of the dynamics of takeoff system is an important
basis for calculating operating distances. In previous studies, aircraft
performance analysis based on Newton’s Laws of Motion is an important
approach to analyze aircraft operation, in which the aircraft takeoff
/landing distance is an important parameter as the result of performance
analysis to evaluate the risk of RO (Cai et al., 2013; Chen and Xiang,
2013; Song et al., 2007). Meanwhile, considering the uncertainties in
actual aircraft operations and the use of vast amounts of flight data,
some researches evaluate the aircraft takeoff/landing distance based on
artificial intelligence, such as neural network and support vector ma-
chine regression (Qian et al., 2017; Ruiying et al., 2017). However,
nearly all the above studies regarded human pilot as “standard pilots”,
which means they assumed that the pilots are all perfect followers of the
standard operating procedure (SOP) while ignoring the O of them. Be-
sides, the artificial intelligence models may have higher accuracy while
lacking interpretation and generalization to some extent. In general,
airlines require a risk analysis model that clearly reflects the physical
mechanism of the unsafety event and can also be widely used by
leveraging existing real flight data.

1.3. Aim and structure of study

The objective of this study is to examine the effects of O on the risk of
RO based on real flight data. As shown in Fig. 1, we will mine O based on
the real pilot operational parameters in QAR and calculate the key
parameter S of takeoff RO risk evaluation by describing the man-
-machine-environment system of the takeoff process. The study will
help airlines to pay more attention to the potential risk of RO from pilot
behavior and to be able to make full use of actual flight data to make a
more accurate assessment to reduce the likelihood of high-risk O causing
RO. Our research is divided into the following specific sections. Section
2 implements the construction of the method, including the selection of
the QAR parameters, the analysis method of O and the parameters
calculation method of RO risk assessment. Section 3 presents the case

study followed by the discussions in Section 4 and the conclusions in
Section 5.

2. Method

This section presents the methodological approach to studying the
impact of O on RO. According to Fig. 1, Section 2.2 gives the analysis of
O based on time series clustering algorithm of pilot operating data, and
the result O is used as a parameter in the construction of F(X) based on
similarity theory in section 2.3. Then, the method are applied to RO risk
evaluation by calculating S of F(X) in section 2.4. Prior to above anal-
ysis, in section 2.1, the main system parameters B, A, E used in this study
are selected based on aircraft takeoff dynamics analysis and pilot
operating behavior analysis.

2.1. Model parameters selection

QAR is currently capable of recording hundreds or even thousands of
flight parameters, each of which will affect the aircraft operation.
Therefore, flight parameters should be selected to highlight the main
features of RO in order to improve model interpretation and reduce the
cost of the study. In current study, the flight data of takeoff is selected to
analyze O and describe the aircraft takeoff system F(X), and the risk of
RO is assessed by calculating S in F(X). Based on the Newton’s Laws of
Motion, the aircraft takeoff with all engines is shown in Fig. 2 and the
calculation method of S is shown in formula (1).

m(V — Viy)dV

VR
- [ : |
VP = (u+@)mg =5 (Co = uCL)pV*Sy]

VR + V) Vior + V.
+K (M - VW) (IVRNVZ - tVLOFNVE) + K(M - VW) Wiop~Vs

2 2
@

It is based on formula (1) that existing studies have investigated S of
aircraft by analyzing runway conditions, engine thrust, wind speed and
other perspectives under the assumption of standard operating
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Table 1
Selection of parameters.
Classification Symbol  Description
Pilot Behavior(B) Cccp The angle of control column deviated from original
point
Aircraft m Gross weight of aircraft
Performance(A)
Ve The speed of aircraft relative to the ground
ALT The altitude of an aircraft relative to the ground
Va The speed of aircraft indicated by instrument
Vr The speed of aircraft relative to the air
Vr The V1 when aircraft starts rotation
Vior The V1 when aircraft lift-off
Vy The V¢ when aircraft’s ALT over 10.70 m
N The compressor speed ratio of aircraft engine
P The thrust of aircraft, which is calculated based on
N
S The horizontal distance from the point where
Ve = 0toALT = 10.7 m, which is the integral of
Vi against time
Sw Wing reference area
FLAP The setting position of flap handle
Environment(E) Vw The wind speed along the longitudinal axis of the
aircraft
Pg The static pressure of air
Ts The static temperature of air
r The density of air, calculated byp = }%,where R

