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Engineering Physics, Mianyang, China

ABSTRACT
Situation awareness (SA) is a key indicator of operator task performance and behavioral safety in
Human-Machine Interaction (HMI), and task difficulty is an important influencing factors in estab-
lishing and maintaining SA, especially in safety-critical scenarios such as flying and nuclear.
However, the complexity and diversity of multitasking make it difficult to quantify task difficulty,
which to a certain extent limits the research on cognitive research. To solve this problem, we pro-
posed an approach to quantifying task difficulty in multitasking and analyzed the effect of task dif-
ficulty on different levels of SA through experiments in this paper. First, a task difficulty measure
for a single meta-task was developed based on Shannon’s information theory, including both dis-
crete and continuous meta-tasks. Next, a three-dimensional attribute model of meta-tasks was pro-
posed to measure the difficulty value added by concurrent tasks based on multiple resource
theory. Finally, an experiment was conducted to measure SA at different levels based on SAGAT,
and SA under different levels of task difficulty was analyzed. The results showed a strong negative
correlation between SA and task difficulty. Specifically, compared to SA at the comprehension and
prediction levels, SA at the perceptual level was more easily influenced by task difficulty. This
study can provide some reference for the quantify of task difficulty in human factors experiments,
the optimization of tasks in HMI, and the selection of operator attention allocation strategies.

KEYWORDS
Task difficulty; situation
awareness; human-machine
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1. Introduction

With the rapid development of technology, operators are
required to make effective and immediate decisions in the
face of increasingly complex operating systems (Lee et al.,
2012; She & Li, 2017). A prerequisite factor for effective
decision making and task performance is situation awareness
(SA) (Endsley, 1995b), which is used in human factors
research to explain the extent to which operators of complex
human-machine systems are aware of what is happening in
the system and the environment (Li et al., 2019). In safety-
critical systems, incorrect establishment of SA could lead to
human factor errors that may not only reduce task perform-
ance but even bring catastrophic consequences. Especially in
the field of aviation, the level of SA of pilots is closely
related to their operational safety. Endsley found that the
causes of 88% of commercial aviation accidents caused by
human errors have some connections with loss of SA
(Endsley, 1995a). In several cases, including the accidents of
AirAsia 8501 on December 28 2014 and Renaissance Air
235 on February 4 2015, SA errors are considered to be the
most important contributing factor (Kharoufah et al., 2018).
Some scholars even argue that SA is a direct cause of safety
behaviors and human errors (Mohammadfam et al., 2021).
Therefore, SA, as a potential safety indicator (Hauss &

Eyferth, 2003), has become one of the current research hot-
spots in the fields of human-machine safety and ergonomics
in recent years (Salmon & Stanton, 2013; Stanton et al.,
2017; Wei et al., 2013).

Research on SA first requires a model explaining the cog-
nitive mechanism of SA. Typical mechanistic explanations of
SA include Endsley’s three-level model of information proc-
essing, Bedny and Meister’s perceptual action loop (Bedny &
Meister, 1999) and Adams’ event flow model (Adams et al.,
1995). Endsley defines SA as “the perception of environmen-
tal elements and events in time or space, as well as the
understanding of perceptual information and prediction of
the future” (Endsley & Garland, 2000). Achieving SA
involves a series of cognitive processes, including perception,
attention and comprehension, and decision making.
Considering the limited cognitive resources of operators,
excessive competition for cognitive resources or distraction
may lead to inadequate or even collapse of SA. For example,
it is difficult for an operator who is manually tracking a tar-
get to notice the warning lights coming on. Therefore, cog-
nitive overload is considered as a key reason for operators’
incorrect SA establishment in complex task scenario (Plavsic
et al., 2010), especially when the task scenario involves mul-
tiple types of subtasks. In this paper, we attempt to explore
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the characteristics of operator SA in complex task situations
from the perspective of cognitive resource competition.

Although task factors have been considered as an impor-
tant category of SA influences (Endsley & Garland, 2000),
few SA studies have considered them as major factors, prob-
ably because it is difficult for scholars to define precisely
what a “task” is (Monsell, 2003), and some scholars define
tasks broadly as “a collection of simple operations.” Among
the task factors affecting the operator’s SA, task complexity
is considered to be one of the most important ones. To
understand the impact of task complexity on SA, it is neces-
sary to define task complexity first. There have been three
main perspectives among different models of task complex-
ity in relevant qualitative studies: the structuralist perspec-
tive, the resource demand perspective, and the interaction
perspective (Liu & Li, 2012). From the structuralist perspec-
tive, the definition of task complexity is obtained by analyz-
ing the structure of the task, e.g., the number of the
elements that make up the task and the function of the rela-
tionships between these elements. Task complexity models
proposed by Wood (1986), Campbell (1988) and Ham et al.
(2012) are based on this view. In the resource demand per-
spective, task complexity is considered as a result of resource
demand, which refer to the perception and understanding of
task attributes (Robinson, 2001), and some scholars have
used resource demand to measure task complexity (Bedny
et al., 2012; Sintchenko & Coiera, 2003). From the inter-
action perspective, task complexity is defined as the product
of the interaction between the task and the task performer’s
characteristics (e.g., prior knowledge and experience).
Several scholars (Chuanyan et al., 2020; Li et al., 2021)
measured operators’ SA at different levels of task complexity
in experiments and found that operators’ SA gradually
decreased as task complexity increased. However, the lack of
a section on measuring task complexity in these experimen-
tal studies leads us to think: what kind of tasks can be called
high (low) complexity tasks? Although some progress has
been made in developing methods to measure task complex-
ity (Ham et al., 2011; Zheng et al., 2015), it is still difficult
to compare the complexity between different task combina-
tions in multitasking. Therefore, proposing a task complexity
measure for multitasking has potential applications for us to
effectively design HMI tasks or to match abilities between
the operator and the task difficulty.

