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A B S T R A C T   

Accidents in human-machine systems often lead to serious consequences, so safety analysis is very important for 
such systems. However, the existing approach to safety analysis of human-machine systems lacks clear delin
eation of the coupling relationships between human and machine, or provide quantitative analysis. To address 
these issues, this paper proposes a method for safety analysis of human-machine systems, utilizing dynamic 
Bayesian network (DBN) and dynamic fault tree (DFT). The core of this method is the identification of human- 
machine coupling relationships, proposing 10 types of logical relationships and presenting corresponding DFT 
logic. Then, a conversion method from DFT to DBN is designed to avoid combinatorial explosion in complex FTA 
calculations. Based on the DBN model, simulation is conducted using Gibbs sampling, which offers higher 
computational efficiency. Additionally, a method for importance analysis is devised to identify critical nodes that 
impact the system risk. At last, a case study of refueling mission at space launch site is given to illustrate how to 
apply the method. Through simulation analysis, the safety risks during the refueling mission are quantitatively 
assessed, while critical nodes are identified. The results indicate that the dynamic Bayesian simulation method is 
good in information utilization, dynamic representation, and time performance.   

1. Introduction 

With the development of science and technology, human-machine 
systems have performed better with increasingly complex structures 
[1]. Composed primarily of complex machines, such systems involve a 
lot of work for operators, who, according to statistics, are related to 
20–90 % of system failures [2]. The resulting safety accidents may cause 
great harm to both the people and the equipment [3,4]. Therefore, to 
assess system safety, it is not enough to just analyze the safety of the 
machine; safety analysis from the level of human-machine systems is 
necessary. As a typical dynamic system, human-machine systems can be 
analyzed for safety using dynamic reliability methods [5]. However, it 
differs from purely hardware-based dynamic systems. When analyzing 
its safety, it is also necessary to analyze the interaction between human 
and machine operations. Considering these factors, the current methods 
for safety analysis of human-machine systems face three main chal
lenges. Firstly, the dynamic of human-machine systems can impact 
safety assessment by causing changes in structure, logic, and parame
ters, thereby altering the faults of the systems, necessitating more ac
curate model representations [6]. Secondly, the complex coupling 

relationship between humans and machines, which leads to safety fail
ures, requires clarification of its logic before quantitative analysis [7]. 
Thirdly, for many existing methods such as the dynamic Bayesian 
network (DBN), directly modeling the structure of complex 
human-machine systems and obtaining conditional probabilities often 
entails a significant workload [8]. 

In the field of system safety assessment, probabilistic safety assess
ment (PSA) is one of the most popular methods. PSA usually adopts 
logical graph method, flow chart method, and state transfer method to 
complete the assessment [9,10]. Based on the state of the system, PSA 
includes static methods and dynamic methods [11]. The static methods 
of PSA include fault tree analysis (FTA), Bayesian network (BN) and so 
on, while the dynamic methods include event sequence diagram, 
GO-FLOW method, Markov-state-transition method, Petri net method, 
etc. In the static situation, FTA and BN are representative methods. FTA 
has a clear description of fault logic [12], which enables the quantitative 
calculation of system failure (or top event) probability [13]. BN can 
simplify calculations and quantitatively evaluate the safety of 
human-machine systems with the support of relevant algorithms and 
software tools [14]. With the development of simulation technology in 
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recent years, BN has a broader application in human-machine systems 
[15]. However, in practice, the operation tasks tend to continue over 
time [16], and the human-machine systems have very obvious dynamic 
characteristics, which is fundamentally different from the case in static 
methods. 

Researchers have introduced DBN and dynamic fault tree (DFT) to 
meet the demands of dynamic system analysis [17,18]. DBN can 
describe the dynamic changes of human-machine systems well and 
enable quick quantitative analysis. On the basis of DBN, researchers 
designed the DBN simulation method. This DBN reasoning method 
based on simulation can greatly shorten the calculation time and 
improve the reasoning efficiency, which has become the focus of DBN 
reasoning algorithm research [19]. But for complex systems, it is diffi
cult to directly obtain the structure and conditional probability of DBN. 
Unlike DBN, DFT can easily describe and display the fault logic in dy
namic human-machine systems. However, since DFT is based on Markov 
model, a combinatorial explosion will occur if DFT is used for the 
analysis of large, complex, multimodal or multiphasic systems. [20]. As 
the number of cut sets increases exponentially with system size, it be
comes difficult to calculate the probability of top events for complex 
systems [21]. A better solution to dynamic human-machine system 
analysis is found in this paper by combining DBN with DFT: identify the 
fault logic to get DFT, then convert DFT into DBN, and finally use DBN 
for calculation. The difficulty in this method is to identify the fault logic 
of human-machine systems. 

In human-machine system research, fault logic identification 
methods can mainly be divided into two categories. Those in the first 
category separate people from machines and study each other inde
pendently. Such methods generally focus more on either human or 
machine [22]. For example, [23] emphasized human failure and 
regarded human beings as the main contributors to system failures. In 
addition, some studies have also analyzed both human and machine and 
superimposed one on the other to obtain conclusions [24,25]. Although 
this method is convenient for model construction and solution, it does 
not consider the deep mechanism of human-machine interaction. 
Methods in the second category take human as a part of the system 
environment for human-machine feedback research. In such studies, 
human factors can interact with machines in both directions [26] or one 
of them [27], thus influencing machine failures [28]. However, these 
studies only take into account the impact of machine failures on the 
system, but not the impact of human errors. To reflect the impact of 
human errors, a more complex human-machine-environment system 
can be constructed, and human errors can be used as environmental 
feedback for reliability analysis [29], but this will result in a larger 
amount of calculation [30]. The second kind of methods can reflect the 
human-machine interaction to some extent, but they do not analyze 
machine and human as two main parts of the system, and there is a lack 
of relevant concepts to describe the coupling logic between human er
rors and machine failures. In summary, there is a limited amount of 
literature available for studying the coupling mechanism between 
humans and machines, as both are considered equal in the system. 
Consequently, there is a scarcity of direct theoretical references for 
describing the failure mechanism of human-machine systems. 

To solve the problems discussed above, this paper provides a safety 
analysis method based on dynamic Bayesian simulation. It first divides 
the faults in a human-machine system into human errors and machine 
failures and studies the coupling relationship between them. Based on 
the logic between human errors and machine failures, it constructs the 
DFT model of the human-machine system. Then, the DFT is transformed 
into DBN using specific conversion methods. In this way, it not only 
gives full play to the advantages of DBN in quantitative analysis, but also 
solves the problems of building complex BN and the combinatorial ex
plosion caused by directly solving the DFT. After obtaining the DBN, the 
Gibbs sampling method is used for simulation to avoid the long solution 
time for complex system network. In order to evaluate the simulation 
results, an importance analysis of each node is designed to facilitate 

weak point identification. Finally, a case study of aerospace fuel filling is 
conducted to verify the effectiveness and advantages of this method. 

The paper is organized as follows. Section 2 proposes the basic 
framework of the dynamic Bayesian simulation method. Section 3 pre
sents the process of dynamic Bayesian simulation method. In Section 4, 
the method is applied to an aerospace fuel filling process to show its 
effectiveness and advantages. Conclusion is reached in Section 5. 

