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Accidents in human-machine systems often lead to serious consequences, so safety analysis is very important for
such systems. However, the existing approach to safety analysis of human-machine systems lacks clear delin-
eation of the coupling relationships between human and machine, or provide quantitative analysis. To address
these issues, this paper proposes a method for safety analysis of human-machine systems, utilizing dynamic
Bayesian network (DBN) and dynamic fault tree (DFT). The core of this method is the identification of human-
machine coupling relationships, proposing 10 types of logical relationships and presenting corresponding DFT
logic. Then, a conversion method from DFT to DBN is designed to avoid combinatorial explosion in complex FTA
calculations. Based on the DBN model, simulation is conducted using Gibbs sampling, which offers higher
computational efficiency. Additionally, a method for importance analysis is devised to identify critical nodes that
impact the system risk. At last, a case study of refueling mission at space launch site is given to illustrate how to
apply the method. Through simulation analysis, the safety risks during the refueling mission are quantitatively
assessed, while critical nodes are identified. The results indicate that the dynamic Bayesian simulation method is
good in information utilization, dynamic representation, and time performance.

1. Introduction

With the development of science and technology, human-machine
systems have performed better with increasingly complex structures
[1]. Composed primarily of complex machines, such systems involve a
lot of work for operators, who, according to statistics, are related to
20-90 % of system failures [2]. The resulting safety accidents may cause
great harm to both the people and the equipment [3,4]. Therefore, to
assess system safety, it is not enough to just analyze the safety of the
machine; safety analysis from the level of human-machine systems is
necessary. As a typical dynamic system, human-machine systems can be
analyzed for safety using dynamic reliability methods [5]. However, it
differs from purely hardware-based dynamic systems. When analyzing
its safety, it is also necessary to analyze the interaction between human
and machine operations. Considering these factors, the current methods
for safety analysis of human-machine systems face three main chal-
lenges. Firstly, the dynamic of human-machine systems can impact
safety assessment by causing changes in structure, logic, and parame-
ters, thereby altering the faults of the systems, necessitating more ac-
curate model representations [6]. Secondly, the complex coupling
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relationship between humans and machines, which leads to safety fail-
ures, requires clarification of its logic before quantitative analysis [7].
Thirdly, for many existing methods such as the dynamic Bayesian
network (DBN), directly modeling the structure of complex
human-machine systems and obtaining conditional probabilities often
entails a significant workload [8].

In the field of system safety assessment, probabilistic safety assess-
ment (PSA) is one of the most popular methods. PSA usually adopts
logical graph method, flow chart method, and state transfer method to
complete the assessment [9,10]. Based on the state of the system, PSA
includes static methods and dynamic methods [11]. The static methods
of PSA include fault tree analysis (FTA), Bayesian network (BN) and so
on, while the dynamic methods include event sequence diagram,
GO-FLOW method, Markov-state-transition method, Petri net method,
etc. In the static situation, FTA and BN are representative methods. FTA
has a clear description of fault logic [12], which enables the quantitative
calculation of system failure (or top event) probability [13]. BN can
simplify calculations and quantitatively evaluate the safety of
human-machine systems with the support of relevant algorithms and
software tools [14]. With the development of simulation technology in
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recent years, BN has a broader application in human-machine systems
[15]. However, in practice, the operation tasks tend to continue over
time [16], and the human-machine systems have very obvious dynamic
characteristics, which is fundamentally different from the case in static
methods.

Researchers have introduced DBN and dynamic fault tree (DFT) to
meet the demands of dynamic system analysis [17,18]. DBN can
describe the dynamic changes of human-machine systems well and
enable quick quantitative analysis. On the basis of DBN, researchers
designed the DBN simulation method. This DBN reasoning method
based on simulation can greatly shorten the calculation time and
improve the reasoning efficiency, which has become the focus of DBN
reasoning algorithm research [19]. But for complex systems, it is diffi-
cult to directly obtain the structure and conditional probability of DBN.
Unlike DBN, DFT can easily describe and display the fault logic in dy-
namic human-machine systems. However, since DFT is based on Markov
model, a combinatorial explosion will occur if DFT is used for the
analysis of large, complex, multimodal or multiphasic systems. [20]. As
the number of cut sets increases exponentially with system size, it be-
comes difficult to calculate the probability of top events for complex
systems [21]. A better solution to dynamic human-machine system
analysis is found in this paper by combining DBN with DFT: identify the
fault logic to get DFT, then convert DFT into DBN, and finally use DBN
for calculation. The difficulty in this method is to identify the fault logic
of human-machine systems.

In human-machine system research, fault logic identification
methods can mainly be divided into two categories. Those in the first
category separate people from machines and study each other inde-
pendently. Such methods generally focus more on either human or
machine [22]. For example, [23] emphasized human failure and
regarded human beings as the main contributors to system failures. In
addition, some studies have also analyzed both human and machine and
superimposed one on the other to obtain conclusions [24,25]. Although
this method is convenient for model construction and solution, it does
not consider the deep mechanism of human-machine interaction.
Methods in the second category take human as a part of the system
environment for human-machine feedback research. In such studies,
human factors can interact with machines in both directions [26] or one
of them [27], thus influencing machine failures [28]. However, these
studies only take into account the impact of machine failures on the
system, but not the impact of human errors. To reflect the impact of
human errors, a more complex human-machine-environment system
can be constructed, and human errors can be used as environmental
feedback for reliability analysis [29], but this will result in a larger
amount of calculation [30]. The second kind of methods can reflect the
human-machine interaction to some extent, but they do not analyze
machine and human as two main parts of the system, and there is a lack
of relevant concepts to describe the coupling logic between human er-
rors and machine failures. In summary, there is a limited amount of
literature available for studying the coupling mechanism between
humans and machines, as both are considered equal in the system.
Consequently, there is a scarcity of direct theoretical references for
describing the failure mechanism of human-machine systems.