Multitasking can be described as the behavior of an oper-
ator processing multiple tasks simultaneously and is an
amazing capability of our cognitive system (Himi et al.,
2023). Multitasking has been a theme in experimental psych-
ology and human factors science for decades (Hommel,
2020). Salvucci and Taatgen, working on the mechanics of
human multitasking, proposed a theory of multitasking
called threaded cognition (Dario & Niels, 2010). The core of
threaded cognition is that multitasking behavior can be
attributed to multiple threads of thought running simultan-
eously, which formalizes the notion of threads and how they
execute, intertwine, and interfere during multitasking. In
contrast, this paper attempts to formalize the operator’s task
behavior and the cognitive resource occupation it entails in

order to explain the operator’s cognitive overload and
underload in multitasking. In this regard, this paper is in
line with threaded cognition, both of which enhance the
understanding of human multitasking more broadly. Unlike
threaded cognition this paper provides a more abstract treat-
ment of the information (cognitive resource) requirements
of operators in HMI, incorporating them as difficulty factors
in a complexity measure model for multitasking based on
Shannon’s information theory. This model is proposed fol-
lowing three basic assumptions: (1) complex tasks can be
considered as a combination of simple tasks. (2) Even for
the smallest task unit, there may be multiple attributes of
cognitive resources demanded, or multiple threads may be
invoked. (3) Each class of cognitive resources serves only
one task at a time, which is the core assumption for the
quantification of the value-added of difficulty proposed in
the complexity measure model. Meanwhile, these three basic
assumptions are the key assumptions that enable the task
complexity measure model proposed in this paper to be
embedded in the ACT-R model, which is a higher-level cog-
nitive model (Ritter et al., 2019).

In summary, task complexity is a key factor in an opera-
tor’s ability to establish and maintain SA in multitasking.
Meanwhile, as task complexity is considered as a sub-
concept or sub-element of task difficulty (Braarud &
Kirwan, 2011), and the two are deemed interchangeable in
certain tasks (Bell & Ruthven, 2004). This paper defines task
difficulty as a measure of task complexity, which is a task
characteristic that measures the information demand (atten-
tion resource demand) of operators during multitasking.
The purpose of this paper is to propose a quantitative model
of task difficulty in a multitasking to facilitate better explor-
ation of the changing patterns of operators’ SA at different
levels of task difficulty.

This paper is structured as follows: Section 2 details the
methodology of the paper, Section 3 describes the design of
the SA measurement experiment and the analysis of the
results, Section 4 discusses the results of the experiment,
and Section 5 concludes the whole paper.

2. Methodology

2.1. Framework of the methodology

In this paper, multitasking is defined as the need for opera-
tors to complete at least two meta-tasks during the same
period, and meta-tasks refer to the smallest task units
obtained after the decomposition of a complex task (Zhao,
2021). The first step of quantifying the multitasking diffi-
culty is to quantifying the difficulty of individual meta-tasks,
which is based on Shannon’s information theory. Then a
three-dimensional attribute model of meta-task is developed
based on multiple resource theory to measure the added dif-
ficulty caused by concurrent tasks in multitasking. Finally,
this paper proposes a difficulty measure for multitasking in
combination with the first two steps. Meanwhile, a SA meas-
urement experiment is conducted to investigate the impact
of task difficulty on SA at different levels. The methodo-
logical framework is shown in Figure 1.
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2.2 A quantitative model of task difficulty in
multitasking

Information-rich multitasking requires operators to allocate
their attention to multiple meta-tasks, and when multiple
meta-tasks compete for operators’ limited attention resour-
ces, operators’ performance, including SA, and the safety of
the operation can be significantly affected due to informa-
tion demand overload (Naderpour et al., 2014; Young et al.,
2015). Task difficulty is a task characteristic that measures
the information demand (attention resource demand) of
operators during multitasking. Due to the resource competi-
tion among meta-tasks, the difficulty of multitasking is not
the sum of the difficulty of all meta-tasks: the difficulty
added by resource competition should also be considered.

2.2.1. A meta-task difficulty quantification method based
on Shannon’s information theory
Quantifying the difficulty of multitasking starts with measur-
ing the difficulty of meta-tasks. In Human-Machine
Interaction (HMI), the information requirement values of dif-
ferent meta-tasks determine the degree of difficulty for opera-
tors to perceive all the task information. In other words, the
information requirement values of meta-tasks characterize
their task difficulty. Therefore, this section measures the diffi-
culty of meta-tasks by quantifying their information require-
ment values, which can be obtained based on certain
characteristics associated with the meta-tasks.

Shannon’s information theory precisely specifies human’s
capacity in certain sensory, perceptual, and perceptual-motor
functions (Shannon, 1948), and Fitts extended this theory to
human motor systems as a way to propose a difficulty index
Id which has been widely accepted as a way of quantifying
the perceived difficulty of a task (Fitts, 1954). Id is expressed
as a logarithmic relationship between the task action

amplitude A and the action tolerance range Ws to measure
the average minimum information value required for a given
task, while Ws is the tolerance range measured in inches
and A is the specific action amplitude for a given task. For
example, for a disc transfer task, where the operator needs
to transfer a disc from one pillar to another, Ws represents
the difference between the diameter of the pillar and the
diameter of the center hole of the disc. and A represents the
center-to-center distance between the two pillars. Fitts also
conjectured that an operator’s information processing cap-
ability Ip for any task action is nearly constant. As shown in
Equation (2), there is a linear relationship between the diffi-
culty index Id and the action completion time FT of a task,
with the slope a obtained from regression analysis of the
experimental data and representing Ip: The usability of this
conjecture and Id can be proved in experiments.