2. Framework 

As Fig. 1 shows, the dynamic Bayesian simulation method for safety 
analysis of dynamic human-machine system is divided into three stages: 
system analysis, system modeling and system assessment. A loop inter
face for feedback and inspection is also included in this method. 

Stage 1: System Analysis 
Before the safety analysis, the human-machine system needs to be 

analyzed first. In the preliminary analysis, it is necessary to clarify the 
content of the system boundary, system composition, and operation 
mechanism. Then the data of the human errors and machines failures in 
the system is collected. Sufficient data can bring more accurate analysis 
results. 

Based on the collected data, the fault logic in the system is identified 
through two steps. Firstly, draw the man-in-the-loop control diagram of 
each system fault. Secondly, list all human errors and machine failures in 
the system and compare them with the human-machine system fault 
logic table (Table 1) to match their fault logic. In this paper, 10 kinds of 
human-machine fault logic are summarized. They can not only fully 
explain the fault mechanism of human-machine systems, but also 
represent the vast majority of the fault modes in human-machine 
systems. 

Stage 2: System Modeling 
After determining the logic corresponding to the nodes, the DFT is 

established based on logic gates. Then the logic gates in the DFT are 
converted into DBN fragments. Finally, these DBN fragments are inte
grated into a complete DBN. Steps in this stage can be carried out ac
cording to the method provided in Section 3. These steps usually remain 
unchanged for different human-machine systems. 

Stage 3: System Assessment 
System assessment begins with obtaining the DBN. The reasoning 

algorithms of DBN mainly include exact reasoning algorithms and 
approximate reasoning algorithms. For complex systems such as human- 
machine systems, exact reasoning algorithms are too slow and have a lot 
of other limitations. Therefore, approximate reasoning algorithms are 
more often used. As an approximate reasoning algorithm, simulation has 
become one of the most widely used reasoning algorithms due to its 
short calculation time and high reasoning efficiency [31], and Gibbs 
sampling is a good choice for quick and accurate system safety analysis. 
Therefore, this paper uses the extended Gibbs sampling method to 
specify the length of the Markov chain and the number of time slices, 
thus obtaining the required posterior distribution samples. 

Using the data obtained from the simulation, the importance analysis 
can be carried out. Based on the perspective of system safety concerns, a 
series of indicators need to be designed to complete the importance 
analysis. Analyze the weakest node or nodes in the current system, and 
take targeted measures to improve it. Input the improved human- 
machine system into stage 1, and re-execute the dynamic Bayesian 
simulation until the system safety meets the requirements. 

Compared with previous methods of human-machine system safety 
evaluation, the dynamic Bayesian simulation method can better reflect 
the human-machine coupling relationship and provide continuous 
optimization and feedback, thus enabling improvement of the system for 
a long time. Specific steps of the method will be introduced in the next 
section. 
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3. Dynamic bayesian simulation method 

3.1. Obtain the fault logic to build the DFT 

In human-machine systems, a significant number of human opera
tional errors and machine failures exist, which ultimately lead to acci
dents. The DFT is an effective method for describing the fault logic of 
such dynamic human-machine systems. DFT mainly utilizes events, 
logic gates, and other symbols to describe the time-varying causal logic 
relationship between fault events of dynamic system. Compared with 
the static FT, the most significant feature of DFT is its utilization of 
dynamic logic gates. Dynamic logic gates mainly include priority-AND 
(PAND) gates, sequence-enforcing (SEQ) gates, spare (SP) gates, and 
functional-dependency (FDEP) gates. With these dynamic logic gates, 
complex dynamic human-machine systems can be easily modeled. 

To establish a DFT of human-machine system, the first thing is to 
identify the top event for the DFT, which typically represents a system 
failure that could lead to a serious accident. Then, it is necessary to 
clarify the boundary conditions of the system, as well as to identify the 
human nodes and the machine nodes. Next, the fault logic in the human- 
machine system needs to be determined, so as to complete the modeling 
of the DFT’s structure. 

Fig. 2 is an example of DFT in a human-machine system. Y indicates a 
system fault. From A to E, the white nodes represent machine failures 
and the nodes of the slash line represent human errors. The five nodes 
constitute a SEQ gate and a static gate respectively. These two logic 
gates affect system failures through another static gate. The probability 
calculations of these logic gates will be specifically introduced in Section 
3.2. 

However, the core feature of human-machine systems is the exis
tence of a large number of human-machine interactions, which makes it 
difficult to obtain the DFT directly. Compared to other dynamic systems, 
human-machine systems exhibit more complex coupling relationships 
between humans and machines, posing a significant challenge for safety 

analysis. This complexity constitutes one of the core issues addressed in 
this paper, making the analysis of fault logic as a critical aspect in 
establishing DFT. To draw the DFT, it is necessary to sort out the fault 
logic of human-machine systems according to the characteristics of 
people and the system. 

To delineate the fault logic, it is necessary to start from the root 
causes of failures in human-machine systems. Given the multitude of 
interactions and complex control relationships inherent in such systems, 
an initial analysis of the control relationships is paramount. In modern 
human-machine systems, which feature a high degree of automation, 
people mostly play the role of a monitor, and in a few cases, they play 
the role of a manipulator. As monitors, people obtain the information fed 
back by the monitoring machine and perform the next operation ac
cording to the regulations or personal judgment. After the operation is 
completed, the state of the monitoring machine is updated to generate 
new information, according to which people adjust their behaviors. This 
process is essentially a human-in-the-loop control process. A simple 
human-in-the-loop control diagram is shown in Fig. 3. 

The human-in-the-loop control diagram shows the logic between 
human errors and machine failures. Since the occurrence of human- 
machine system failures is often hierarchical, the human-machine 
coupling relationship reflected in the man-in-the-loop control diagram 
can be divided into two types: same-level coupling and cross-level 
coupling. This classification stems from the causal relationship be
tween human errors and machine failures in the faults. The same-level 
coupling means that two different types of fault events are the cause 
of logic gates, and the cross-level coupling means that one type is the 
cause of logic gates and the other is the result. Since the occurrence of 
faults in human-machine systems is often time-dependent, the logical 
relationship between human errors and machine failures can also be 
divided into time-dependent logic and time-independent logic. Time- 
dependent refers to the occurrence of system failures only when 
human errors and machine failures happen in a specific sequence [32]. 
Not all logic has time-dependent variations, Fig. 4 summarizes various 

Fig. 1. The dynamic Bayesian simulation method.  
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types of logic under the two classifications. Specifically, Table 1(a) in
troduces types of time-independent logic and Table 1(b) presents types 
of time-dependent logic. 

It is worth noting that the cross-level PAND logic and the cross-level 
FDEP logic are not given in the cross-level time-dependent logic. This is 
because the cross-level PAND logic is rare in actual human-machine 
systems and can be replaced by the cross-level SEQ logic, and the 
FDEP logic generally only exists at the same level. In addition, in actual 
human-machine systems, the judgment of the same-level coupling and 
that of the cross-level coupling are not parallel but sequential, with the 
latter preceding the former. Based on the logic between human errors 
and machine failures, the logic gates in the system can be determined 
according to their corresponding relationships (Table 2). 