= 287.15 J/(kg'k)

CCP_TS normalization

| Optimal k based on Elbow rule |

|Diffcrcncc analysis of S |

Fig. 3. Pilot behavioral characteristics mining.

procedures (SOP). However, as discussed in introduction, SOP ignores
the effect of O on S. For instance, by maneuvering devices like control
column and thrust lever, O can affect Vg, Vior and Vs, and the variation
in engine thrust, Cp and Cy, operation interval, altitude per unit time,
etc. If it’s not able to identify well the O that makes S increase, the risk
RO could rise. Therefore, an analysis of the pilot takeoff maneuvers is
required.

As shown in Fig. 2, during takeoff, the pilot accelerates the aircraft by
setting required thrust and keeps the control column in Down position
which allows the aircraft to accelerate steadily on the runway. At the
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Rotation point, pilot pulls the control column to make the lift of aircraft
greater than gravity and bring the aircraft safely off the ground at the
Lift off, the whole takeoff process ends when the aircraft above 10.7 m. It
is concluded that the pilot operation of control column dominates the
takeoff. Besides, the pilot pushes the thrust lever within almost same
speed in current QAR sampling frequency in China, so the thrust lever is
out of consideration. Other behavioral parameters are also excluded for
the low using frequency in takeoff, such as pedal angle and control
wheel angle. Finally, the control column position (CCP) is chosen to
mine from QAR data to mine O. During takeoff, the O is affected by
many factors such as external atmospheric environments, aircraft type,
pilot basic capabilities and skills, etc. Regardless of how these factors
change, their effects ultimately are reflected in the change of aircraft
kinematic parameters. Therefore, according to Fig. 2 and formula (1),
the flight parameters of QAR in takeoff RO risk analysis are selected
from three aspects: pilot behavior (B), aircraft performance (A), and
external environment (E). Finally, 18 flight parameter variables are
chosen from QAR and calculated as shown in Table 1.

2.2. Pilot behavioral characteristics mining

In practice, pilot operates the control column at different times ac-
cording to the feedback from the instruments, so the pilot behavior is
time-sensitive and the operation input speed may vary from pilot to
pilot. Therefore, the time series of CCP (CCP._TS) is further used to
discover O and the k-SC time series clustering algorithm is introduced.
By analyzing the shape of the cluster centers, time series clustering can
reveal patterns of change in the time-series data at different moments in
time. k-SC is a better time series clustering algorithm because its shape
similarity measurement is more efficient and robust compared with
other algorithms based on Euclidean Distance and Dynamic Time
Warping(Yang and Leskovec, 2011).

Firstly, the CCP_TS when pilot manipulate the control column at the
Rotation point is obtained and normalized, and the length of it is 10 s to
guarantee the takeoff being finished and the requirement of k-SC for the
same length to cluster. The optimal clustering number k is determined
by loop based on the Elbow rule, which means the best k is chosen if the
corresponding value of the loss function gets biggest change (Thorndike,
1953). Finally, the S of clustering results are analyzed by difference
analysis to verify whether O has impacts on S. The whole process to get
O is shown in Fig. 3.

2.3. The expression of F(X) based on similarity theory

With the consideration of O, the RO risk assessment depends on an
accurate description of the F(X) to get S. However, as a classical method,
formula (1) does not consider the influence of O on A, such asP, Vg, VioF,
Va,t,Cy,Cp, which prevents formula (1) from giving a more accurate S.
Therefore, in order to make F(X) comprehensively reflect the influence
of O, A, E, and can be well generalized to unknow takeoff, the similarity
theory based on actual flight data is introduced, which can reflect the
features of RO, and be widely applied for airlines under different oper-
ation conditions. As an important scientific research method, similarity
theory has been widely used in engineering field, which gives a unified
expression of the system that meet same physical laws in nature.
Therefore, similarity theory can make people understand the essential
features between similar systems and guide people to carry out