Id ¼ � log 2
Ws

2A
¼ log 2

2A
Ws

bits=response (1)

FT ¼ bþ a � Id (2)

Id can be widely used in various action tasks (defined as
Continuous Tasks (CTs) in this paper), but its application is
also limited to action tasks (Fitts, 1954). In HMI, there are
some tasks where both the amplitude and the tolerance
range of an action are not suitable to be measured, espe-
cially those facing discrete response demands (defined as
Discrete Tasks (DTs) in this paper). For example, a task
requires the operator to monitor multiple lights that may
come on at any time and respond to them within a short
time, but the amplitude of the action and the allowable tol-
erance range cannot be accurately measured, and the infor-
mation requirement values for the responses also cannot be
characterized. For DTs, other task characteristics are needed
to measure the information demand value. The solution lies
in Hick/Hyman Law (Hyman, 1953), a development of

Figure 1. Framework of the method in this study.
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Shannon’s information theory. It described a functional rela-
tionship between the stimulus information entropy Hs and
the response time RT, as shown in Equation (3), where Hs is
expressed as the logarithmic value of the number of stimuli j:
There is a linear relationship between Hs and RT, and the
slope a� represents the ability of the operator to respond to
the stimulus. As the operator’s ability to respond to stimuli is
fixed, the higher the Hs, the longer the RT: Based on this
relationship, this paper proposes a second type of task diffi-
culty index, I�d , as shown in Equation (4). I�d reflects the Hs of
a task per unit of pending response time, and I�d has better
applicability in difficulty quantification of DTs than Id:

RT ¼ bþ a� � Hs ¼ bþ a� � log 2 j (3)

I�d ¼ Hs
DT

¼ log 2j
DT

bits=response (4)

Id is well used in various CTs, while I�d can be used to
quantify the difficulty of DTs. The difference between these
two types of tasks is that they require different kinds of
responses. CTs require operators to give continuous
responses with specific action amplitude, and the amplitude
and accuracy requirements are taken into account. By con-
trast, DTs require operators to respond to the task immedi-
ately within a given period of time, and the action
amplitude and accuracy are often not considered. Despite
the difference, Id and I�d work under the same paradigm,
which is expressed in Equation (5): the higher the difficulty
level of responding to the task ID, the longer the response
time T, under the condition that the information processing
capability of the operator is fixed.

T ¼ FT,RTf g
ID ¼ Id, I�df g
a0 ¼ a, a�f g
T ¼ bþ a0 � ID

8>><
>>:

(5)

Under this paradigm, Id and I�d can be widely applied to
task setting and difficulty quantification in HMI experiments,
but there are still some problems. On the one hand, although
the slopes a and a� both represent the ability of the operator
to process information, they cannot be considered numeric-
ally equivalent. In other words, Id and I�d are unbalanced on
the same numerical scale. On the other hand, according to
the definition of I�d , the uncertainty of the stimulus will affect
the quantitative value of I�d when the probability of occur-
rence of j different stimuli varies. To solve this problem,
based on Equation (5), a correction method between different
difficulty indices is proposed in this paper.

Assuming that a complex task Task consists of m con-
tinuous tasks and n�m discrete tasks, for the two types of
meta-tasks shown in Equations (7) and (8), the correlation
coefficient between the inverse of the task response rate
1=RR and ID is derived from a linear regression equation,
and the correction factor l is expressed as the ratio of the
two coefficients. The response rate RR is defined as the ratio
of the number of successful task responses to the number of
tasks within the task time Dt under the specified response
discrimination criterion, and i refers to the meta-task Taski:

The correction factor l reflects the difference between the
slope a and a�, as shown in Equation (11), and in order to
ensure the numerical consistency of the operator’s ability to
process information between the two types of difficulty indi-
ces, the task difficulty index for DTs is corrected into l � I�d :
Task ¼ Task1,Task2, :::,Taskm,Taskmþ1, :::,Tasknf g, ðm < nÞ

(6)

a ¼
m �Pm

i¼1IdðiÞ � 1
RRðiÞ �

Pm
i¼1IdðiÞ �

Pm
i¼1

1
RRðiÞ

m �Pm
i¼1Id

2ðiÞ � Pm
i¼1IdðiÞ

� �2 (7)

a� ¼
n�mð Þ �Pn

i¼mþ1I
�
dðiÞ � 1

RRðiÞ �
Pn

i¼mþ1I
�
dðiÞ �

Pn
i¼mþ1

1
RRðiÞ

n�mð Þ �Pn
i¼mþ1I

�
d
2ðiÞ � Pn

i¼mþ1I
�
dðiÞ

� �2
(8)

l ¼ a�

a
(9)

RRðiÞ ¼ IdðiÞ � a , i ¼ 1, 2, :::,mð Þ (10)

RRðiÞ ¼ I�dðiÞ � a� ¼ I�dðiÞ � l � a , i ¼ mþ 1, :::, nð Þ (11)

IdðiÞ ¼
log 2

2AðiÞ
WsðiÞ , for CT

l � 1
DTi

� log 2 jðiÞ� �
, for DT

8>><
>>:

(12)

By combining the above methods, a formula that can be
widely used to quantify the difficulty of meta-tasks in HMI
experiments is derived, as shown in Equation (12). It can be
applied to calculate Id of CTs and DTs respectively.

2.2.2. A three-dimensional attribute model of meta-task
based on multiple resource theory
As discussed earlier, the difficulty of multitasking involves
not only the difficulty of the meta-tasks but also the diffi-
culty added by the resource competition among the
meta-tasks. The key to measuring the added difficulty is to
measure the degree of the resource competition among the
meta-tasks. According to multiple resource theory, the com-
petition is related to a variety of task factors, which are div-
ided into three groups in this section: the way to respond to
task requests, the type of resources required by the task, and
the way of information exchange between the task and the
operator. By using the three groups of factors as three basic
sets of difficulty attributes of a meta-task, it is possible to
determine the type of any meta-task in HMI and thus
explore the resource competition between meta-tasks, as dis-
cussed below from these three perspectives.

1. Different types of responses to meta-task requirements:
Discrete & Continuous

The two types of response to meta-task requirements
have been discussed in detail in 2.2.1. Requirements for
immediate response are defined as discrete requirements

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 4761



and requirements for continuous response are defined as
continuous requirements. Some researchers (Wickens, 1976)
have experimentally found that even though both monitor-
ing tasks (monitoring a state change at a particular position
on the screen) and tracking tasks (maintaining the stability
at a particular position on the screen) occupy pools of visual
resources, they are significantly different in the degree of
interference with concurrent tasks and represent immediate
response requirements and continuous response require-
ments, respectively. The above findings suggest that these
two different kinds of response requirements have different
degrees of impact on task difficulty in concurrent tasks, and
also reveal a basic set of difficulty attributes: discrete versus
continuous.