The various types of fault logic summarized above facilitate the 
modeling of human-machine systems using DFT. However, the state 
space of DFT increases exponentially with the increase of system size, 
and direct solution usually causes state space explosion for complex 
human-machine systems. A more convenient way is to use DBN that 
utilizes historical data for quantitative calculation. The subsequent step 
is to transform from DFT to DBN of human-machine systems. 

3.2. Generate DBN based on DFT 

DBN is a probabilistic network based on static BN and hidden Markov 
model [33]. Compared with static BN, DBN consider the changes of state 
variables over time, while also encompassing both causal logic and 
temporal logic. Generally, it is composed of two parts: the initial 
network and the transfer network [34]. It can be regarded as a set of 
static BNs, each of which is corresponding to a time slice whose structure 
remains the same as that of the previous or next time slice. 

Supposing that the number of time slices in a human-machine system 
is T and T > 1, each time slice can be represented as GT = <<< H,M>T,

ET>,P >. (H,M)T is the set of all nodes in the time slice T. In addition, HT 

and MT represent the set of human error nodes and the set of machine 
failure nodes in the time slice T respectively. ET is the set of intra slice 
arcs and inter slice arcs in the time slice T. Supposing the set of human 
error nodes is HT = {H1

T , ..., Hn
T}, H1

T , ...,Hn
T represents the states of n 

different human error nodes at T respectively. Similarly, M1
T, ...,Mn

T 
represents the states of n different machine failure nodes at T 
respectively. 

Fig. 5 shows a simplified version of DBN. In this network, only the 
initial network in the time slice T and the transfer network from T to T +

ΔT are drawn, and the rest of the nodes at T are omitted because the 
topological structure is completely consistent with that at T+ ΔT. 

The adjacent time slices of DBNs are connected by directed arcs. 
These directed arcs are called the transfer network, which is essentially a 
set of conditional probability distributions (CPDs). These CPDs can be 
expressed as: 

P
(
(H,M)T+ΔT

⃒
⃒(H,M)T

)
=

∏n

i=1
P
(
(H,M)

i
T+ΔT

⃒
⃒parent(H,M)

i
T+ΔT

)
(1) 

It takes two steps to transform the DFT obtained above into DBN for 
subsequent calculation: the transformation of logic gates and the inte
gration of DBNs. Section 3.2.1 lists 6 methods to transform 10 logic gates 
in human-machine systems. Section 3.2.2 specifically describes the 
integration of DBNs. 

3.2.1. Transformation of logic gates 
Directly converting a complete DFT to a DBN is a huge project, and 

there is basically no universal method for it. Generally, DFT has both 
dynamic logic gates and static logic gates [35], and the transformation 
of DFT to DBN is essentially the transformation of static and dynamic 
logic gates. The transformation method of various logic gates is given 

Table 1 
(a). Time-independent logic in human-machine systems.  

Coupling 
relationship 

Type Description 

Same-level 
coupling 

Same-level 
AND logic 

At a certain level, both human errors and 
machine failures exist, and both of them occur, 
leading to subsequent higher-level human 
errors or machine failures. 

Same-level 
OR logic 

At a certain level, both human errors and 
machine failures exist. If either of them occurs, 
subsequent higher-level human errors or 
machine failures will occur. 

Cross-level 
coupling 

Cross-level 
AND logic 

At a certain level, only human errors exist, and 
all human errors occur, leading to subsequent 
higher-level machine failures. 
At a certain level, only machine failures exist, 
and all machine failures occur, leading to 
subsequent higher-level human errors. 

Cross-level 
OR logic 

At a certain level, only human errors exist, and 
as long as one human error occurs, subsequent 
higher-level machine failures will occur. 
At a certain level, only machine failures exist, 
and as long as one machine failure occurs, 
subsequent higher-level human errors will 
occur. 

Table 1(b). Time-dependent logic in human-machine systems 

Coupling 
relationship 

Type Description 

Same-level 
coupling 

Same-level 
PAND logic 

At a certain level, human errors occur first, and 
then machine failures occur (or machine 
failures occur first, and then human errors 
occur), leading to higher-level human errors or 
machine failures. 

Same-level 
SEQ logic 

At a certain level, both human errors and 
machine failures exist, and multiple human 
errors and machine failures occur in a certain 
order, leading to higher-level human errors or 
machine failures. 

Same-level SP 
logic 

At a certain level, human errors occur first, and 
then spare parts begin to work and fail, leading 
to higher-level human errors or machine 
failures. 
At a certain level, machine failures occur first, 
and human errors occur when operating spare 
parts, leading to higher-level human errors or 
machine failures. 

Same-level 
FDEP logic 

At a certain level, a certain human error or 
machine failure occurs, causing a human error 
or machine failure related to the previous one’s 
function. 

Cross-level 
coupling 

Cross-level 
SEQ logic 

At a certain level, only human errors exist and 
they occur in a certain order, leading to 
subsequent higher-level machine failures. 
At a certain level, only machine failures exist 
and they occur in a certain order, leading to 
subsequent higher-level human errors. 

Cross-level SP 
logic 

At a certain level, machine failures occur first, 
and then spare parts begin to work and fail, 
leading to subsequent higher-level human 
errors.  

Fig. 2. An example of DFT in a human-machine system.  
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below. Suppose X = 0 indicates that fault X does not occur, X= 1 in
dicates that fault X occurs, and fX(t) indicates the probability density 
function of fault X. Since the hierarchical differences only causing var
iations in fault logic without affecting the transmission of conditional 
probabilities, the same type of logic across different hierarchical re
lationships can share a single transformation method. Thus, by 

employing 6 transformation methods, the conversion process of the 10 
logics outlined in Section 3.1 can be adequately represented. It is worth 
noting that in all figures in this section, the nodes of the slash line 
represent human errors, and the white nodes represent machine failures.  

1) Same-level AND / cross-level AND: These AND gates describe the 
logic that when all input events occur in human-machine systems, 
the output event will occur. It is applicable to the same-level and 
cross-level coupling relationships, so it includes both the same-level 
AND logic and the cross-level AND logic. Fig. 6 shows the AND gate 
and its corresponding DBN, and the CPD of nodes are listed in 

Fig. 3. An example of human-in-the-loop control diagrams.  

Fig. 4. Classification of logic between human errors and machine failures.  

Table 2 
Relationship between logic gates and logic in human-machine systems.   

Time-independent logic Time-dependent logic 

Same-level Cross-level Same-level Cross-level 

AND gate √ √ — — 
OR gate √ √ — — 
PAND gate — — √ — 
SEQ gate — — √ √ 
SP gate — — √ √ 
FDEP gate — — √ —  

Fig. 5. A simplified example of DBN.  

Fig. 6. The AND gates and their corresponding DBN.  
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Table 3. In Fig. 6(a), X can be a human error or machine failure at a 
higher level. Fig. 6(b) shows one case of the cross-level AND logic 
where nodes A and B are machine failures and node X is a human 
error at a higher level. The other case where A and B are human 
errors and X is a higher-level machine failure follows the same logic, 
so it is not repeatedly illustrated here.  