Table 2

Parameters’ dimension expressions based on ‘LMT’ dimension system.
Parameter m g Vs S P Vw p Sw
Unit kg m-s "2 m-s "1 m kg:m-s "2 ms ! kgm "3 m?
M 1 1 0 0 1 0 1 0
L 0 0 1 1 1 1 -3 2
T 0 2 -1 0 -2 -1 0 0
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experiments scientifically and effectively (Anderson, 2004; Pucciarelli
et al., 2020; Xiao et al., 2019). Similarity theory consists mainly of the
dimensional analysis and the necessary conditions which make system
processes to be similar (Sedov and Volkovets, 2018). Dimensional
analysis involves the construction of dimensionless index X using system

Time/s

Fig. 6. Cluster centroid of CCP_TS.

parameters and the construction of F(X) based on the Buckingham IT
Theorem. Similarity conditions include geometric conditions (G), media
conditions (M), initial conditions (I) and boundary conditions (B). When
the similarity conditions are equal, the systems are regarded as similar
systems so can be analyzed by same F(X).
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Table 3
One-Sample Kolmogorov-Smirnov Test.
parameter s
N 689
Normal Parameters Mean 1162.261
Std. Deviation 96.832
Most Extreme Differences Absolute 0.023
Positive 0.019
Negative —0.023
Test Statistic 0.023
Asymp. Sig. (2-tailed) 0.200
Table 4
Student-Newman-Keuls Test.
Cluster centroids N Subset for alpha = 0.05
1 2 3
1 261 1133.927
2 238 1167.931
3 190 1194.078
Sig. 1.000 1.000 1.000
Table 5
Descriptive of F(X).
(o] N Mean Std. Deviation Std. Error
0, 261 1133.927 97.332 6.024
(o)) 238 1167.931 87.762 5.688
O3 190 1194.078 96.304 6.986
Total 689 1162.261 96.832 3.689

Hence, in this study, the F(X) is quantified based on dimensional
analysis of flight data to build a dimensionless F(X). Then, based on the
similarity conditions, all takeoffs are regarded as similar systems,
including those already recorded by flight data and those planned in
future. In this regard, O is innovatively considered as one of the simi-
larity conditions. Finally, airlines can evaluate the risk of RO by calcu-
lating S in F(X), which well considers the effects of the impacts of O as
well as fit the requirements of accuracy and generalization. The specific
steps are detailed below.

1) Derivation of X based on dimensional analysis. The dimensional
analysis g(t) uses fundamental dimension of the takeoff system to
represent the other variables and gives dimensionless indicators X. Ac-
cording the formula (1) and Table 1, X is shown in formula (2):

X = g(0,A,E) = g(m,g,V2, P,Sw, Vw,p, 0,1, p) (2)

In formula (2), length(L), mass(M), and time(T) are taken as basic
dimensions, and other parameters’ dimensions expressed by the ‘LMT’

Safety Science 158 (2023) 105992

dimension system are shown in Table 2.
Select dimension independent m, g, V2 as the basic variables. Five x;
based on dimensional analysis are shown in equations (3) ~ (7):

x; = Sm“gh vy 3
X, = Pm“gh Vg @
x3 = Vym®g" Vg )
x4 = pm®“ g Vs (6)
x5 = Sym® g V5 @

Take formula (3) as an example, from the Table 2 we can get formula

(8):
ML = L (M) (LT2) " (LT ) ®

According to the dimensional homogeneous theorem, we have for-
mula (9):

a) = 0
1+by+c¢ =0 9
—2by—c; =0
Solved formula (9) we geta; = 0,b; =1,c; = —2. Similarly, we can

solve other formulas from (4) ~ (7). Five similar criterions are shown in
formula (10):

Sg P Vi pve Swg?
= Xy =— X3 =——, Xy = —=, X5 =
VI T mg TVt mgy TV

10)

X1

Since the power product of multiple similarity criteria is still the
similarity criterion, the I, and I15 are transformed. According to the B in