2. Different types of resources required for a meta-task:
Visual & Auditory

In this paper, a resource pool is defined as a collection of
sources of operator input to a meta-task. Specifying the
resource pool types and which resource pool the meta-task
specifically occupies is key to studying the type of meta-task.
Some studies have found that visual interference affects
operators more than auditory interference does when they
drive a car through a curve (Donmez et al., 2006; Parkes &
Coleman, 1990). Another study (Wickens et al., 2011) com-
pared two kinds of concurrent tasks, i.e., visual-auditory and
visual-visual, and found that operators performed better in
the former kind of tasks. All of these findings indicate the
existence of two resource pools, namely visual and auditory
resource pools, and suggest that the more frequent the
repeated occupation of the same resource pool by different
meta-tasks, the greater their overall task difficulty.
Therefore, depending on the resource attributes required by
the meta-tasks, the second basic set of task difficulty attrib-
utes can be divided into visual and auditory attributes.
However, for some special meta-tasks, visual and auditory
resources are jointly demanded, and these meta-tasks are
defined as visual-auditory Tasks.

3. Different ways of information exchange between the
task and the operator: Input & Output

Task completion consists of two parts: operators’ percep-
tion of information about the task environment and infor-
mation feedback to the task environment, which are defined
as operators’ information input process and information
output process respectively. For specific tasks, these two
parts play either a primary or a secondary role in a cycle of
completing the meta-task. In this paper, meta-tasks primar-
ily involving information input process are defined as input
tasks and meta-tasks primarily involving information output
process as output tasks. Meanwhile, some experimental evi-
dence showed that certain tasks with greater task difficulty
(e.g., auditory monitoring) interfered less with another task
(e.g., target tracking) than certain tasks with less task diffi-
culty (e.g., maintaining constant force) (Wickens, 1976). As
auditory monitoring and maintaining constant force are

considered as an input task and an output task, respectively,
in this paper, this finding illustrates the different influences
of information input and output dominance on task diffi-
culty. Further, we believe that the concept of System 1 and
System 2 processing (Stanovich & West, 2000) is helpful
here. System 1 processes are “fast, automatic, or uncon-
scious” as input tasks, and System 2 processes “require
access to a single, capacity-limited central working memory
resource”(Evans, 2008) as output tasks. Therefore, this study
considers input and out as the third basic set of difficulty
attributes. However, for some special meta-tasks, both infor-
mation input and output processes have a key influence on
the completion of the task, and these meta-tasks are defined
as input-output Tasks.

Integrating the above three groups of basic task difficulty
attributes proposed according to multiple resource theory
and based on Campbell’s basic ideas about task classification
methods (Campbell, 1988), this paper proposes a three-
dimensional meta-task attribute model in cognitive process,
as shown in Figure 2. The three groups of basic task diffi-
culty attributes are embodied in three dimensions of space,
thus dividing the cube into eight basic cells, each of which
represents a basic meta-task attribute. With this model, any
meta-task can be assigned to one or more cells in the cube
according to its difficulty attributes in the three dimensions.
Also, for any two meta-tasks in multitasking, the larger the
number of overlapping cells between them, the stronger the
resource competition between them and the greater the dif-
ficulty added. Based on this model, the difficulty added by
multitasking can be quantified and calculated, offering the
theoretical basis of the difficulty calculation method for mul-
titasking in the next section.

2.2.3. A multitasking difficulty calculation method based
on task profiles
The difficulty of multitasking depends on the difficulty of
the meta-tasks and the difficulty added by multitasking.
Concurrent tasks (i.e., the operator is asked to complete two
meta-tasks at the same time) are the classic multitasking
situation and the key influencing factor for multitasking per-
formance. This paper proposes that the degree of resource
competition between concurrent tasks is determined by the
number of overlapping cells p between two meta-tasks:
the larger the number, the stronger the competition, and the

Figure 2. A three-dimensional attribute model of a meta-task.
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greater the added task difficulty due to resource competition.
In this view, an evaluation criterion of resource competition
between concurrent tasks is obtained, as shown in Equation
(13): the correlation coefficient cij between one meta-task
Taski and another meta-task Taskj is defined as the degree of
resource competition between the two meta-tasks, and cij is
positively correlated with the number of overlapping cells pij
of two meta-tasks. If a complex task consists of n meta-tasks,
the correlation coefficient between any two meta-tasks can be
obtained from the correlation coefficient matrix An�n: The
matrix An�n represents the pressure of resource competition
between meta-tasks in multitasking.

An�n ¼
0 c12 � � � c1n
c21 0 � � � c2n
..
. ..

. ..
. ..

.

cn1 cn2 � � � 0

2
6664

3
7775 ,while cij ¼ cji , cij / pij

(13)

In multitasking, each process from the beginning to the
end of any meta-task is defined as one task event, and all
task events of n types of meta-tasks in a given period Dt are
integrated on the same task profile, which is shown in
Figure 3. From the task profiles, we can understand whether
these meta-tasks have time overlap at demand time and cal-
culate the time overlap value between meta-tasks, which is
also called task concurrency duration in this paper. tij is the
concurrency duration of Taski and Taskj:

According to the difficulty quantification method of meta-
tasks proposed in 2.2.1, the difficulty of n types of meta-tasks
are Id 1ð Þ, :::, IdðnÞ, respectively. In order to eliminate the
influence caused by different dimensions of indicators within
the task difficulty calculation formula, the meta-task difficulty
is normalized to achieve comparability between different task
difficulty values, and the process is as follows.

IdðiÞ ¼ IdðiÞ
max Idð1Þ, Idð2Þ, :::, IdðnÞ� � (14)

Resource competition between concurrent tasks increases
the overall task difficulty. Suppose the added task difficulty
caused by Taski and Taskj in the complex task Task is
DId Task, i, jð Þ, and DId Task, i, jð Þ is jointly determined by
the difficulty of meta-tasks, the correlation coefficient cij
between the meta-tasks, and the concurrency duration tij of
the meta-tasks, which is defined as Equation (15). In
Equation (15), Id(i) is the task difficulty of Taski after stand-
ardized processing, cij is the correlation coefficient between
Taski and Taskj and Dt is the length of a given period.

DId Task, i, jð Þ ¼ IdðiÞ � IdðjÞ � cij � tij � 1
Dt

(15)

In summary, the difficulty of multitasking Id Taskð Þ is
determined by the task difficulty of all n meta-tasks and the
difficulty added by all concurrent tasks, which is defined as
Equation (16).