To solve the problems discussed above, this paper provides a safety
analysis method based on dynamic Bayesian simulation. It first divides
the faults in a human-machine system into human errors and machine
failures and studies the coupling relationship between them. Based on
the logic between human errors and machine failures, it constructs the
DFT model of the human-machine system. Then, the DFT is transformed
into DBN using specific conversion methods. In this way, it not only
gives full play to the advantages of DBN in quantitative analysis, but also
solves the problems of building complex BN and the combinatorial ex-
plosion caused by directly solving the DFT. After obtaining the DBN, the
Gibbs sampling method is used for simulation to avoid the long solution
time for complex system network. In order to evaluate the simulation
results, an importance analysis of each node is designed to facilitate
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weak point identification. Finally, a case study of aerospace fuel filling is
conducted to verify the effectiveness and advantages of this method.
The paper is organized as follows. Section 2 proposes the basic
framework of the dynamic Bayesian simulation method. Section 3 pre-
sents the process of dynamic Bayesian simulation method. In Section 4,
the method is applied to an aerospace fuel filling process to show its
effectiveness and advantages. Conclusion is reached in Section 5.

2. Framework

As Fig. 1 shows, the dynamic Bayesian simulation method for safety
analysis of dynamic human-machine system is divided into three stages:
system analysis, system modeling and system assessment. A loop inter-
face for feedback and inspection is also included in this method.

Stage 1: System Analysis

Before the safety analysis, the human-machine system needs to be
analyzed first. In the preliminary analysis, it is necessary to clarify the
content of the system boundary, system composition, and operation
mechanism. Then the data of the human errors and machines failures in
the system is collected. Sufficient data can bring more accurate analysis
results.

Based on the collected data, the fault logic in the system is identified
through two steps. Firstly, draw the man-in-the-loop control diagram of
each system fault. Secondly, list all human errors and machine failures in
the system and compare them with the human-machine system fault
logic table (Table 1) to match their fault logic. In this paper, 10 kinds of
human-machine fault logic are summarized. They can not only fully
explain the fault mechanism of human-machine systems, but also
represent the vast majority of the fault modes in human-machine
systems.

Stage 2: System Modeling

After determining the logic corresponding to the nodes, the DFT is
established based on logic gates. Then the logic gates in the DFT are
converted into DBN fragments. Finally, these DBN fragments are inte-
grated into a complete DBN. Steps in this stage can be carried out ac-
cording to the method provided in Section 3. These steps usually remain
unchanged for different human-machine systems.

Stage 3: System Assessment

System assessment begins with obtaining the DBN. The reasoning
algorithms of DBN mainly include exact reasoning algorithms and
approximate reasoning algorithms. For complex systems such as human-
machine systems, exact reasoning algorithms are too slow and have a lot
of other limitations. Therefore, approximate reasoning algorithms are
more often used. As an approximate reasoning algorithm, simulation has
become one of the most widely used reasoning algorithms due to its
short calculation time and high reasoning efficiency [31], and Gibbs
sampling is a good choice for quick and accurate system safety analysis.
Therefore, this paper uses the extended Gibbs sampling method to
specify the length of the Markov chain and the number of time slices,
thus obtaining the required posterior distribution samples.

Using the data obtained from the simulation, the importance analysis
can be carried out. Based on the perspective of system safety concerns, a
series of indicators need to be designed to complete the importance
analysis. Analyze the weakest node or nodes in the current system, and
take targeted measures to improve it. Input the improved human-
machine system into stage 1, and re-execute the dynamic Bayesian
simulation until the system safety meets the requirements.

Compared with previous methods of human-machine system safety
evaluation, the dynamic Bayesian simulation method can better reflect
the human-machine coupling relationship and provide continuous
optimization and feedback, thus enabling improvement of the system for
a long time. Specific steps of the method will be introduced in the next
section.
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Fig. 1. The dynamic Bayesian simulation method.

3. Dynamic bayesian simulation method
3.1. Obtain the fault logic to build the DFT

In human-machine systems, a significant number of human opera-
tional errors and machine failures exist, which ultimately lead to acci-
dents. The DFT is an effective method for describing the fault logic of
such dynamic human-machine systems. DFT mainly utilizes events,
logic gates, and other symbols to describe the time-varying causal logic
relationship between fault events of dynamic system. Compared with
the static FT, the most significant feature of DFT is its utilization of
dynamic logic gates. Dynamic logic gates mainly include priority-AND
(PAND) gates, sequence-enforcing (SEQ) gates, spare (SP) gates, and
functional-dependency (FDEP) gates. With these dynamic logic gates,
complex dynamic human-machine systems can be easily modeled.

To establish a DFT of human-machine system, the first thing is to
identify the top event for the DFT, which typically represents a system
failure that could lead to a serious accident. Then, it is necessary to
clarify the boundary conditions of the system, as well as to identify the
human nodes and the machine nodes. Next, the fault logic in the human-
machine system needs to be determined, so as to complete the modeling
of the DFT’s structure.

Fig. 2 is an example of DFT in a human-machine system. Yindicates a
system fault. From A to E, the white nodes represent machine failures
and the nodes of the slash line represent human errors. The five nodes
constitute a SEQ gate and a static gate respectively. These two logic
gates affect system failures through another static gate. The probability
calculations of these logic gates will be specifically introduced in Section
3.2.

However, the core feature of human-machine systems is the exis-
tence of a large number of human-machine interactions, which makes it
difficult to obtain the DFT directly. Compared to other dynamic systems,
human-machine systems exhibit more complex coupling relationships
between humans and machines, posing a significant challenge for safety

analysis. This complexity constitutes one of the core issues addressed in
this paper, making the analysis of fault logic as a critical aspect in
establishing DFT. To draw the DFT, it is necessary to sort out the fault
logic of human-machine systems according to the characteristics of
people and the system.

To delineate the fault logic, it is necessary to start from the root
causes of failures in human-machine systems. Given the multitude of
interactions and complex control relationships inherent in such systems,
an initial analysis of the control relationships is paramount. In modern
human-machine systems, which feature a high degree of automation,
people mostly play the role of a monitor, and in a few cases, they play
the role of a manipulator. As monitors, people obtain the information fed
back by the monitoring machine and perform the next operation ac-
cording to the regulations or personal judgment. After the operation is
completed, the state of the monitoring machine is updated to generate
new information, according to which people adjust their behaviors. This
process is essentially a human-in-the-loop control process. A simple
human-in-the-loop control diagram is shown in Fig. 3.