Table 6
ANOVA.
Model Sum of df Mean F Sig.
Squares Square
01 Regression ~ 2.228 2 1.114 212.293  3.19 x
10°55
Residual 1.354 258  0.005 \ \
Total 3.582 260 \ \ \
0, Regression  1.254 2 0.627 188.890  1.23 x
10%
Residual 0.780 235  0.003 \ \
Total 2.033 237\ \ \
O3 Regression ~ 1.294 2 0.647 156.213  1.28 x
10
Residual 0.774 187 0.004 \ \
Total 2.068 189 \ \ \
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Fig. 7. Scatterplot matrices.
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Table 7
Coefficients.
Model Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity Statistics
B Std. Error Beta Tolerance VIF
(o (Constant) 2.269 0.065 \ 35.166 2.08 x 1071 \
X2 —4.480 0.356 —0.482 —~12.580 1.26 x 1028 0.997 1.004
X3 2.796 0.180 0.596 15.548 6.51 x 10 0.997 1.004
0, (Constant) 2.297 0.071 \ 32.383 1.31 x 1088 \ \
X2 —4.504 0.396 -0.461 —~11.366 3.82 x 1024 0.992 1.008
X3 2.885 0.172 0.679 16.728 6.73 x 102 0.992 1.008
03 (Constant) 2.425 0.084 28.959 4.98 x 107* \ \
X2 —5.258 0.469 —0.502 -11.211 1.21 x 1022 0.999 1.001
X3 2.802 0.211 0.594 13.276 9.05 x 10 0.999 1.001
the original takeoff dataset D into the reference dataset D;, then Know-
Table 8 Takeoff and Unknow-Takeoff are similar withinD;. Therefore, the F(X)
Aircraft physcial system expression F(X). fitted based on the reference dataset can be generalized to the Unknow-
) f Takeoff.
o, X1 — 2.269 _4.48x; 1 2.796x3 ' Concretely, accor'dmg to the Bin sm}l}arlty condltlonsj Yve set O, u,p
0, X1 = 2.297 —4.504x, + 2.885xs in formula (14) as in category quantities based on original dataset.
0s X1 = 2.425-5.258x; + 2.802x3 Meanwhile, other similarity conditions are set as follows:
e M: operating in the atmosphere, the system has been satisfied.
e G: same specific aircraft type and Flap.
Table 9 P yp P

Model Summary.

Model R R Adjusted R Std. Error of the =~ Durbin-Watson
Square Square Estimate Statistic

O1 0.789  0.622 0.619 0.072 1.598

0, 0.785 0.617 0.613 0.057 1.762

O3 0.791  0.626 0.622 0.064 1.493

similarity conditions, O is also regarded as x; like y andg, finally we
obtain 7 system indexes, as shown in formula (11):
_ Sg P

Xo = — X3

Vw Sw V3
==, Xy = xy =2
Vi mg

v mg

x = X5 =0, x=p, x7=¢ (1)

2) The construction of F(X). Based on the Buckingham [] theorem in
similarity theory, F(X) is shown in formula (12). Buckingham [] theo-
rem is expressed as follows: the physical quantities can be expressed as a

functional relationship between x;, so we can get:

F(X) = F(x1,X2,X3,X4,X5,%,%7) = 0 12)
Regard x; as the output of the system, we have:

x1 = F(x2, X3, X4, Xs,Xg,%7) (13)

Formula (13) synthesizes the methodological innovations proposed
in this paper, namely the construction of F(X) containing O in a
dimensionless formula that express the aircraft takeoff system. In the
next section, formula (13) will be further applied to assess the risk of RO.

2.4. The risk evaluation model of RO

As discussed in the introduction section, S is an important parameter
in assessing RO. So, based on formula (10) and (13), we have:

V2
S:?ZF(XZ7X37X4,XS,X67X7) 14

S can be calculated based on formula (14) and thus assess the risk of
RO by comparing it to the set risk threshold. However, formula (14) only
reflects the essential principle of motion embedded between takeoff
systems. For the F(X) fitted based on known takeoff data (Know-
Takeoff), the similarity between Know-Takeoff and Unknow-Takeoff
must be satisfied to more accuracy describe the Unknow-Takeoff. Sim-
ilarity theory states that systems are similar if the similarity conditions
are numerically equal. So, based on the similarity conditions, we divide

e [: this condition has been met by the system as the aircraft starts
takeoff from standstill.

Then, the original QAR dataset D can be divided into a set of refer-
ence dataset D;,i = 1, 2, ...n, and the physical process of takeoff is
assumed to be similar in D;. In D; we have:

X1 = fi(x2, X3, %) (15)

2

S:%ﬁ(XZ,X3,X4) (16)

Therefore, based on D; and the formula (15), a series of equations of
F = {fi1.fs,...,fa} can be fitted in D;. By using the fitted formulas and the
similar relationship between Know-Takeoff and Unknow-Takeoff, S
under specific similarity conditions based on formula (16) can be eval-
uated. Thus far, based on similarity theory, we have obtained the
necessary conditions and a calculation model for assessing future RO
risk based on the available QAR data. The flowchart process of the entire
method is shown in Fig. 4.