2) Same-level OR / cross-level OR: The OR gates describe the logic that 
when any one of the input events occurs in human-machine systems, 
the output event will occur. It is applicable to the same-level and 
cross-level coupling relationships, so it includes both the same-level 
OR logic and the cross-level OR logic. Fig. 6 can also show the OR 
gate and its corresponding DBN. The CPD of nodes A(T +ΔT) and B(T 
+ΔT) are the same as those in the AND gate and the CPD of key node 
X is shown in Table 4.  

3) Same-level PAND: The PAND gate describes the logic that the output 
event will occur only if the input events A and B both occur and A 
occurs before B. It is generally applicable to the same-level coupling 
relationship, so it only includes the same-level PAND logic. Ac
cording to this sequential logic relationship, a two-state intermediate 
node Y needs to be added. Y = 1 means that A occurs before B and Y 
= 0 means that A does not occur before B. Either node A or node B is 
a human error, and the other is a machine failure. Node X can be any 
kind of higher-level fault. Fig. 7 shows one possibility of the PAND 
gate and its corresponding DBN. The CPD of key nodes Y(T+ΔT) and 
X are shown in Table 5.  

4) Same-level SEQ / cross-level SEQ: The SEQ gates describe the logic 
that the input events occur in a certain order and cause the output 
event to occur. It is applicable to the same-level and cross-level 
coupling relationships, so it includes the same-level SEQ logic and 
the cross-level SEQ logic. In the same-level SEQ gate, one or more of 
nodes A, B, and C are human errors, and node X can be any kind of 
higher-level machine failure. In the cross-level SEQ gate, when nodes 
A, B, and C are all human errors, node X is a machine failure; when 
nodes A, B, and C are all machine failures, node X is a human error. 

Fig. 8 shows the SEQ gates and their corresponding DBN, where 
nodes A, B, and C must occur in turn before node X occurs. The CPD 
of the key nodes is shown in Table 6. Since the CPD of node A(T+ΔT) 

is the same as that in the AND gate and the CPD of node C(T+ΔT) is 
the same as that of B(T+ΔT), only the CPD of B(T+ΔT) is shown here.  

5) Same-level SP / cross-level SP: the SP gates describe the logic that 
when the main part fails, the spare part starts to operate and replaces 
the main part. It is applicable to both the same-level and cross-level 
coupling relationships, so it includes both the same-level SP logic and 
the cross-level SP logic. According to whether there is any failure 
during the backup period of the spare part, the SP gate can be further 
divided into the cold spare (CSP) gate, the warm spare (WSP) gate, 
and the hot spare (HSP) gate. Since the CSP gate and the HSP gate 
can be regarded as special cases of the WSP gate, the discussion here 
focuses on the WSP gate. The WSP gate is the condition where the 
spare part probably fails during the backup period, but its failure rate 
is lower than that during the working period. The failure rate of the 

Table 3 
(a). The CPD of node A(T+ΔT) in the AND gates.  

A(T) A(T+ ΔT) = 1 A(T+ ΔT) = 0  

1 1 0  
0 ∫ T+ΔT

T fA(t)dt 1 −
∫ T+ΔT

T fA(t)dt  

Table 3(b). The CPD of node B(T+ΔT) in the AND gates  

B(T) B(T+ ΔT) = 1 B(T+ ΔT) = 0  

1 1 0  
0 ∫ T+ΔT

T fB(t)dt 1 −
∫ T+ΔT

T fB(t)dt  

Table 3(c). The CPD of node X in the AND gates  

A(T + ΔT) B(T+ ΔT) X = 1 X = 0 

1 1 1 0 
1 0 0 1 
0 1 0 1 
0 0 0 1  

Table 4 
The CPD of node X in the OR gates.  

A(T + ΔT) B(T+ ΔT) X = 1 X = 0 

1 1 1 0 
1 0 1 0 
0 1 1 0 
0 0 0 1  

Fig. 7. The PAND gate and its corresponding DBN.  

Table 5 
(a). The CPD of node Y(T+ΔT) in the PAND gate.  

A(T) Y(T) B(T) Y(T+ ΔT) = 1 Y(T+ ΔT) = 0 

1 1 1 1 0 
1 0 1 1 0 
0 1 1 1 0 
0 0 1 0 1 
1 1 0 1 0 
1 0 0 1 0 
0 1 0 1 0 
0 0 0 0 1 
Table 5(b). The CPD of node X in the PAND gate  

A(T+ ΔT) Y(T+ ΔT) B(T+ ΔT) X = 1 X = 0 

1 1 1 1 0 
1 0 1 0 1 
0 1 1 0 1 
0 0 1 0 1 
1 1 0 0 1 
1 0 0 0 1 
0 1 0 0 1 
0 0 0 0 1  

Fig. 8. The SEQ gates and their corresponding DBN.  
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spare part during the backup period is α, which is also called the 
dormancy factor, times the failure rate during the working period. 

Fig. 9 shows the WSP gate and its corresponding DBN. The input 
event A on the left side of the WSP gate is specified as the main part, 
and B represents the spare part. The same-level WSP gate has a 
human error node and a machine failure node, and the node X can be 
any higher-level failure. The cross-level WSP gate has two machine 
failure nodes, and the node X is a higher-level human error node. The 
CPD of the key nodes is shown in Table 7. The fBS(t) is the failure 
probability density function of the spare part B during the backup 
period.  

6) Same-level FDEP: The FDEP gate describes the logic that when a 
certain part in the system fails (or a trigger event occurs), the parts 
related to its function also fail. There is only the same-level FDEP 
logic in human-machine systems. X denotes trigger events, and A and 
B denote related events. All of these nodes can be human errors or 
machine failures. Fig. 10 shows one possibility of the FDEP gates and 
its corresponding DBN. The CPD of nodes A(T + ΔT) and B(T +ΔT)
are the same in form, so only the CPD of A(T + ΔT) is listed in 
Table 8. 

3.2.2. Integrating the DBN 
The DBN directly transformed from the DFT by logic gates are usu

ally fragmented, so a method of integrating the network fragments 
transformed from the DFT into a complete DBN is developed (Fig. 11). 

This method includes the following steps. Take the bottom event in 
the DFT as the root node of the DBN and the remaining nodes in the 
network segment transformed from the DFT as leaf nodes. The root node 

and the leaf nodes are connected to obtain the initial network of the 
DBN. The transition network in the network segment transformed from 
the DFT is used as the transition network of the DBN. Finally, adjust the 
connections between the nodes according to the actual situation and 
expert experience and obtain the corresponding CPD. Now the DFT has 
been transformed into a complete DBN, which mainly includes two 
parts: the topology structure of the network and the corresponding CPD 
table. Through the aforementioned steps, the DFT describes the fault 
logic, while the DBN facilitates the easy calculation of the posterior 
probability of faults, thus achieving a critical transition between two 
different types of research content and research phases. 

3.3. Simulation reasoning of DBN 

The next step is to reason about the DBN. As a common DBN 
reasoning method, simulation has played an important role in recent 
years [36]. This paper selects the Gibbs sampling as the simulation 
method because it can be enhanced to efficiently obtain results while 
also reflecting the dynamic characteristics of the network. 