Id Taskð Þ ¼
X
1�i�n

IdðiÞ þ
X

1�i<j�n

DId Task, i, jð Þ (16)

2.3. A multilevel measure of SA based on SAGAT

Generally, existing SA measurement methods can be divided
into two categories: inferential measurement methods and
direct measurement methods (Miles & Strybel, 2017).
Situation Awareness Global Assessment Technique (SAGAT)
is one of the earliest and most widely used SA direct meas-
urement methods, allowing immediate assessment of SA by
asking operators about their perceptions of the current situ-
ation. When using SAGAT, simulations of representative
tasks or scenarios are frozen at randomly selected times, and
system displays are blanked while operator quickly answer
questions about their current perceptions of the situation.
The operators’ answers are then compared with the actual
situation to objectively measure their SA. SAGAT was found
to be a highly sensitive, reliable, and predictive measure of
SA that is useful across a wide variety of domains and
experimental settings (Endsley, 2021; Salmon et al., 2006). In
SAGAT, since it is not possible to ask the operators about
all situations they face at the point of interruption, some SA
questions are randomly selected, and this random sampling
method is consistent and statistically valid (Endsley, 1988).

In HMI, the information exchange between the operator
and the task environment is divided into two parts: informa-
tion input and information output. The efficiency of informa-
tion input is considered as the success rate of the operator’s
SA establishment, i.e., the ratio of output information to input
information in the operator’s cognitive process can measure
the SA establishment. A randomly selected part of SA ques-
tions from all task situations are taken as the operator’s infor-
mation input, and the operator’s response to the situation at
the time of interruption is taken as the output information.
As shown in Equation (17), SA is measured as the proportion
of correct responses to SAGAT questions, where sa is the SA
score and N is the total number of selected SA questions.

sa ¼ 1
N

XN
j¼1

rðjÞ

whereby rðxÞ ¼ 1 if the xth item is correctly answered
0 otherwise

�

(17)

Overall, SAGAT adopts the perspective of information
transfer accuracy in observing the HMI process and pro-
vides a more realistic picture of the operator’s SA. As a glo-
bal metric, SAGAT also allows the measurement of different
levels of SA (i.e., level 1 (perception level), level 2 (under-
standing level), and level 3 (prediction level)) by differentFigure 3. Task profiles in a multi-task model.
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question designs. In the subsequent experiment, we used
SAGAT to design questions for each of the three levels of
SA and measured the operators’ SA values at the three lev-
els. Based on the quantitative model of multitasking diffi-
culty proposed in the previous section, we explored the
changes of the three levels of SA under different levels of
task difficulty in multitasking.

3. Experiment

3.1. Subjects

This experiment had 18 participants, aged from 20 to
26 years old, (M ¼ 22:6 and SD ¼ 2:6), including 10 males
and 8 females. All participants were students of Beihang
University with knowledge of general flight operations and
experience in operating aircraft simulators. On the day
before the experiment, all subjects were informed of the
experiment procedures and points to note. It was also
assured that they had enough sleep the night before and
were not tired on the day. All participants had normal hear-
ing and normal or corrected-to-normal vision. Only right-
handed participants were recruited for this study due to the
operation of OPEN-MATB and to avoid the influence of
handedness on the experiment.

3.2. Experimental equipment and materials

The experimental equipment consisted of a laptop computer
with a 22-inch display, a mouse, and an x-box joystick.
Subjects were asked to complete the set tasks on

OPEN-MATB (Cegarra et al., 2020), a multi-attribute task
software on the laptop computer, with the right hand using
the mouse and the left hand controlling the joystick.

3.3. Experimental task

OPEN-MATB, derived from the Multi-Attribute Task
Battery (MTAB) developed by NASA, provides a set of base-
line tasks that can be used in a wide range of laboratory
studies for human performance and workload assessment.
Among the existing studies, many fields have leveraged
MATB to simulate various attribute flight tasks faced by
pilots in the air while exploring various theories (Feng et al.,
2022; Mortazavi et al., 2019; Nixon & Charles, 2017), and
studies have also made arguments for the persuasiveness of
the MATB(C. D. Wickens et al., 2016). As shown in
Figure 4, there were four meta-tasks provided by OPEN-
MATB, namely, System Monitoring (SYSMON), Tracking
(TRACK), Communications (COMM), and Resource
Management (RESMAN).

The SYSMON required the subject to monitor the system
status during the task, which consisted of two warning lights
(F5 and F6) and four gauges (F1–F4). For most of the
experiment, the warning lights remained normal (green light
on and red light off) and the four gauges fluctuated within
the normal range. When the status of the warning light
changed or the gauges fell out of range, the subject was
required to press the key corresponding to the failure point
with the mouse.

The TRACK consists of two modes, automatic and man-
ual. In the manual mode, it requires the subject to use the

Figure 4. A Multi-attribute task battery.
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joystick to maintain a circular icon in the center of the tar-
get area.

The COMM presents subject with auditory signals that
prompt them to respond when they hear a specific call sign.
Once the call sign is confirmed, the subject is asked to
change the frequency of the radio.

The RESMAN simulated the in-flight fuel management
task. Subject was asked to maintain optimal fuel levels
(2400–2600 units) in two primary fuel tanks (labeled A and
B). This was accomplished by transferring fuel from the four
secondary tanks (labeled C-F) to the primary tanks. The
subject can click on the valves (marked with the numbers
1–8) in order to transfer the fuel to the desired direction.
Also, during the experiment, any valve can malfunction
(change to red state), in which case the subject is required
to keep the fuel level in the main tank by modifying the
state of other valves.

3.4. Experimental design

3.4.1. Independent variable
The independent variable of the experiment is the difficulty
of multitasking. The experiments were conducted by design-
ing different task processes to achieve different difficulty lev-
els, considering the effects of three main factors on task
difficulty, including: numbers of concurrent tasks, task com-
binations and task concurrency duration. The different mul-
titasking scenarios are implemented by writing Extensible
Markup Language (XML).