3. Case study

Overall, the real flight data for our study were obtained from an
airline in Tianjin, China, whose main operating aircraft is Boeing
737-800 and is based at Tianjin Binhai International Airport. We ob-
tained approximately 1000 cases of raw QAR samples, each recording
real flight parameters includes B, A and E of a complete flight process. In
order to verify the feasibility of the method proposed in this study, the
raw data are screened based on the necessary conditions presented in
section 2.4. As the study objectives already satisfied the medium and
initial conditions(M&I), we further filtered the raw data based on geo-
metric and boundary conditions(G&B) as follows:

1) Same aircraft type and takeoff configuration. In sample data, the
aircraft type is B737-800 and the flaps configuration is 5;

2) The slope of runway is same and the runway is dry. Screening of
airports with same slope based on the Departure Airport parameter in
QAR and filtering the cases by Departure Date parameter in QAR for
precipitation and foggy weather to maximize dry runway conditions and
departure visibility requirements. Takeoff samples on sunny days from
June to August is selected to adequately meet dry runway conditions;

3) The tailwind component at the airport is less than 5 m/s. Usually
too much wind speed may have a negative impact on the takeoff. For
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Fig. 8. Residual analysis diagram.

instance, a downwind takeoff increases the takeoff distance and a
sidewind takeoff increases the pilot’s operational load. Conversely, a
headwind helps the aircraft to get off the ground quickly. The case study
considers normal conditions to discover the general O, so we left out
excessive wind speeds for the time being. Based on the performance
reference data for the B737-800 (BRADY, 2021), no effects on aircraft
takeoff safety when the tailwind speed is below 10 kts (5.14 m/s).
Therefore, we artificially set the tailwind component threshold as 5 m/s

in the case study section, with the tailwind being calculated based on
Wind Speed and Wind Direction in QAR.

Finally, 689 flight samples were selected, which supports two parts
of results presented in this section. The section 3.1 shows the results of k-
SC clustering analysis and the final derived O. In section 3.2, the F(X) is
delivered based on multipule regression, and the RO risk assessment
results are given by calculating S in section 3.3.
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Table 10
Assessment model of S.
() f
O 2
! s = % (2.269 — 4.48x, + 2.796x3)
O 2
2 s = % (2.297 — 4.504x + 2.885x3)
O3 V2
S=% (2.425 — 5.258x, + 2.802x3)
Table 11
Model performance comparison in text airport.

Model  Mean Root Mean Maximum Maximum
absolute Mean relative absolute relative
error/m square error /% error/m error/%

error/m

0 17.58 22.95 1.47 49.22 4.59

0, 20.11 23.53 1.90 34.55 4.06

O3 32.80 36.60 3.39 51.17 5.39

80 Mean = 1162.26
$td. Dev-. = 96.832
=689
60 7 ‘
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' 40
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Fig. 9. Threshold setting of RO.
3.1. Pilot behavioral characteristics

According to Fig. 3, 689 CCP_TS samples were normalised and the
kmin in k-SC was settled as 2. The k-SC algorithm was executed until k =
10. Fig. 5 shows the relationship between the value of loss function and
k, and the biggest change of the curve appears when k equals 3. The
result of k-SC based on k = 3 is shown in Fig. 6.

As we can see from Fig. 6, all the three cluster centroids appear
similar trend after Vg. However, there are some main differences in the
shape of the centroids, which are reflected by the initial column position
and the change of rate. Cluster centroid 1 pulls the column lately, for the
CCP in VR are smaller than others, and the CCP in last second is also the
biggest one. Meanwhile, its pulling speed is fastest at VR. Cluster
centroid 2 reflects a more rapid column change rate in average.
Compared with others, cluster 3 represents a gender and advanced
column operation because of the earliest and moderate column oper-
ating speed.

The difference analysis was made to further judge whether the three
cluster centroids have differences in S. The result of the K-S test of S in
selected samples is shown in the Table 3, which means S conforms to a
normal distribution with a mean of 1162.261 m and a standard devia-
tion of 96.832 m. The result of Student-Newman-Keuls Test is shown in
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Table 4.