First proposed in 1984, Gibbs sampling is an effective and simple 
simulation method [37]. It was applied to the probabilistic reasoning of 
static BNs shortly afterwards [14] and has become an important method 
for this kind of task. Gibbs sampling utilizes a set of complete conditional 
distributions for sampling. If there are n random variables, denoted by 
X1,X2, ...,Xn, then the conditional distribution formed like p(xi

⃒
⃒xj, j ∕= i),

i = 1,2, ..., n is called the complete conditional distribution. In Gibbs 
sampling, each complete conditional distribution is utilized to update 
different variables. Taking a static BN with n nodes as an example, two 

Table 6 
(a). The CPD of node B(T+ΔT) in the SEQ gates.  

A(T) B(T) B(T+ ΔT) = 1 B(T+ ΔT) = 0  

1 1 1 0  
1 0 ∫ T+ΔT

T fB(t)dt 1 −
∫ T+ΔT

T fB(t)dt  
0 1 0 1  
0 0 0 1  
Table 6(b). The CPD of node X in the SEQ gates  

A(T + ΔT) B(T+ ΔT) C(T+ ΔT) X = 1 X = 0 

1 1 1 1 0 
1 0 1 0 1 
0 1 1 0 1 
0 0 1 0 1 
1 1 0 0 1 
1 0 0 0 1 
0 1 0 0 1 
0 0 0 0 1  

Fig. 9. The WSP gates and their corresponding DBN.  

Table 7 
(a). The CPD of node B(T+ΔT) in the WSP gates.  

A(T) B(T) B(T+ ΔT) = 1 B(T+ ΔT) = 0 

1 1 1 0 
1 0 ∫ T+ΔT

T fB(t)dt 1 −
∫ T+ΔT

T fB(t)dt 
0 1 1 0 
0 0 ∫ T+ΔT

T fBS(t)dt 1 −
∫ T+ΔT

T fBS(t)dt 

Table 7(b). The CPD of node X in the WSP gates  

A(T+ ΔT) B(T+ ΔT) X = 1 X = 0 

1 1 1 0 
1 0 0 1 
0 1 0 1 
0 0 0 1  

Fig. 10. The FDEP gate and its corresponding DBN.  

Table 8 
The CPD of node A(T+ΔT) in the FDEP gate.  

X(T+ ΔT) A(T) A(T+ ΔT) = 1 A(T+ ΔT) = 0 

1 1 1 0 
1 0 1 0 
0 1 1 0 
0 0 ∫ T+ΔT

T fA(t)dt 1 −
∫ T+ΔT

T fA(t)dt  
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factors are considered: the n-dimensional node variables V1,V2, ...,Vn), 
and the length L of the Markov chain. The corresponding algorithm of 
Gibbs sampling is shown below: 

Step 0: Initialization v0 = (v1
0,v2

0, ...,vn
0); 

Step 1: Sampling v1
1 ∼ p(v1

⃒
⃒v2

0,v3
0, ...,vn

0); 
Step 2: Sampling v2

1 ∼ p(v2
⃒
⃒v1

1,v3
0, ...,vn

0); 
Step 3: Sampling v3

1 ∼ p(v3
⃒
⃒v1

1,v2
1, ...,vn

0);  

… 

Step n: Sampling vn
1 ∼ p(vn

⃒
⃒v1

1,v2
1, ...,vn− 1

1 )

The transfer from v0 to v1 is completed in n steps. Later, by repeating 
Step1 ~ Step n for L times, a series of posterior samples can be obtained. 
According to these posterior samples, the relevant information of the 
posterior distribution can be calculated. 

To apply the traditional Gibbs sampling to DBN, DBN needs to be 
expanded into a large-scale static BN on the time axis. Due to the 
addition of the new dimension (time), the entire algorithm requires one 
more loop. 

Assuming that the DBN has T time slices, the number of steps for the 
entire algorithm is L× n× T. Taking a DBN of a human-machine system 
with T time slices and n nodes in each time slice as an example, the nodes 
are represented as (H,M)

ij, where i represents the time slice and j rep
resents the jth node in the time slice i. The algorithm of Gibbs sampling in 
DBN is shown below (the length of the Markov chain is L): 

Step 0: Initialization 

(H,M)0= ((H,M)
11
0 , ..., (H,M)

1n
0 , (H,M)

21
0 ,

..., (H,M)
2n
0 , ..., (H,M)

T1
0 , ..., (H,M)

Tn
0 )

(2)   

Step 1: Sampling 

(H,M)
11
1 ∼ p

(
(H,M)

11⃒⃒(H,M)
12
0 ..., (H,M)

1n
0 ,

..., (H,M)
T1
0 , ..., (H,M)

Tn
0 )

(3)   

Step 2: Sampling 

(H,M)
12
1 ∼ p

(
(H,M)

12⃒⃒(H,M)
11
1 , (H,M)

13
0 , ..., (H,M)

1n
0 ,

..., (H,M)
T1
0 , ..., (H,M)

Tn
0 )

(4)   

Step n: Sampling 

(H,M)
1n
1 ∼ p

(
(H,M)

1n⃒⃒(H,M)
11
1 ..., (H,M)

1(n− 1)
1 ,

(H,M)
21
0 , ..., (H,M)

T1
0 , ..., (H,M)

Tn
0 )

(5)   

Step n þ 1: Sampling 

(H,M)
21
1 ∼ p

(
(H,M)

21⃒⃒(H,M)
11
1 ..., (H,M)

1n
1 ,

(H,M)
22
0 , ..., (H,M)

T1
0 , ..., (H,M)

Tn
0 )

(6)   

Step 2n: Sampling 

(H,M)
2n
1 ∼ p

(
(H,M)

2n⃒⃒(H,M)
11
1 , ..., (H,M)

2(n− 1)
1 ,

(H,M)
31
0 , ..., (H,M)

Tn
0 )

(7) 

Fig. 11. Integrating network fragments transformed from the DFT into a DBN.  
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Step T⋅n: Sampling 

(H,M)
Tn
1 ∼ p

(
(H,M)

Tn⃒⃒(H,M)
11
1 , ..., (H,M)

1n
1 ,

(H,M)
21
1 , ..., (H,M)

T(n− 1)
1 )

(8)   

The transfer from (H,M)0 to (H,M)1 is completed in n steps. Later, by 
repeating Step1 ~ StepT⋅n L times, a series of posterior samples (H,M)1,

(H,M)2, ..., (H,M)L can be obtained. 
According to these posterior samples, the relevant information of the 

posterior distribution can be calculated. This posterior distribution in
formation obtained by Gibbs sampling provides data for the significance 
analysis of human-machine systemic risk. 

3.4. Importance analysis 

According to the framework illustrated in Fig. 1, in the final stage of 
safety analysis, it is necessary to identify the critical human errors or 
machine failures leading to accidents by conducting importance analysis 
of the event nodes in the DBN. The results obtained from the simulation 
need to take node (human error or machine failure) importance analysis 
to identify the nodes that are most in need of improvement and opti
mization. Typically, certain metrics need to be defined to evaluate the 
results of PSA, which will facilitate the provision of importance rankings 
[38,39]. To illustrate the origins of these metrics, the risk function of 
node i in DBN is constructed as shown in Eq. (9). Where the independent 
variable E represents the probability of node fault occurrence, and b 
represents the probability of human-machine system fault in the sce
nario where node i remains entirely no fault, denoted as P(Y = 1|Ei = 0). 