3.4.2. Dependent variables
In order to investigate the effect of task difficulty on the
subjects’ SA at different levels, three dependent variables
were counted: SAGAT score, task completion time and task
response rate. SAGAT scores were obtained in the following
way: the experiment was interrupted at a certain point,
the subjects were asked to quickly answer questions about
the current situation, and both the actual situation and the
operator’s responses were recorded and compared to deter-
mine the correctness of their responses. At each interruption
point, three types of questions were designed to measure the
three-level SA. SAGAT questions are documented in the
Appendix of this paper. The time taken by the subject to
complete the task was automatically recorded by the pro-
gram and will be used as a criterion to determine whether
the response to the task was successful. Task response rate
referred to the ratio of the number of successful responses
to the task to the total number of occurrences of the task in
each experiment, which was collected for the task difficulty
model.

3.4.3. Program design
The experiment uses a within-subject design, each subject
was asked to complete three sets of tasks at different levels
of difficulty, and was asked to complete a subjective ques-
tionnaire about the task difficulty after completion.

Six different tasks were designed in this experiment, each
task was four minutes long, the first three tasks contained
three different meta-tasks while the last three tasks contained
four. For the three discrete meta-tasks SYSMON, COMM and
RESMAN, the response demand time of each event is taken
as the duration of this event; for the TRACK task, the time
period of the manual mode is considered as the duration of
the task. In different task designs, the occurrence frequency
of each meta-task is kept the same, while the concurrent dur-
ation between meta-tasks is not the same. The event frequen-
cies of different meta-tasks are shown in Table 1.

Meanwhile, in order to eliminate differences in the sub-
jects’ proficiency in completing the three sets of tasks, a
Latin square was used to determine the tasks for each sub-
ject, thus avoiding the effects of experimental order. Each
subject was asked to perform a six-minute pre-experiment
before the formal experiment, during which the task com-
pletion time and the task response rate data for each meta-
task were automatically recorded by the program.

3.5. Experimental data and pre-processing

3.5.1. Meta-task difficulty calculation
Based on the three-dimensional meta-task attribute model
proposed in 2.2.2, the attributes of the four meta-tasks pro-
vided by the experimental platform were obtained (Table 2).

Based on the meta-task difficulty measurement method
proposed in 2.2.1 and the task response data collected from
multiple subjects through pre-experiments, the task difficulty
of the four meta-tasks was calculated and shown in Table 3.

3.5.2. Complex task grouping design and its task difficulty
calculation
Based on the evaluation criteria for the degree of resource
competition between concurrent meta-tasks proposed in
2.2.3, the correlation coefficients between every two of the
four types of meta-tasks provided by the experimental plat-
form can be obtained, and the correlation coefficient matrix
An�n was shown in Equation (18).

A4�4 ¼
0 2 3 2
2 0 1 2
3 1 0 2
2 2 2 0

2
664

3
775 (18)

Table 1. Frequency of events for different meta-tasks.

Mata-task Events Frequency

SYSMON Green light off & Red light on & Gauges abnormal Once in 15 s
TRACK Manual mode 90 s
COMM Call occurs Once in 30 s
RESMAN Valves failure & Valves repair Once in 20 s

Table 2. Meta-task attributes.

Meta-task attribute SYSMON TRACK COMM RESMAN

Continuous & Discrete Discrete Continuous Discrete Con-Dis
Visual & Auditory Visual Visual Auditory Visual
Input & Output Input Input In-Out Output
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For the six groups of experimental tasks, the task diffi-
culty was calculated based on the difficulty of the four types
of meta-tasks used in the experiments, the correlation coeffi-
cients between the tasks, and the task concurrency duration,
as shown in Table 4.

3.5.3. Measurement of three levels of SA
Based on the multilevel measurement method of SA in 2.3,
the SAGAT scores for the three levels of SA (perception,
comprehension, and prediction) were obtained, as shown in
Table 5.

3.6. Results

Statistical analyses were performed using SPSS Statistics 26.0
(a ¼ 0:05 for all statistical tests). In this paper, a repeated-
measures analysis of variance (ANOVA) was used to deter-
mine the main effect of task difficulty on the dependent
variables. For within-subject variables, Mauchly’s test was
used to test the sphericity hypothesis and Pearson’s correl-
ation was used to calculate the level of correlation between
the measures.

3.6.1. Correlation test between task difficulty measures
and subjective scores
Based on the task difficulty quantitative model proposed
in this paper, Section 3.5 completed the difficulty calcula-
tion for the six task groups. Meanwhile, the correlation
test between task difficulty values and participants’ subject-
ive scores (through subjective questionnaires) was carried

out in this section. Table 6 demonstrates the task difficulty
values and subjective scores of the subjects for the differ-
ent groups.

The results of the correlation analysis showed a positive
correlation between task difficulty values and subjective
scores. As shown in Table 7, at a significance level of 0.05,
there was a significant correlation between the task difficulty
value and the subjective scores (sig ¼ 0:046 < 0:05).

3.6.2. Correlation analysis of task difficulty and SA scores
The Pearson correlation method was used to calculate the
correlation level between task difficulty and SA scores. As
shown in Figure 5, with the increase in task difficulty, the
value of SA gradually decreased. The Pearson correlation
coefficient between task difficulty and SA showed a strong
negative correlation between the two (r ¼ �0:966).

The results of Mauchly’s test showed that SA scores at
different levels of task difficulty meet the sphericity hypoth-
esis (p ¼ 0:927 > 0:05), as shown in Table 8. The main
effect of task difficulty on SA scores was significant ðF ¼
9:176, a ¼ 0:05, p < 0:05), as shown in Table 9. Therefore,
it was concluded that the higher the task difficulty, the lower
the SA level of the operator, and that there were significant
and large differences between SA scores at different levels of
task difficulty.

Table 3. Meta-task difficulty measurement.

SYSMON TRACK COMM RESMAN

jðiÞ 12 — 4 16
ti 10 — 15 20
RRðiÞ 0.729 0.889 0.944 0.791
IdðiÞ=I�dðiÞ 0.358 0.270 0.133 0.2
IdðiÞ 0.451 0.270 0.167 0.252
�IdðiÞ 1 0.599 0.370 0.558

Table 4. Task difficulty of different groups.