The human-in-the-loop control diagram shows the logic between
human errors and machine failures. Since the occurrence of human-
machine system failures is often hierarchical, the human-machine
coupling relationship reflected in the man-in-the-loop control diagram
can be divided into two types: same-level coupling and cross-level
coupling. This classification stems from the causal relationship be-
tween human errors and machine failures in the faults. The same-level
coupling means that two different types of fault events are the cause
of logic gates, and the cross-level coupling means that one type is the
cause of logic gates and the other is the result. Since the occurrence of
faults in human-machine systems is often time-dependent, the logical
relationship between human errors and machine failures can also be
divided into time-dependent logic and time-independent logic. Time-
dependent refers to the occurrence of system failures only when
human errors and machine failures happen in a specific sequence [32].
Not all logic has time-dependent variations, Fig. 4 summarizes various
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Table 1
(a). Time-independent logic in human-machine systems.
Coupling Type Description
relationship
Same-level Same-level At a certain level, both human errors and
coupling AND logic machine failures exist, and both of them occur,
leading to subsequent higher-level human
errors or machine failures.
Same-level At a certain level, both human errors and
OR logic machine failures exist. If either of them occurs,

subsequent higher-level human errors or
machine failures will occur.

At a certain level, only human errors exist, and
all human errors occur, leading to subsequent
higher-level machine failures.

At a certain level, only machine failures exist,
and all machine failures occur, leading to
subsequent higher-level human errors.

At a certain level, only human errors exist, and
as long as one human error occurs, subsequent
higher-level machine failures will occur.

At a certain level, only machine failures exist,
and as long as one machine failure occurs,
subsequent higher-level human errors will
occur.

Table 1(b). Time-dependent logic in human-machine systems

Cross-level
AND logic

Cross-level
coupling

Cross-level
OR logic

Coupling Type Description
relationship
Same-level Same-level At a certain level, human errors occur first, and
coupling PAND logic then machine failures occur (or machine
failures occur first, and then human errors
occur), leading to higher-level human errors or
machine failures.
Same-level At a certain level, both human errors and
SEQ logic machine failures exist, and multiple human

errors and machine failures occur in a certain
order, leading to higher-level human errors or
machine failures.
Same-level SP At a certain level, human errors occur first, and
logic then spare parts begin to work and fail, leading
to higher-level human errors or machine
failures.
At a certain level, machine failures occur first,
and human errors occur when operating spare
parts, leading to higher-level human errors or
machine failures.
At a certain level, a certain human error or
machine failure occurs, causing a human error
or machine failure related to the previous one’s
function.
At a certain level, only human errors exist and
they occur in a certain order, leading to
subsequent higher-level machine failures.
At a certain level, only machine failures exist
and they occur in a certain order, leading to
subsequent higher-level human errors.
Cross-level SP At a certain level, machine failures occur first,
logic and then spare parts begin to work and fail,
leading to subsequent higher-level human
errors.

Same-level
FDEP logic

Cross-level
SEQ logic

Cross-level
coupling

types of logic under the two classifications. Specifically, Table 1(a) in-
troduces types of time-independent logic and Table 1(b) presents types
of time-dependent logic.

It is worth noting that the cross-level PAND logic and the cross-level
FDEP logic are not given in the cross-level time-dependent logic. This is
because the cross-level PAND logic is rare in actual human-machine
systems and can be replaced by the cross-level SEQ logic, and the
FDEP logic generally only exists at the same level. In addition, in actual
human-machine systems, the judgment of the same-level coupling and
that of the cross-level coupling are not parallel but sequential, with the
latter preceding the former. Based on the logic between human errors
and machine failures, the logic gates in the system can be determined
according to their corresponding relationships (Table 2).
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A B c D E

Fig. 2. An example of DFT in a human-machine system.

The various types of fault logic summarized above facilitate the
modeling of human-machine systems using DFT. However, the state
space of DFT increases exponentially with the increase of system size,
and direct solution usually causes state space explosion for complex
human-machine systems. A more convenient way is to use DBN that
utilizes historical data for quantitative calculation. The subsequent step
is to transform from DFT to DBN of human-machine systems.

3.2. Generate DBN based on DFT

DBN is a probabilistic network based on static BN and hidden Markov
model [33]. Compared with static BN, DBN consider the changes of state
variables over time, while also encompassing both causal logic and
temporal logic. Generally, it is composed of two parts: the initial
network and the transfer network [34]. It can be regarded as a set of
static BNs, each of which is corresponding to a time slice whose structure
remains the same as that of the previous or next time slice.

Supposing that the number of time slices in a human-machine system
is Tand T > 1, each time slice can be represented as Gr = <<< H,M>r,
Er>,P >. (H,M); is the set of all nodes in the time slice T. In addition, Hy
and My represent the set of human error nodes and the set of machine
failure nodes in the time slice T respectively. Er is the set of intra slice
arcs and inter slice arcs in the time slice T. Supposing the set of human
error nodes is Hr = {Hz, ..., H}}, H, ..., H} represents the states of n
different human error nodes at T respectively. Similarly, M}, ..., M®
represents the states of n different machine failure nodes at T
respectively.

Fig. 5 shows a simplified version of DBN. In this network, only the
initial network in the time slice T and the transfer network from Tto T +
AT are drawn, and the rest of the nodes at T are omitted because the
topological structure is completely consistent with that at T+ AT.

The adjacent time slices of DBNs are connected by directed arcs.
These directed arcs are called the transfer network, which is essentially a
set of conditional probability distributions (CPDs). These CPDs can be
expressed as:

P((H7M)T+AT|(H7M)T) = HP((H7 M);‘+AT|parent(H7M)lT+AT) 1)
i=1
It takes two steps to transform the DFT obtained above into DBN for
subsequent calculation: the transformation of logic gates and the inte-
gration of DBNs. Section 3.2.1 lists 6 methods to transform 10 logic gates
in human-machine systems. Section 3.2.2 specifically describes the
integration of DBNs.

3.2.1. Transformation of logic gates

Directly converting a complete DFT to a DBN is a huge project, and
there is basically no universal method for it. Generally, DFT has both
dynamic logic gates and static logic gates [35], and the transformation
of DFT to DBN is essentially the transformation of static and dynamic
logic gates. The transformation method of various logic gates is given
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Table 2
Relationship between logic gates and logic in human-machine systems.