Risk = aiXi + bi (9) 

To better articulate Eq. (9), Fig. 12 is presented. Typically, the system 
fault probability at the current faultrate of node i is represented as P(Y =
1). When node i remains entirely free of faults, the system fault prob
ability is denoted as P(Y = 1|Ei = 0). The difference between P(Y = 1)
and P(Y = 1|Ei = 0) is termed as risk reduction (RR), which signifies the 
increment in system fault rate attributed to this node. Similarly, when 
node i is certain to experience a fault, the system fault probability is 
represented as P(Y = 1|Ei = 1). The difference between P(Y = 1|Ei = 1)
and P(Y = 1) is termed as risk achievement (RA), denoting the worst- 
case scenario for system fault rate potentially induced by this node. By 
considering the three probabilities along the y-axis, RA, and RR, a series 
of importance analysis indicators can be constructed [40]. Certain 
suitable indicators are chosen to determine the ranking of node impor
tance, or conducted based on the physical interpretations associated 
with these indicators. 

Through logic analysis, DFT, DBN, simulation, and importance 

analysis, the safety analysis of human-machine systems is completed. 
The above safety analysis can be performed many times until the risk of 
the system meets the requirements. 

4. Case study 

4.1. Background 

In order to verify the feasibility and effectiveness of the model, a case 
study of fuel filling is conducted. The fuel filling process is an important 
part, and its main function is to transport fuel according to the specified 
pressure and flow rate and provide propellant for the liquid rocket en
gine [41]. This process is a typical human-machine system [42]. In this 
paper, the fuel filling process will be simplified, and a liquid storage tank 
will be extracted for the case analysis, using this widely studied case to 
demonstrate the effectiveness of the method. Fig. 13 shows this process 
of fueling the rocket body from two hydrogen tanks [43]. 

It can be seen from the figure that the manual booster valves and the 
manual outlet valve need to be operated by operators. The vaporizer 
indicators, pumps, and the outlet valve are automatically controlled. All 
components in the system only have two states: fault and normal. 
Moreover, it is assumed that each component fails independently, 
cannot be repaired after fault, and features exponential distribution. 

The major rules for the operation of the liquid storage tank system 
are as follows: the operator manually controls the booster valves to 
adjust the pressure in the hydrogen tank 1 and the hydrogen tank 2 
according to the signal from the vaporizer indicators; the pumps adjust 
the flow of liquid hydrogen pumped into the rocket body to control the 
liquid level in the rocket body and balance the pressure in the two 
hydrogen tanks based on the liquid level signal and the vaporizer indi
cator signal; the outlet valve is responsible for outputting fuel. If the 
outlet valve fails, the operator controls the manual outlet valve to 
release the fuel. 

In practice, the liquid hydrogen spill of the rocket body is a serious 
accident. Based on the method proposed in Section 3, the fault logic is 
delineated through the human-in-the-loop control diagram, then 
construct DFT and transformed into the corresponding DBN. Simulation 
is conducted to obtain the fault probabilities, and through importance 
indicators and analysis, identifies the critical nodes of the human- 
machine system safety. 

4.2. Construction of DBN 

First, the human-in-the-loop control diagram can be drawn accord
ing to the operating rules of the liquid storage tank, which can be 
divided into two parts. The first part is the operating rules of hydrogen 
tank 1 and hydrogen tank 2, including the operation of vaporizer in
dicators, manual booster valves, and pumps (Fig. 14). The second part is 
the operating rules of the outlet valves of rocket body (Fig. 15). 

On the basis of the causal logic shown in Fig. 14 and Fig. 15, the DFT 

Fig. 12. Relationships of basic indicators in importance analysis.  
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of the liquid storage tank system can be constructed. Table 9 shows the 
human errors and machine failures related to the liquid hydrogen spill 
accident and their failure rates. Due to the confidentiality of data in the 
space launch system and the versatility of the liquid storage tank case, 
the machine fault data and human error data in the table are general 
data. The machine failure data comes from the Offshore Reliability Data 
(OREDA), and the number of failures per thousand hours is regarded as 
the failure rate. The human error data comes from the International 
Atomic Energy Agency (IAEA) indicator system. The dormancy factor of 
WSP is selected as α = 0.8 according to OREDA. 

The complete DFT of the liquid storage tank system is shown in 
Fig. 16. This tank system consists of a WSP gate, two PAND gates, and 

four static gates. The human errors involved have been marked with 
slash lines. In this DFT, the manual outlet valve (the corresponding logic 
gate is the WSP gate) can be used as an example to show the relationship 
between the logic of fault in human-machine systems and the logic gate 
as well as the development of the DFT of the tank system. According to 
the logic shown in Fig. 15, the manual outlet valve is a spare part of the 
outlet valve, which will only be activated when the outlet valve fails. 
Since this switching process is operated by human, human error will be 
introduced. At this level, a machine failure (the failure of the outlet 
valve) occurs first, and a human error occurs while operating the spare 
part (manual outlet valve), resulting in a higher-level failure (the output 
flow of the rocket body is too small). This process is consistent with the 

Fig. 13. The structure of the liquid storage tank.  

Fig. 14. The first part of the human-in-the-loop control diagram.  

Fig. 15. The second part of the human-in-the-loop control diagram.  

X. Pan et al.                                                                                                                                                                                                                                      



Reliability Engineering and System Safety 248 (2024) 110152

11

same-level SP logic of human-machine systems, so it can be described by 
the WSP gate. 

According to the method proposed in 3.2, the DFT is further trans
formed into a DBN to quantitatively calculate the probability of the 
accident (Fig. 17). In this network, the human error nodes are marked 
with slash lines, and Q1 and Q2 are the intermediate nodes of the PAND 
gate. 

4.3. Reasoning of DBN 

Based on the dynamic Bayesian simulation method, the BNT toolbox 
is utilized to construct a DBN containing 10 time slices (the unit of time 
is 1000 h), and Gibbs sampling is utilized to perform probabilistic 

reasoning to the DBN of the liquid storage tank system. All human errors 
and machine failures data utilized in the simulation are derived from the 
information presented in Table 9 of Section 4.2. In order to analyze the 
accuracy and time performance of the Gibbs sampling method, a 
commonly used precise reasoning algorithm—the junction tree algo
rithm—is selected for comparison. Its basic idea is to transform the BN 
into a junction tree structure through graph conversion, then use a series 
of cliques to perform reasoning, and finally achieve global consistency 
for the whole junction tree [44]. 

The failure probability of each node at the initial moment is set as 0. 
100 sets of data for each node are selected to calculate its average value, 
which is regarded as the probability of that node. Finally, the reasoning 
results of the liquid hydrogen spill accident of the rocket body are shown 
in Table 10. The values in the table represent the probabilities (P(Yt =

1)) of the top event (Liquid hydrogen spill accident of rocket body) 
occurring over time as calculated by the simulation method. Fig. 18 
shows the trend in probability over time and the time required for a 
single reasoning of the two reasoning methods. 