The Table 4 shows that S of three clusters have significant difference
so that three kinds of O are got, and the descriptive in Table 5 indicates
that O3 has the largest S compared with others and O; does vice versa.

3.2. The mathematical description of the aircraft takeoff system

In sample data, the slope of runway is same and the runway is dry, so
the reference data was divided into three groups by attained O. The
relationships bewteen other 4 similarity crierions in formula (15) are
shown in Fig. 7, which display linear relationship to some extent so the
multiple liner regression was used to fit formula (15).

The multiple linear relationship regression results of different O are
shown in Tables 6-9.

The ANOVA shows that it is reliable to use the multiple liner
regression to fit f in formula (15), and the coefficients in Table 8 are all
significant after excluded x4 in formula (15) by stepforward regression
method. The final equations based on formula (15) are displayed in
Table 8 and the adjusted R Square in Table 9 means that the equations
have an acceptable performance. Besides, the Durbin-Watson Statistic
values in Table 9 and the residual analyze in Fig. 8 further illustrate that
the equations fit the necessary conditions of using multiple liner
regression model, which are normality, independence, homogeneity of
variance. No collinearity be found according the VIF in Table 7.

3.3. The risk assessment model of RO

Based on the Table 8 and formular (16), the assessment model of S is
shown in Table 10.

The evaluation results of the prediction models in test airport are
shown in Table 11, which means the effectiveness of the model is
acceptable to some degree. This further demonstrates that S can be
predicted more accurately based on our model and thus the RO risk of
the aircraft can be effectively assessed.

Based on the distribution of S in current fleet, the threshold for RO is
set at 1355.92 based on 2 times the standard deviation, as shown in
Fig. 9. when S in Table 10 is higher than the threshold, the risk of RO is
considered high.

4. Discussion

Pilot behavior is always an important factor in flight safety. The
aircraft takeoff safety depends on the performance of pilot behavior so O
should be considered when analyzing RO risk. At the same time, RO risk
assessment methods should be highly accurate and well generalized.
Based on real flight data, we have achieved the above objectives and the
realization process will be fully discussed. In this part, the discussion
about O is given in section 4.1. The aircraft takeoff system expression F
(X) embedded O will be discussed in section 4.2, and the final risk
assessment model of RO is discussed in section 4.3.

4.1. Pilot behavioral characteristics based on flight data

The definition, the analytical methods, and limitations of O will be
fully discussed. The defined O describes the impacts of pilot behavior on
aircraft, which comprehensively reflects the management level of the
airline, including flight training, regulations, management culture, etc.
All QAR operating parameters can reflect O, such as control column
position, throttle resolver angle, pedal angle, and steering wheel angle,
etc. Therefore, more operational data could be used to complete the
mining of O in future studies. In current study, CCP_TS is selected to
discover O, which can essentially reflect the time and speed of pilot
control column manipulation during takeoff. In concrete method, the
kmax in Fig. 3 is limited to 10 due to data volume and computing power
limitations. In fact, the amount of QAR data from Chinese airlines can
reach terabyte level per day, which means we can mine O with the
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Fig. 10. Performance comparison diagram of O.

support of high-performance computers in the future and could get more
interesting results. From Fig. 6 and Table 5, we can conclude that timely
and faster pulling up after the Rotation point helps to reduceS, which is
consistent with the law of motion of aircraft. A ‘just-in-time pull’ in-
dicates that the shorter pilot reaction time to make a pull when the in-
struments indicate pilot to rotate, the shorter S due to inertia within the
corresponding time. A ‘fast pull’ adds the rate of the increase in lift,
resulting in an increase in altitude per unit time, and therefore the
shorter the horizontal distance travelled by the aircraft. The conclusion
is consistent with the results of the literature (Wang et al., 2018), which
indicates that pilots’ faster and steady backward pulling on columns is
helpful for a better flare and landing. In our cases, pilot reaction time
and operational stability have a significant impact on aircraft operation,
which are underlying influenced by various factors such as psycholog-
ical factors, physiological factors, and airline management, making the
mechanistic analysis of O become more complex. Therefore, future
research needs to focus on the cognitive processes of analysts to discover
the causes of O and to control high risk O by the methods like psycho-
logical interventions and improved flight training. In practice, O can be
annotated with pilots to analyze accident risks before his or her next
flight, which is of great significance for the further improvement of the
safety level of civil aviation.