Time-independent logic Time-dependent logic

Same-level Cross-level Same-level Cross-level
AND gate \/ \/ — —
OR gate \/ \/ — —
PAND gate — — v —
SEQ gate — — \/ \/
SP gate — — \/ \/
FDEP gate — — v —

1 1
MT MT+AT

Fig. 5. A simplified example of DBN.

below. Suppose X = 0 indicates that fault X does not occur, X=1 in-
dicates that fault X occurs, and fx(t) indicates the probability density
function of fault X. Since the hierarchical differences only causing var-
iations in fault logic without affecting the transmission of conditional
probabilities, the same type of logic across different hierarchical re-
lationships can share a single transformation method. Thus, by

employing 6 transformation methods, the conversion process of the 10
logics outlined in Section 3.1 can be adequately represented. It is worth
noting that in all figures in this section, the nodes of the slash line
represent human errors, and the white nodes represent machine failures.

1) Same-level AND / cross-level AND: These AND gates describe the
logic that when all input events occur in human-machine systems,
the output event will occur. It is applicable to the same-level and
cross-level coupling relationships, so it includes both the same-level
AND logic and the cross-level AND logic. Fig. 6 shows the AND gate
and its corresponding DBN, and the CPD of nodes are listed in

B(T) B(T + AT)

(a). The same-level AND gate and its corresponding DBN

AT) A(T +4T)

B(T) B(T + AT)

(b). One of the cross-level AND gate and its corresponding DBN

Fig. 6. The AND gates and their corresponding DBN.
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Table 3

(a). The CPD of node A(T+AT) in the AND gates.
A(T) A(T+ AT) =1 A(T+ AT) =0
1 1 0
0 AT fa(6)de 1— [T £ (0)de

Table 3(b). The CPD of node B(T+AT) in the AND gates

B(T) B(T+ AT) =1 B(T+ AT) =0
1 1 0
0 AT fp(e)de 1— I f(0de

Table 3(c). The CPD of node X in the AND gates

A(T + AT) B(T+ AT) X=1 X=0
1 1 1 0
1 0 0 1
0 1 0 1
0 0 0 1

2

3

4

Table 3. In Fig. 6(a), X can be a human error or machine failure at a
higher level. Fig. 6(b) shows one case of the cross-level AND logic
where nodes A and B are machine failures and node X is a human
error at a higher level. The other case where A and B are human
errors and X is a higher-level machine failure follows the same logic,
so it is not repeatedly illustrated here.

) Same-level OR / cross-level OR: The OR gates describe the logic that

when any one of the input events occurs in human-machine systems,

the output event will occur. It is applicable to the same-level and
cross-level coupling relationships, so it includes both the same-level

OR logic and the cross-level OR logic. Fig. 6 can also show the OR

gate and its corresponding DBN. The CPD of nodes A(T +AT) and B(T

+AT) are the same as those in the AND gate and the CPD of key node

X is shown in Table 4.

Same-level PAND: The PAND gate describes the logic that the output

event will occur only if the input events A and B both occur and A

occurs before B. It is generally applicable to the same-level coupling

relationship, so it only includes the same-level PAND logic. Ac-
cording to this sequential logic relationship, a two-state intermediate

node Y needs to be added. Y = 1 means that A occurs before B and Y

= 0 means that A does not occur before B. Either node A or node B is

a human error, and the other is a machine failure. Node X can be any

kind of higher-level fault. Fig. 7 shows one possibility of the PAND

gate and its corresponding DBN. The CPD of key nodes Y(T+AT) and

X are shown in Table 5.

) Same-level SEQ / cross-level SEQ: The SEQ gates describe the logic
that the input events occur in a certain order and cause the output
event to occur. It is applicable to the same-level and cross-level
coupling relationships, so it includes the same-level SEQ logic and
the cross-level SEQ logic. In the same-level SEQ gate, one or more of
nodes A, B, and C are human errors, and node X can be any kind of
higher-level machine failure. In the cross-level SEQ gate, when nodes
A, B, and C are all human errors, node X is a machine failure; when
nodes A, B, and C are all machine failures, node X is a human error.

Fig. 8 shows the SEQ gates and their corresponding DBN, where
nodes A, B, and C must occur in turn before node X occurs. The CPD
of the key nodes is shown in Table 6. Since the CPD of node A(T+AT)

—~

Table 4
The CPD of node X in the OR gates.
A(T + AT) B(T+ AT) X=1 X=0
1 1 1 0
1 0 1 0
0 1 1 0
0 0 0 1

Reliability Engineering and System Safety 248 (2024) 110152

B(T)

B(T + 4T)

Fig. 7. The PAND gate and its corresponding DBN.

Table 5

(a). The CPD of node Y(T+AT) in the PAND gate.
A(T) Y(T) B(T) Y(T+ AT) =1 Y(T+ AT) =0
1 1 1 1 0
1 0 1 1 0
0 1 1 1 0
0 0 1 0 1
1 1 0 1 0
1 0 0 1 0
0 1 0 1 0
0 0 0 0 1
Table 5(b). The CPD of node X in the PAND gate
A(T+ AT) Y(T+ AT) B(T+ AT) X=1 X=0
1 1 1 1 0
1 0 1 0 1
0 1 1 0 1
0 0 1 0 1
1 1 0 0 1
1 0 0 0 1
0 1 0 0 1
0 0 0 0 1

5

-

is the same as that in the AND gate and the CPD of node C(T+AT) is
the same as that of B(T+AT), only the CPD of B(T+AT) is shown here.
Same-level SP / cross-level SP: the SP gates describe the logic that
when the main part fails, the spare part starts to operate and replaces
the main part. It is applicable to both the same-level and cross-level
coupling relationships, so it includes both the same-level SP logic and
the cross-level SP logic. According to whether there is any failure
during the backup period of the spare part, the SP gate can be further
divided into the cold spare (CSP) gate, the warm spare (WSP) gate,
and the hot spare (HSP) gate. Since the CSP gate and the HSP gate
can be regarded as special cases of the WSP gate, the discussion here
focuses on the WSP gate. The WSP gate is the condition where the
spare part probably fails during the backup period, but its failure rate
is lower than that during the working period. The failure rate of the