Task1 Task2 Task3 Task4 Task5 Task6P
i IdðiÞ 2.007 1.778 1.801 2.293 2.293 2.293

DIdðT , 1, 2Þ 0.329 0.330 0 0.199 0.175 0.199
DIdðT , 1, 3Þ 0 0.532 0.458 0.042 0.009 0.056
DIdðT , 1, 4Þ 0.474 0 0.553 0.372 0.251 0.274
DIdðT , 2, 3Þ 0 0.080 0 0 0.014 0.028
DIdðT , 2, 4Þ 0.167 0 0 0.067 0.112 0.089
DIdðT , 3, 4Þ 0 0 0.215 0.026 0 0P

i, j DIdðT , i, jÞ 0.971 0.941 1.226 0.707 0.560 0.647
IdðTÞ 2.978 2.719 3.027 2.999 2.853 2.939

Table 5. Different levels of SA in tasks with different difficulty levels.

Task1 Task2 Task3 Task4 Task5 Task6

IdðTÞ 2.978 2.719 3.027 2.999 2.853 2.939
Perception — — — 0.589 0.839 0.732
Comprehension — — — 0.786 0.857 0.714
Projection — — — 0.857 0.786 0.857
SA 0.714 0.889 0.619 0.649 0.831 0.753

Table 6. Task difficulty values and subjective score for different groups.

Task1 Task2 Task3 Task4 Task5 Task6

IdðTÞ 2.978 2.719 3.027 2.999 2.853 2.939
Subjective score 4.00 1.89 4.56 3.11 2.33 2.44

Table 7. Results of correlation analysis.

source Pearson Correlation Significance Number of cases

Subjective score 0.819 0.046 6

Figure 5. Correlation between three levels of SA and task difficulty.

Table 8. Mauchly’s test of sphericity.

Source Mauchly W
Approximate
chi-square

Degree of
freedom Significance

Task difficulty 0.153 7.699 14 0.927
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3.6.3. Correlation analysis of task difficulty and three-level
situation awareness
Task4, Task5, and Task6 were selected as three sets of
experiment tasks with low, medium, and high difficulty
respectively. The correlation analysis and ANOVA revealed
the changes of SA at the perception, comprehension, and
prediction levels when the task difficulty levels were differ-
ent (Figure 6).

As shown in Table 10 and Figure 6, as task difficulty
increased, a decreasing trend was found in perceptual-level
SA scores, and results of ANOVA suggested a significant
difference in perceptual-level SA scores when task difficulty
changed (F ¼ 6:388, a ¼ 0:05, p ¼ 0:013 < 0:05). Post hoc
comparisons indicated significantly higher perceptual-level
SA scores for low task difficulty than those for medium task
difficulty and high task difficulty, and perceptual-level SA
scores for medium task difficulty were also significantly
higher than those for high task difficulty. This result well
supported the experimental control of task difficulty by
selecting three sets of experimental tasks T4, T5, and T6:

For SA at the comprehension level, there was a moderate
negative correlation between task difficulty and SA scores
(r ¼ �0:658), which was significantly smaller than the cor-
relation between task difficulty and SA scores at the percep-
tion level. For SA at the prediction level, there was no
negative correlation between SA scores and task difficulty,
and SA scores remained almost constant when the task diffi-
culty was low, medium or high. Meanwhile, ANOVA
showed that there was no significant difference between

comprehension-level SA and prediction-level SA at different
task difficulty levels (p ¼ 0:746 > 0:05). Therefore, we con-
cluded that task difficulty has a significant effect on SA at the
perception level, a smaller effect on SA at the comprehension
level, and almost no effect on SA at the prediction level.

4. Discussions

This paper proposes a task difficulty measurement method
for multitasking in HMI, which provides a reference for
quantifying of task-related factors such as task difficulty,
complexity, and load in human factors experiments, and its
implications are further discussed below.

1. Applicability analysis of the multitasking difficulty
measurement method

Investigating the impact of various task (system) factors on
people’s cognitive processes through human factors experi-
ments have been a popular research direction in the field of
human factors reliability in recent years. In existing research,
scholars have focused more on controlling task factors in
experiments through qualitative comparison of task complex-
ity, which has limitations when the experimental task compos-
ition is more complex, especially in multitasking situations.
Such limitations are overcome by the multitasking model and
its task difficulty calculation method proposed in this paper,
which achieves task difficulty level classification and quantita-
tive calculation in complex task situations.

The SA scores at different levels of task difficulty meas-
ured with SAGAT indicate a strong negative correlation
between task difficulty and SA. This result is consistent with
the findings of Lin, Heikoop, and Li et al (Heikoop et al.,
2018; Lin et al., 2013; Lin & Lu, 2016), adding new quantita-
tive evidence for the relationship between task difficulty and
SA, as well as proving the rationality and validity of the
model and calculation method.

The model and the method provide a new way to quan-
tify task-related factors in human factors experiments. They
allow the division of more task levels and help make the
conclusions drawn from the inquiry in this direction more
convincing.

2. Analysis of the effect of task difficulty on SA

The conceptual framework of SA has been extensively
researched, and the relationships between the three levels of

Table 9. Results of variance analysis of SA scores.

Source Sum of squares of III class Degree of freedom Mean square F Significance

Task difficulty 0.379 5 0.076 9.176 0.001�

Table 10. Results of variance analysis of SA scores at different levels.

Source Sum of squares of III class Degree of freedom Mean square F Significance

Perception 0.220 2 0.110 6.388 0.013
Comprehension 0.071 2 0.036 0.300 0.746
Projection 0.024 2 0.012 0.300 0.746

Figure 6. Three levels of SA results at different task difficulty levels.
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SA are worth exploring in depth. The experimental data in
this paper showed that the patterns of change in the estab-
lishment of the three levels of SA varied at different levels of
task difficulty. Also, there was a strong correlation between
the SA scores at the perceptual level and the task difficulty.
Our interpretation of the experimental results is that the
effect of different levels of task difficulty on SA is mainly
reflected in the first level of SA, i.e., the perception level. By
contrast, task difficulty has a much smaller effect on SA at
the comprehension level and basically no effect on SA at the
prediction level. In other words, the perceptual level of SA
is most sensitive to changes in task difficulty and is more
likely to lead to perceptual errors (ignoring or misperceiving
information) when task difficulty reaches or exceeds the lim-
its that the operator can handle, while the comprehension
and prediction levels of SA appear to be more dependent on
the operator’s mental model and long term memory
(Endsley, 1995a), and higher cognitive resource require-
ments (task difficulty) do not significantly affect this ability.