It can be clearly seen from Fig. 18 that the probability of the liquid 
hydrogen spill accident gradually increases with time, reflecting the 
dynamic characteristics of the human-machine system. In addition, the 
two curves in Fig. 18 do not completely overlap, indicating that Gibbs 
sampling still suffers from a certain degree of error compared with the 
selected precise reasoning algorithm. In this example, the minimum 
error rate is 0 and the maximum error rate reaches 11.7 %. However, 
compared with the junction tree algorithm, the Gibbs sampling algo
rithm saves about 92 % of the time for a single reasoning and has a 

Table 9 
Human errors and machine failures in the liquid hydrogen spill accident and 
their failure rates.  

Symbols Incidents Failure rate (1×

10− 3h− 1) 
Data 
resource 

H1 Failure of manual outlet valve to 
open in time 

3.37× 10− 2 IAEA 

H2 Incorrect opening of manual 
booster valve 1 

2.61× 10− 2 IAEA 

H3 Incorrect opening of manual 
booster valve 2 

2.61× 10− 2 IAEA 

M1 Fault of outlet valve 1.67× 10− 3 OREDA 
M2 Fault of vaporizer indicator 1 3.12× 10− 2 OREDA 
M3 Fault of pump 1 4.10× 10− 2 OREDA 
M4 Fault of pump 2 4.10× 10− 2 OREDA 
M5 Fault of vaporizer indicator 2 3.12× 10− 2 OREDA 
S1 Small output flow of rocket body — — 
S2 Large output flow of rocket body — — 
T1 Large output flow of liquid 

hydrogen 1 
— — 

T2 Large output flow of liquid 
hydrogen 2 

— — 

X1 Large pressure of hydrogen 
storage tank 1 

— — 

X2 Large pressure of hydrogen 
storage tank 2 

— — 

Y Liquid hydrogen spill accident of 
rocket body 

— —  

Fig. 16. DFT of liquid hydrogen spill accident in rocket body.  

Fig. 17. DBN of liquid hydrogen spill accident in rocket body.  

Table 10 
Simulation-Based P(Yt = 1) of the liquid hydrogen spill accident of rocket body.  

Time (h) 0 1000 2000 3000 4000 

Junction Tree 0 0.0113 0.0131 0.0154 0.0183 
Gibbs Sampling 0 0.0113 0.0123 0.0150 0.0160 
Time (h) 5000 6000 7000 8000 9000 
Junction Tree 0.0215 0.0251 0.0291 0.0332 0.0375 
Gibbs Sampling 0.0193 0.0230 0.0280 0.0349 0.0419  
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greater time performance, so this error rate is acceptable in practice. 
Finally, from the perspective of safety analysis, although the probability 
of a liquid hydrogen spill accident gradually increases over time, it has 
always been maintained at a relatively low level, which means the liquid 
storage tank system has a high level of safety. 

4.4. Importance analysis of the case 

Based on the results obtained by sampling, the importance of each 
node needs to be analyzed with reasonable indicators [38]. In this paper, 
three indicators are selected to construct an importance analysis 
scheme: probability importance (PI), risk reduction worth (RRW) and 
risk achievement worth (RAW). 

PI represents the degree of change in the probability of leaf node 
fault caused by the change in the root node’s state. RRW represents the 
ratio of the leaf node fault probability to the leaf node fault probability 
when the root node is in the normal state. In contrast, RAW denotes the 
ratio of the leaf node failure probability when the root node is in the 
failure state to the leaf node failure probability. Their mathematical 
expression is shown in Eq. (10) Eq. (11) and Eq. (12). WhereEirepresents 
the state of the root node Ei at time t, and Yt represents the state of the 
leaf node Y at time t. 

PIEi ,Yt =
P(Yt = 1|Ei = 1)
P(Yt = 1|Ei = 0)

(10)  

RRWEi ,Yt =
P(Yt = 1)

P(Yt = 1|Ei = 0)
(11)  

RAWEi ,Yt =
P(Yt = 1|Ei = 1)

P(Yt = 1)
(12) 

To study the impact of each root node on the final leaf node, an 
importance analysis of each node is carried out with PI, RRW and RAW 
as indicators of the impact of node fault on the system safety. 2000 h of 
data is selected for calculation and the results are presented in Table 11 
and Fig. 19. The data are derived from Table 9 in Section 4.2, repre
senting the failure probabilities of each bottom-level node. The simu
lation is conducted according to the process outlined in Section 3.3, and 
the simulation results are computed based on Eqs. (10) to (12). For 
example, in Table 11, the values of PI, RRW, and RAW are calculated 
based on P(Y2000 = 1|Eti = 1) and P(Y2000 = 1|Eti = 0), as well as the 
P(Y2000 = 1) from Table 10. Fig. 19 visually presents the calculated re
sults of PI, RRW, and RAW for each node. 

By observing the results of the importance analysis of the root node, 

it can be found that within the portion where each indicator value ex
ceeds 1, PI approximates the sum of RRW and RAW. This needs to be 
explained in the context of the significance of these indicators. In the 
intervals depicted in Fig. 12, the PI evaluates the entire range from 
P(Y = 1|Ei = 0) to P(Y = 1|Ei = 1). This interval is comprised of the 
range from P(Y = 1|Ei = 0) to P(Y = 1), where RRW is located; and the 
range from P(Y = 1) to P(Y = 1|Ei = 1), where RAW is located. In this 
way, the three indicators can be interpreted as follows: PI signifies the 
magnitude of system fault probability change caused by the node, RRW 
denotes the optimization potential of the node, and RAW represents the 
degradation potential of the node. 

From the meaning of the above indicators, two methods of impor
tance analysis can be derived. The first way is comparing the PI values of 
each node, as larger PI values indicate that the node can cause a greater 
change in the system’s fault rate. Therefore, optimization can begin with 
node having the highest PI values. The second way is comparing the 
magnitudes of RRW and RAW for each node. When RRW exceeds RAW, 
it indicates that the node currently resides in a higher position within the 
range from P(Y = 1|Ei = 0) to P(Y = 1|Ei = 1), signifying a larger 
optimization potential. Additionally, the greater the difference between 
RRW and RAW, the larger the optimization space, thus indicating a 
higher degree of worthiness for optimization. Conversely, if RAW ex
ceeds RRW, the optimization space for the node is smaller, resulting in a 
lower level of importance. 

In the following analysis, we can consider both of these approaches 
to interpret the results in Fig. 19. From the perspective of PI values, it 
can be observed that the nodes M1 (Fault of outlet valve) and M3 (Fault 
of pump 1) hold the highest importance, with values of 1.1525 and 
1.1488 respectively. followed by nodes M5 (Fault of vaporizer indicator 
2) and H1 (Fault of manual outlet valve to open in time), with values of 
1.1230 and 1.1200 respectively. Analyzing the difference between RRW 
and RAW reveals that nodes M1, M4 (Fault of pump 2), and M5 are 
relatively more important. Taking both approaches into consideration, 
node H1 has a lower PI value compared to other nodes, indicating a 
smaller potential for optimization, and thus lower priority. Additionally, 
it is observed that node M4 shares similarities with node M3 in both 
structure and fault logic, making it possible to prioritize the more urgent 
optimization of node M3 and then transfer the optimization experience 
to node M4. Consequently, the current round of optimization should 
focus on nodes M1, M3, and M5. Among them, M1 (Fault of outlet valve) 
holds the highest importance in both evaluation approaches, rendering 
it the weakest node in the system. 