S
B(T + 4T)

c(T)

C(T +4T)

(b). One of the cross-level SEQ gate and its corresponding DBN

Fig. 8. The SEQ gates and their corresponding DBN.
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Table 6 Table 7
(a). The CPD of node B(T+AT) in the SEQ gates. (a). The CPD of node B(T+AT) in the WSP gates.
A(T) B(T) B(T+ AT) =1 B(T+ AT) =0 A(T) B(T) B(T+ AT) =1 B(T+ AT) =0
1 1 1 0 1 1 1 0
1 0 JEAT £ (0 de 1— 77 fa(0)de 1 0 AT fo(6)de 1— [T fa(0de
0 1 0 1 0 1 1 0
0 0 0 1 0 0 AT fos(6)de 1— [T fos(n)de
Table 6(b). The CPD of node X in the SEQ gates
Table 7(b). The CPD of node X in the WSP gates
A(T + AT) B(T+ AT) C(T+ AT) X=1 X=0
1 1 1 1 o A(T+ AT) B(T+ AT) X=1 X=0
1 0 1 0 1 1 1 1 0
0 1 1 0 1 1 0 0 1
0 0 1 0 1 0 1 0 1
1 1 0 0 1 0 0 0 1
1 0 0 0 1
0 1 0 0 1
0 0 0 0 1

spare part during the backup period is @, which is also called the
dormancy factor, times the failure rate during the working period.
Fig. 9 shows the WSP gate and its corresponding DBN. The input
event A on the left side of the WSP gate is specified as the main part,
and B represents the spare part. The same-level WSP gate has a
human error node and a machine failure node, and the node X can be
any higher-level failure. The cross-level WSP gate has two machine
failure nodes, and the node X is a higher-level human error node. The
CPD of the key nodes is shown in Table 7. The fgs(t) is the failure
probability density function of the spare part B during the backup
period.
Same-level FDEP: The FDEP gate describes the logic that when a
certain part in the system fails (or a trigger event occurs), the parts
related to its function also fail. There is only the same-level FDEP
logic in human-machine systems. X denotes trigger events, and A and
B denote related events. All of these nodes can be human errors or
machine failures. Fig. 10 shows one possibility of the FDEP gates and
its corresponding DBN. The CPD of nodes A(T + AT) and B(T +AT)
are the same in form, so only the CPD of A(T + AT) is listed in
Table 8.

6

[

3.2.2. Integrating the DBN
The DBN directly transformed from the DFT by logic gates are usu-
ally fragmented, so a method of integrating the network fragments
transformed from the DFT into a complete DBN is developed (Fig. 11).
This method includes the following steps. Take the bottom event in
the DFT as the root node of the DBN and the remaining nodes in the
network segment transformed from the DFT as leaf nodes. The root node

B(T) B(T + 4T)
(a). One of the same-level WSP gate and its corresponding DBN

B(T) B(T + AT)

(b). The cross-level WSP gate and its corresponding DBN

Fig. 9. The WSP gates and their corresponding DBN.

X(T)

(T) A(T A)

B(T) B(T + AT)

Fig. 10. The FDEP gate and its corresponding DBN.

Table 8
The CPD of node A(T+AT) in the FDEP gate.
X(T+ AT) A(T) A(T+AT) =1 A(T+ AT) =0
1 1 1 0
1 0 1 0
0 1 1 0
0 0 T fa(e)de 1— [ fu(pyde

and the leaf nodes are connected to obtain the initial network of the
DBN. The transition network in the network segment transformed from
the DFT is used as the transition network of the DBN. Finally, adjust the
connections between the nodes according to the actual situation and
expert experience and obtain the corresponding CPD. Now the DFT has
been transformed into a complete DBN, which mainly includes two
parts: the topology structure of the network and the corresponding CPD
table. Through the aforementioned steps, the DFT describes the fault
logic, while the DBN facilitates the easy calculation of the posterior
probability of faults, thus achieving a critical transition between two
different types of research content and research phases.

3.3. Simulation reasoning of DBN

The next step is to reason about the DBN. As a common DBN
reasoning method, simulation has played an important role in recent
years [36]. This paper selects the Gibbs sampling as the simulation
method because it can be enhanced to efficiently obtain results while
also reflecting the dynamic characteristics of the network.

First proposed in 1984, Gibbs sampling is an effective and simple
simulation method [37]. It was applied to the probabilistic reasoning of
static BNs shortly afterwards [14] and has become an important method
for this kind of task. Gibbs sampling utilizes a set of complete conditional
distributions for sampling. If there are n random variables, denoted by
X!, Xx2,...,X", then the conditional distribution formed like p(xi|x/,j # i),
i=1,2,...,n is called the complete conditional distribution. In Gibbs
sampling, each complete conditional distribution is utilized to update
different variables. Taking a static BN with n nodes as an example, two
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Fig. 11. Integrating network fragments transformed from the DFT into a DBN.

factors are considered: the n-dimensional node variables Vi, Vs, ..., V,,),

11 In 21
and the length L of the Markov chain. The corresponding algorithm of (H,M)y= ((H,M),, ..., (H, M)y, (H,M),", o)
Gibbs sampling is shown below: ey (H, MY (HL M) (H M)
Step 0: Initialization vo = (v3,V3,...,v3); )
Step 1: Sampling v} ~ p(v!|v3,v3,...,v3); Step 1: Sampling
Step 2: Sampling v ~ p(v?|v},v3, ..., V3); (H,M)\' ~ p((H,M)"|(H, M) ..., (H, M)}, -
Step 3: Sampling v ~ p(v3|v},v3,...,V3); e (HDT e (M)
g . Step 2: Sampling
Step n: Sampling v ~ p(V*|v;,vf, ...V ) .
(H, M)} ~ p((H,M)?|(H,M)' (H M) ... (H, M), @
The transfer from v, to v; is completed in n steps. Later, by repeating o (H M) (H M)g")
Stepl ~ Step n for L times, a series of posterior samples can be obtained.
According to these posterior samples, the relevant information of the )
posterior distribution can be calculated. Step n: Sampling
To appl'y the traditional Glbb? sampling to DFN, DB'N needs to be (H, M) ~p((H, M) |(H,M)" ., (H’M)i(n—l),
expanded into a large-scale static BN on the time axis. Due to the " s ™ (5)
addition of the new dimension (time), the entire algorithm requires one (H M)y s .os (H, M)y, ... (H,M)y")
more loop.
Assuming that the DBN has T time slices, the number of steps for the .
entire algorithm is L x n x T. Taking a DBN of a human-machine system Step n + 1: Sampling
with T time slices and n nofles in each time slice as an example, the nodes (H,M)* ~ p((H, M |(H, M) (H, M) ©
are represented as (H,M)”, where i represents the time slice and j rep- 2 71 n
.th . . . . . . . . (HvM)07"",(H7M)0 7"'7(H7M)0)
resents the j~ node in the time slice i. The algorithm of Gibbs sampling in
DBN is shown below (the length of the Markov chain is L):
Step 2n: Sampling
Step 0: Initialization
(H’M)%n Np((HvM)2n|(H7M)}I’ (H’M)%('Hm )