Moreover, the effect of operator experience level on SA
cannot be ignored in the discussion of the results; for
example, novice operators are more likely to make mistakes
at lower levels of SA compared to experienced operators.
This may alter the effect of task load on the mechanism of
SA formation, just as it would alter the mechanism of SA
formation by other factors (Gutzwiller & Clegg, 2013; Sohn
& Doane, 2004). Although the subjects participating in this
paper were trained on the operation of MATB, whether
these results will vary with subject expertise remains an
important question for future research. These results also
explain the findings of a statistical analysis in the aviation
safety report by Endsley et al., which suggests that about
72% of the SA-related errors occurred at the perception
level, 22% at comprehension level and 6% at projection
level(Mica R. Endsley, 1995a). This view is based on two
ideas in this paper, (1) task overload is a significant con-
tributor to SA errors (Endsley, 1995a) and (2) errors includ-
ing perception, comprehension, and prediction are part of
SA errors (Endsley, 1995b). Specifically, the perceptual
aspect of SA is more sensitive to changes in task load and is
more likely to lead to further SA errors when the task load
reaches or exceeds the operator’s tolerable limits.

The experimental findings in this paper also provide a
new direction for subsequent research on three-level SA,
namely exploring the relationship between the three levels
of SA from the perspective of variable correlation
quantitatively.

5. Conclusions

SA is critical to operator task performance and behavioral
safety in HMI, and task difficulty is an important influenc-
ing factor of SA. In experimental investigations into human
factors, the problem of how to set the difficulty level of
experimental tasks is unavoidable. The traditional approach
designs task difficulty levels by focusing on the difficulty
contrast between different tasks, but this method has limita-
tions in multitasking situations.

To address this problem, this paper proposes a multitask-
ing difficulty measurement method and conducts experi-
ments to measure SA under different levels of task difficulty.
It presents a more general meta-task difficulty quantification
method based on Shannon’s information theory, a three-
dimensional meta-task attribute model based on task tax-
onomy and multiple errors, and a way of measuring the
resource competition between concurrent tasks, based on
which a multitasking model and its task difficulty calculation
method are put forward.

Through a SA assessment experiment, this research ana-
lyzed the correlation between task difficulty and SA scores
as well as the correlation between the three levels of SA
scores at different levels of task difficulty. The data analysis
shows that there is a strong negative correlation between
task difficulty and SA, and the perceptual level of SA is
more easily affected by task difficulty than the comprehen-
sion and prediction levels. The experimental data and results
of this research are consistent with those of other existing
studies, which validates the rationality and usability of the
proposed model and method. This research also provides a
reference for task optimization, strategy selection, and oper-
ator attention allocation in HMI and offers new insights for
subsequent research on multi-level SA.

This study also has certain limitations noticed during the
experiment. One is that the meta-task three-dimensional
attribute model proposed in this paper is presented from the
perspective of resource requirements, which means that this
model may not apply to other tasks beyond HMI. We
believe, however, that the idea behind this model also works
for tasks in other domains. The other limitation exists in the
SAGAT questions pool designed in this paper, where some
of the questions in the pool focus on interference informa-
tion rather than task information. This is not consistent
with most SA theories, and we will further discuss the
impact of interference information in the SA process in our
future work.
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Appendix

Appendix A. Questions pool of SAGAT.

No. SAGAT question SA level

1 Were F1-F4 all in the normal range during the time period just mentioned? Perception level
2 Was the last light anomaly F5 or F6?
3 Was Gauge F1 in an abnormal state at the moment before the experiment was interrupted?
4 Did the recent gauges abnormal occur at the top or bottom side?
5 What was the TRACK in automatic mode or manual mode before the experiment was interrupted?
6 Did the operation mode of the TRACK change during the time period just now?
7 Did you notice immediately when the TRACK switched to manual mode?
8 Was the closest voice call to the end of the experiment from own channel or another channel?
9 Has the COM2 band been selected during this time period?
10 Were there any calls from other channels that occurred during the time period just now?
11 What is the current fuel level of primary tank A and B respectively?
12 What is the current fuel level of secondary tank C and D respectively?
13 Which valve is currently red in color?
14 What was the last faulty valve?
15 Did valve 2 fail in the time period just now?
16 Has the main tank been less than 2000 units in that time period?

17 Does the red light come on at the same time when F1 or F2 is abnormal? Comprehension level
18 Does the green light go off at the same time when F3 or F4 is abnormal?
19 Are you aware of the fact that valve failures do not occur during the manual mode of the TRACK?
20 Is the sensitivity of the two manual mode operations in the TRACK the same during the time period just now?
21 Is operation sensitivity LOW, MEDIUM, or HIGH in the manual mode of the TRACK during this task?
22 Do you know the meaning of the voice call when the object is NASA504?
23 Is the timer synchronized with the call sign?
24 Are you aware of a communication task occurring during manual mode for tracking tasks?
25 What do you need to do when tank A and Tank B are below 2500?
26 What do you need to do when the level of tank B is too low?
27 Did you find that partial valve fail did not affect the fuel level of the primary tank?
28 What do you need to do when tank A is below 2500 and tank B is above 2500?

29 What happens when you click F1-F4? Projection level
30 What happens to its state when you click F5 and F6?
31 Is there any rule in the occurrence sequence of abnormal states of F5 and F6?
32 Is there a pattern in the order in which F1-F4 appear abnormal?
33 Do you notice a light anomaly before the TRACK mode changes?
34 Does the center of the cursor shift the direction of the center box regularly in TRACK?
35 Is the manual mode held for the same length of time in TRACK?
36 Is there a pattern between the order of objects of call signs?
37 Do you know what a call sign means when it asks you to change the station to the appropriate channel?
38 What happens when a valve fails?
39 What happens when all the valves are open?
40 Is there a failure that cannot ensure that main tank A or B is not lowered?
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