This case analysis proves the feasibility of the dynamic Bayesian 
simulation method. The probability of the liquid hydrogen spill accident 
of the rocket body increases over time but generally remains at a low 
level, which proves that the liquid storage tank system is basically safe, 
but there is still a need to optimize and improve certain critical nodes. 
After conducting a comparative analysis using the three indicators PI, 
RRW, and RAW, it is evident that nodes M1, M3, and M5 are the most 
critical nodes requiring optimization. Among them, M1 represents the 
weakest point within the liquid storage tank system, requiring enhance 
its operating process or environment to improve the overall safety of the 
system. 

Fig. 18. Comparison of Gibbs sampling and the junction tree algorithm in 
probability over time. 

Table 11 
Results of conditional probabilities and importance for each node at 2000 h.  

Node P(Y2000 = 1|Eti =

1)
P(Y2000 = 1|Eti =

0)
PI RRW RAW 

H1 0.0140 0.0125 1.1200 1.0480 1.0687 
H2 0.0136 0.0130 1.0462 1.0077 1.0382 
H3 0.0139 0.0127 1.0945 1.0315 1.0611 
M1 0.0136 0.0118 1.1525 1.1102 1.0382 
M2 0.0138 0.0129 1.0698 1.0155 1.0534 
M3 0.0139 0.0121 1.1488 1.0826 1.0611 
M4 0.0134 0.0123 1.0894 1.0650 1.0229 
M5 0.0137 0.0122 1.1230 1.0738 1.0458  
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The dynamic Bayesian simulation method emphasizes continuous 
improvement throughout the system’s life cycle. In this case, after 
optimizing nodes M1, M3, and M5, a subsequent simulation can be 
performed to calculate the optimized system’s fault probability P(Y = 1)
and determine if it meets the system requirements. If the requirements 
are not met, another round of nodes importance analysis is conducted, 
and optimization is carried out based on the analysis results. This iter
ative optimization process continues until the overall system fault 
probability meets the specified requirements. 

4.5. Case discussion 

The reason why human-machine systems become dynamic is mostly 
because of humans. The abundant and complex human-machine in
teractions in human-machine systems endow the system with dynamic 
characteristics. Therefore, humans are as crucial as machines in the 
safety analysis of human-machine systems and require detailed research. 
Following this approach, this paper places humans and machines on an 
equal footing, investigates the fault logic within human-machine sys
tems, and proposes the dynamic Bayesian simulation method for eval
uating the safety of human-machine systems. To validate the method, 
this section selects a typical human-machine system - the fuel filling 
process in space launches. Through human-in-the-loop control analysis, 
construction of DFT, conversion from DFT to DBN, Gibbs sampling 
simulation, and importance analysis, critical nodes affecting the human- 
machine system are identified, laying the foundation for subsequent 
system safety enhancements. 

Through the case study, this paper makes the following two findings: 
(1) Expressing the logic of human-machine relationships in human- 
machine systems is extremely challenging. This is because the interac
tion between humans and machines in human-machine systems is often 
widespread, with evident temporal and hierarchical relationships. For 
example, in the fuel filling process during space launches, there exists 
feedback and self-looping between humans and machines, making it 
difficult for traditional analytical methods to extract the logic. There
fore, more advanced logic analysis methods are needed to analyze 
human-machine systems. This paper conducts the analysis from the 
perspective of system control and draws control diagrams of human- 
machine systems. Subsequently, by designing hierarchical and tempo
ral logics, the logic in human-machine systems is classified. The method 
proposed in this paper can clearly express the coupling logic in human- 
machine systems, demonstrating rationality and comprehensiveness. (2) 
The refined DBN structure is clear, capable of representing various 
coupling relationships in human-machine systems, providing support 
for the accuracy of subsequent calculations and solutions. Depending on 
the scale, DBN networks can be accurately solved using methods such as 
Junction Tree, or simulated using techniques like Gibbs sampling. 
Among these methods, Gibbs sampling significantly reduces solving 

time while maintaining precision at a relatively small decrease, thus 
offering high efficiency. Following the solving process, targeted 
importance analysis can be conducted to identify critical nodes for 
system safety. 

Furthermore, it is noteworthy that the failure rates of each node in 
this case study are based on authoritative database data. However, in 
practical human-machine system case analyses, historical failure data is 
often used to calculate failure rates. The lack or distortion of historical 
data often leads to data uncertainty, which is a problem that must be 
addressed when applying the method in practice. In such cases, appro
priate importance analysis indicators can be chosen based on the ten
dency of data uncertainty to correct the data to some extent. For 
example, when the original data are significantly higher than the true 
values, risk reduction-related indicators can be used for correction; 
conversely, risk achievement-related indicators can be chosen for 
correction. Existing literature has extensively studied these indicators 
[40]. Additionally, fuzzy mathematics or grey system theory can be 
employed to whiten the data in practical human-machine systems, 
thereby obtaining more accurate and reliable failure rates data [45,46]. 
These methods effectively address the issue of data uncertainty in 
human-machine systems, providing references for ensuring the accuracy 
of the method’s practical application. 

The case and the discussion above illustrate three advantages of the 
dynamic Bayesian simulation method. Firstly, it considers machine 
failures and human errors in detail and utilizes various data for safety 
analysis. Secondly, it is good at characterizing the uncertainty and dy
namics of human-machine systems. Finally, this method saves a lot of 
time and increases the feasibility of continuous improvement of the 
system, which is a great advantage for applications in engineering. 

5. Conclusion 

Quantitative safety analysis of human-machine systems faces chal
lenges as these systems grow more complex and feature dynamic 
human-machine coupling relationships. Traditional methods often fail 
to elucidate this coupling logic and involve computationally intensive 
direct modeling. In contrast, the dynamic Bayesian simulation method 
proposed in this paper offers a more effective solution for human- 
machine system safety assessment. 

By analyzing the system’s fault mechanisms from a control 
perspective, it establishes 10 types of logic between human errors and 
machine failures, demystifying the human-machine coupling relation
ship in safety analysis. Constructing the human-machine system’s DFT 
based on this fault logic, followed by transforming it into a DBN, cir
cumvents the challenges of directly establishing complex DBN and 
avoids the combinatorial explosion problem inherent in DFTs. During 
DBN simulation, the extended Gibbs sampling technique is employed to 
optimize system reasoning time while ensuring accuracy. Based on the 

Fig. 19. Values of PI, RRW, and RAW for each node.  
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simulation results, this paper discusses methods for setting safety anal
ysis indicators, allowing for the selection of more complex indicators 
based on the requirements of specific cases. Through a case study of the 
fuel filling process in space launches, the method identifies the "Fault of 
outlet valve" as the weakest node in the current human-machine system 
safety, paving the way for future rocket filling system improvements. 

In summary, the dynamic Bayesian simulation method facilitates 
rapid safety analysis and continuous enhancement of human-machine 
systems by pinpointing risks and weak points in each node. It is of 
great practical value in engineering for its better information utilization, 
dynamic representation, and time performance. Future research could 
delve deeper into human-machine system fault logic, considering factors 
such as human situational awareness, to further refine its applications. 
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