(H,M)y', ..., (H,M)J")
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Step T-n: Sampling

(H,M)]" Np((H7M)Tn HM)! o (H, M)
(H’M)?lw--, (H7M)1T(n—|))

(8

The transfer from (H, M), to (H, M), is completed in n steps. Later, by
repeating Stepl ~ StepT-n L times, a series of posterior samples (H, M),
(H,M),, ...,(H,M), can be obtained.

According to these posterior samples, the relevant information of the
posterior distribution can be calculated. This posterior distribution in-
formation obtained by Gibbs sampling provides data for the significance
analysis of human-machine systemic risk.

3.4. Importance analysis

According to the framework illustrated in Fig. 1, in the final stage of
safety analysis, it is necessary to identify the critical human errors or
machine failures leading to accidents by conducting importance analysis
of the event nodes in the DBN. The results obtained from the simulation
need to take node (human error or machine failure) importance analysis
to identify the nodes that are most in need of improvement and opti-
mization. Typically, certain metrics need to be defined to evaluate the
results of PSA, which will facilitate the provision of importance rankings
[38,39]. To illustrate the origins of these metrics, the risk function of
node i in DBN is constructed as shown in Eq. (9). Where the independent
variable E represents the probability of node fault occurrence, and b
represents the probability of human-machine system fault in the sce-
nario where node i remains entirely no fault, denoted as P(Y = 1|E; =0).

Risk = a;X; + b; (C)]

To better articulate Eq. (9), Fig. 12 is presented. Typically, the system
fault probability at the current faultrate of node i is represented as P(Y =
1). When node i remains entirely free of faults, the system fault prob-
ability is denoted as P(Y = 1|E; = 0). The difference between P(Y = 1)
and P(Y = 1|E; = 0) is termed as risk reduction (RR), which signifies the
increment in system fault rate attributed to this node. Similarly, when
node i is certain to experience a fault, the system fault probability is
represented as P(Y = 1|E; = 1). The difference between P(Y = 1|E; = 1)
and P(Y = 1) is termed as risk achievement (RA), denoting the worst-
case scenario for system fault rate potentially induced by this node. By
considering the three probabilities along the y-axis, RA, and RR, a series
of importance analysis indicators can be constructed [40]. Certain
suitable indicators are chosen to determine the ranking of node impor-
tance, or conducted based on the physical interpretations associated
with these indicators.

Through logic analysis, DFT, DBN, simulation, and importance
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analysis, the safety analysis of human-machine systems is completed.
The above safety analysis can be performed many times until the risk of
the system meets the requirements.

4. Case study
4.1. Background

In order to verify the feasibility and effectiveness of the model, a case
study of fuel filling is conducted. The fuel filling process is an important
part, and its main function is to transport fuel according to the specified
pressure and flow rate and provide propellant for the liquid rocket en-
gine [41]. This process is a typical human-machine system [42]. In this
paper, the fuel filling process will be simplified, and a liquid storage tank
will be extracted for the case analysis, using this widely studied case to
demonstrate the effectiveness of the method. Fig. 13 shows this process
of fueling the rocket body from two hydrogen tanks [43].

It can be seen from the figure that the manual booster valves and the
manual outlet valve need to be operated by operators. The vaporizer
indicators, pumps, and the outlet valve are automatically controlled. All
components in the system only have two states: fault and normal.
Moreover, it is assumed that each component fails independently,
cannot be repaired after fault, and features exponential distribution.

The major rules for the operation of the liquid storage tank system
are as follows: the operator manually controls the booster valves to
adjust the pressure in the hydrogen tank 1 and the hydrogen tank 2
according to the signal from the vaporizer indicators; the pumps adjust
the flow of liquid hydrogen pumped into the rocket body to control the
liquid level in the rocket body and balance the pressure in the two
hydrogen tanks based on the liquid level signal and the vaporizer indi-
cator signal; the outlet valve is responsible for outputting fuel. If the
outlet valve fails, the operator controls the manual outlet valve to
release the fuel.

In practice, the liquid hydrogen spill of the rocket body is a serious
accident. Based on the method proposed in Section 3, the fault logic is
delineated through the human-in-the-loop control diagram, then
construct DFT and transformed into the corresponding DBN. Simulation
is conducted to obtain the fault probabilities, and through importance
indicators and analysis, identifies the critical nodes of the human-
machine system safety.

4.2. Construction of DBN

First, the human-in-the-loop control diagram can be drawn accord-
ing to the operating rules of the liquid storage tank, which can be
divided into two parts. The first part is the operating rules of hydrogen
tank 1 and hydrogen tank 2, including the operation of vaporizer in-
dicators, manual booster valves, and pumps (Fig. 14). The second part is
the operating rules of the outlet valves of rocket body (Fig. 15).