10

4.2. System expression based on human-machine-environment factors

S is an important parameter in assessing the aircraft performance and
the length of runway, so S is key to the runway safety. As the equipment
reliability continues to increase, the pilot behavior is increasingly
becoming a key factor influencing S while the existing studies often fail
to incorporate pilot behavior into system safety analysis. Based on the
obtained O and combined with the similarity theory, the study sum-
marizes the human-machine-environment factors affecting S into one
mathematical model and apply it to access RO risk. In contrast to data-
based fitting methods, similarity theory has following advantages. First,
the system indexes constructed by the similarity theory are dimension-
less, which reducing the number and correlation of system indexes and
the complexity of fitting F(X). Second, the similarity theory can scien-
tifically guide the division of experimental data so that the f; could have
better accuracy and generalization. The proposed model can not only
reduce the correlation between system indexes and then built dimen-
sionless F(X), but also give detailed application conditions of F(X). The
model is constructed based on the real flight data, which objectively
restored the real flight routine of pilots, so has practical significance. The
result of multiple regression indicated that the F(X) is consistent with
the physical rules of takeoff, for all the fitting equations delet the
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regression coefficient of indimentional critierion’s include air density,
which is consistent to the use of true airspeed in our method. The co-
efficients in Table 8 also show that, at the sameV5, an increase in thrust-
to-weight ratio has a negative effect on the increase in S and an increase
in runway headwind speed has a positive effect on the increase in takeoff
distance. As we can see in Table 10, our model finally has good pre-
diction preference in different O and the Fig. 10 shows intuitively that O
does have an effect on S in different control conditions. As discussed
previously, it is the different pilot reaction time and operation input
speed that cause differences in S under controlled conditions.

The case analysis didn’t further fit more f; under different runway
friction coefficient and runway slope. At the same time, due to the data
volume, the case analysis failed to consider more similarity conditions,
such as different configuration settings, aircraft types, weather condi-
tions, etc. In future, the model under more similarity conditions will be
constructed based on the massive flight data of airlines, to further
improve the application scope. Besides, as another vital stage, landing
could also be considered and our method could be a reference to solve
the problems like mining the landing behavioral characteristics of
landing RO assessment and other unsafety events such as hard landing
and tail strike.

4.3. RO risk assessment based on pilot behavior

Human factors are always an important aspect of flight accident risk
analysis(Burns and Bonaceto, 2020; Erjavac et al., 2018). This study
emphasizes the influence of human behavioral characteristics on the
system safety and incorporates them into system expression. The
objective of system operational risk from the perspective of human-
-machine-environment is given. In the field of flight safety, the RO is
always a high-risk incident and evaluating S is always an important
technical tool for assessing the risk of RO. However, most studies tend to
focus more on equipment and environmentally factors to improve sys-
tem safety of runway operation while ignoring the impact of pilot
behavior to some degree. At the same time, even though pilot behavior
has been summarized in accident statistics as a factor influencing RO,
there has been no quantitative analysis based on real flight data. In this
study, the O is explored based on objective data, which improving the
effectiveness of takeoff RO risk assessment based on the human
behavior. For risk assessment issues, a reasonable selection of risk
thresholds is important. There are limitations to this study in selecting a
fixed RO risk threshold based on the distribution of S, because the
definition of safety risk thresholds also should consider the effects of
pilot behavior. The pilot risky behavior causes constant fluctuations in
safety thresholds and safety managers must continuously monitor the
behavioral characteristics of high-risk pilots and adjust existing
thresholds for the risk of unsafe events to further ensure the flight safety.

5. Conclusions

Compared to the qualitative results based on statistics in the current
study, based on real flight data, this study found that the O do have an
impact on the risk of takeoff runway overruns in aviation safety and
obtained a quantitative risk calculation method of RO. 3 types of O were
discovered in selected fleet, which show that pilot reaction time after Vg
and operation input speed are the main behavioral characteristics dur-
ing takeoff. Longer pilot reaction times are always accompanied by
slower operation input speeds, which put the aircraft at increased risk of
RO. At the same time, the proposed method can make full use of the
huge amount of flight data from airlines with different conditions to
construct a more accurate risk assessment model for RO. The method is
of reference value to other aviation safety events of risk analysis
considering human behavior.

11
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