On the basis of the causal logic shown in Fig. 14 and Fig. 15, the DFT

A System Fault
Frequency
PY=1E=D}--—-—— e
(Y =11E, =1) 5 i
RA i
1
P(Y =1) ¢ :
T Risk = a,E, +b, 1
I
RR i
I
I
P(Y =1]E =0) - 1:
| Fault Frequency
| of Node Ei

1

Fig. 12. Relationships of basic indicators in importance analysis.
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Fig. 13. The structure of the liquid storage tank.
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Fig. 14. The first part of the human-in-the-loop control diagram.
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Fig. 15. The second part of the human-in-the-loop control diagram.

of the liquid storage tank system can be constructed. Table 9 shows the
human errors and machine failures related to the liquid hydrogen spill
accident and their failure rates. Due to the confidentiality of data in the
space launch system and the versatility of the liquid storage tank case,
the machine fault data and human error data in the table are general
data. The machine failure data comes from the Offshore Reliability Data
(OREDA), and the number of failures per thousand hours is regarded as
the failure rate. The human error data comes from the International
Atomic Energy Agency (IAEA) indicator system. The dormancy factor of
WSP is selected as @ = 0.8 according to OREDA.

The complete DFT of the liquid storage tank system is shown in
Fig. 16. This tank system consists of a WSP gate, two PAND gates, and

10

four static gates. The human errors involved have been marked with
slash lines. In this DFT, the manual outlet valve (the corresponding logic
gate is the WSP gate) can be used as an example to show the relationship
between the logic of fault in human-machine systems and the logic gate
as well as the development of the DFT of the tank system. According to
the logic shown in Fig. 15, the manual outlet valve is a spare part of the
outlet valve, which will only be activated when the outlet valve fails.
Since this switching process is operated by human, human error will be
introduced. At this level, a machine failure (the failure of the outlet
valve) occurs first, and a human error occurs while operating the spare
part (manual outlet valve), resulting in a higher-level failure (the output
flow of the rocket body is too small). This process is consistent with the



X. Pan et al.

Table 9
Human errors and machine failures in the liquid hydrogen spill accident and
their failure rates.

Symbols  Incidents Failure rate (1 x Data
10°3h 1) resource

H1 Failure of manual outlet valve to 3.37 x 1072 IAEA
open in time

H2 Incorrect opening of manual 2.61 x 1072 TIAEA
booster valve 1

H3 Incorrect opening of manual 2.61 x 1072 IAEA
booster valve 2

M1 Fault of outlet valve 1.67 x 1073 OREDA

M2 Fault of vaporizer indicator 1 3.12x 1072 OREDA

M3 Fault of pump 1 410x 1072 OREDA

M4 Fault of pump 2 4.10x 1072 OREDA

M5 Fault of vaporizer indicator 2 3.12x 1072 OREDA

S1 Small output flow of rocket body ~— — —

S2 Large output flow of rocket body ~ — —

T1 Large output flow of liquid — —
hydrogen 1

T2 Large output flow of liquid — —
hydrogen 2

X1 Large pressure of hydrogen — —
storage tank 1

X2 Large pressure of hydrogen — —
storage tank 2

Y Liquid hydrogen spill accident of ~— —
rocket body

M2 H2 M5 H3

Fig. 16. DFT of liquid hydrogen spill accident in rocket body.

same-level SP logic of human-machine systems, so it can be described by
the WSP gate.

According to the method proposed in 3.2, the DFT is further trans-
formed into a DBN to quantitatively calculate the probability of the
accident (Fig. 17). In this network, the human error nodes are marked
with slash lines, and Q1 and Q2 are the intermediate nodes of the PAND
gate.

4.3. Reasoning of DBN

Based on the dynamic Bayesian simulation method, the BNT toolbox
is utilized to construct a DBN containing 10 time slices (the unit of time
is 1000 h), and Gibbs sampling is utilized to perform probabilistic
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Fig. 17. DBN of liquid hydrogen spill accident in rocket body.

reasoning to the DBN of the liquid storage tank system. All human errors
and machine failures data utilized in the simulation are derived from the
information presented in Table 9 of Section 4.2. In order to analyze the
accuracy and time performance of the Gibbs sampling method, a
commonly used precise reasoning algorithm—the junction tree algo-
rithm—is selected for comparison. Its basic idea is to transform the BN
into a junction tree structure through graph conversion, then use a series
of cliques to perform reasoning, and finally achieve global consistency
for the whole junction tree [44].

The failure probability of each node at the initial moment is set as 0.
100 sets of data for each node are selected to calculate its average value,
which is regarded as the probability of that node. Finally, the reasoning
results of the liquid hydrogen spill accident of the rocket body are shown
in Table 10. The values in the table represent the probabilities (P(Y, =
1)) of the top event (Liquid hydrogen spill accident of rocket body)
occurring over time as calculated by the simulation method. Fig. 18
shows the trend in probability over time and the time required for a
single reasoning of the two reasoning methods.

It can be clearly seen from Fig. 18 that the probability of the liquid
hydrogen spill accident gradually increases with time, reflecting the
dynamic characteristics of the human-machine system. In addition, the
two curves in Fig. 18 do not completely overlap, indicating that Gibbs
sampling still suffers from a certain degree of error compared with the
selected precise reasoning algorithm. In this example, the minimum
error rate is 0 and the maximum error rate reaches 11.7 %. However,
compared with the junction tree algorithm, the Gibbs sampling algo-
rithm saves about 92 % of the time for a single reasoning and has a

Table 10

Simulation-Based P(Y; = 1) of the liquid hydrogen spill accident of rocket body.
Time (h) 0 1000 2000 3000 4000
Junction Tree 0 0.0113 0.0131 0.0154 0.0183
Gibbs Sampling 0 0.0113 0.0123 0.0150 0.0160
Time (h) 5000 6000 7000 8000 9000
Junction Tree 0.0215 0.0251 0.0291 0.0332 0.0375
Gibbs Sampling 0.0193 0.0230 0.0280 0.0349 0.0419
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Fig. 18. Comparison of Gibbs sampling and the junction tree algorithm in
probability over time.

greater time performance, so this error rate is acceptable in practice.
Finally, from the perspective of safety analysis, although the probability
of a liquid hydrogen spill accident gradually increases over time, it has
always been maintained at a relatively low level, which means the liquid
storage tank system has a high level of safety.

4.4. Importance analysis of the case

Based on the results obtained by sampling, the importance of each
node needs to be analyzed with reasonable indicators [38]. In this paper,
three indicators are selected to construct an importance analysis
scheme: probability importance (PI), risk reduction worth (RRW) and
risk achievement worth (RAW).

PI represents the degree of change in the probability of leaf node
fault caused by the change in the root node’s state. RRW represents the
ratio of the leaf node fault probability to the leaf node fault probability
when the root node is in the normal state. In contrast, RAW denotes the
ratio of the leaf node failure probability when the root node is in the
failure state to the leaf node failure probability. Their mathematical
expression is shown in Eq. (10) Eq. (11) and Eq. (12). WhereE;represents
the state of the root node E; at time t, and Y, represents the state of the
leaf node Y at time t.

P(Y, = 1|E = 1)

Plpy =—+ — 01— 7 10
B = p(y, = 1| = 0) 10)
PY,=1)
RRW = 11
5% = Py, = 1E = 0) an
PY,=1E; =1)

RAWE, y, = 12
E.Y, PY, = 1) 12

To study the impact of each root node on the final leaf node, an
importance analysis of each node is carried out with PI, RRW and RAW
as indicators of the impact of node fault on the system safety. 2000 h of
data is selected for calculation and the results are presented in Table 11
and Fig. 19. The data are derived from Table 9 in Section 4.2, repre-
senting the failure probabilities of each bottom-level node. The simu-
lation is conducted according to the process outlined in Section 3.3, and
the simulation results are computed based on Egs. (10) to (12). For
example, in Table 11, the values of PI, RRW, and RAW are calculated
based on P(Y2000 = 1|E; = 1) and P(Y2000 = 1|E; = 0), as well as the
P(Y3900 = 1) from Table 10. Fig. 19 visually presents the calculated re-
sults of PI, RRW, and RAW for each node.

By observing the results of the importance analysis of the root node,
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Table 11

Results of conditional probabilities and importance for each node at 2000 h.
Node  P(Ya000 = 1|Ei = P(Ya000 = 1|Ei = PI RRW RAW

1) 0)

H1 0.0140 0.0125 1.1200 1.0480 1.0687
H2 0.0136 0.0130 1.0462 1.0077 1.0382
H3 0.0139 0.0127 1.0945 1.0315 1.0611
M1 0.0136 0.0118 1.1525 1.1102 1.0382
M2 0.0138 0.0129 1.0698 1.0155 1.0534
M3 0.0139 0.0121 1.1488 1.0826 1.0611
M4 0.0134 0.0123 1.0894 1.0650 1.0229
M5 0.0137 0.0122 1.1230 1.0738 1.0458

it can be found that within the portion where each indicator value ex-
ceeds 1, PI approximates the sum of RRW and RAW. This needs to be
explained in the context of the significance of these indicators. In the
intervals depicted in Fig. 12, the PI evaluates the entire range from
P(Y =1|E; =0) to P(Y = 1|E; = 1). This interval is comprised of the
range from P(Y = 1|E; = 0) to P(Y = 1), where RRW is located; and the
range from P(Y = 1) to P(Y = 1|E; = 1), where RAW is located. In this
way, the three indicators can be interpreted as follows: PI signifies the
magnitude of system fault probability change caused by the node, RRW
denotes the optimization potential of the node, and RAW represents the
degradation potential of the node.

From the meaning of the above indicators, two methods of impor-
tance analysis can be derived. The first way is comparing the PI values of
each node, as larger PI values indicate that the node can cause a greater
change in the system’s fault rate. Therefore, optimization can begin with
node having the highest PI values. The second way is comparing the
magnitudes of RRW and RAW for each node. When RRW exceeds RAW,
it indicates that the node currently resides in a higher position within the
range from P(Y =1|E; =0) to P(Y = 1|E; = 1), signifying a larger
optimization potential. Additionally, the greater the difference between
RRW and RAW, the larger the optimization space, thus indicating a
higher degree of worthiness for optimization. Conversely, if RAW ex-
ceeds RRW, the optimization space for the node is smaller, resulting in a
lower level of importance.

In the following analysis, we can consider both of these approaches
to interpret the results in Fig. 19. From the perspective of PI values, it
can be observed that the nodes M1 (Fault of outlet valve) and M3 (Fault
of pump 1) hold the highest importance, with values of 1.1525 and
1.1488 respectively. followed by nodes M5 (Fault of vaporizer indicator
2) and H1 (Fault of manual outlet valve to open in time), with values of
1.1230 and 1.1200 respectively. Analyzing the difference between RRW
and RAW reveals that nodes M1, M4 (Fault of pump 2), and M5 are
relatively more important. Taking both approaches into consideration,
node H1 has a lower PI value compared to other nodes, indicating a
smaller potential for optimization, and thus lower priority. Additionally,
it is observed that node M4 shares similarities with node M3 in both
structure and fault logic, making it possible to prioritize the more urgent
optimization of node M3 and then transfer the optimization experience
to node M4. Consequently, the current round of optimization should
focus on nodes M1, M3, and M5. Among them, M1 (Fault of outlet valve)
holds the highest importance in both evaluation approaches, rendering
it the weakest node in the system.

This case analysis proves the feasibility of the dynamic Bayesian
simulation method. The probability of the liquid hydrogen spill accident
of the rocket body increases over time but generally remains at a low
level, which proves that the liquid storage tank system is basically safe,
but there is still a need to optimize and improve certain critical nodes.
After conducting a comparative analysis using the three indicators PI,
RRW, and RAW, it is evident that nodes M1, M3, and M5 are the most
critical nodes requiring optimization. Among them, M1 represents the
weakest point within the liquid storage tank system, requiring enhance
its operating process or environment to improve the overall safety of the
system.
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Fig. 19. Values of PI, RRW, and RAW for each node.

The dynamic Bayesian simulation method emphasizes continuous
improvement throughout the system’s life cycle. In this case, after
optimizing nodes M1, M3, and M5, a subsequent simulation can be
performed to calculate the optimized system’s fault probability P(Y = 1)
and determine if it meets the system requirements. If the requirements
are not met, another round of nodes importance analysis is conducted,
and optimization is carried out based on the analysis results. This iter-
ative optimization process continues until the overall system fault
probability meets the specified requirements.

4.5. Case discussion

The reason why human-machine systems become dynamic is mostly
because of humans. The abundant and complex human-machine in-
teractions in human-machine systems endow the system with dynamic
characteristics. Therefore, humans are as crucial as machines in the
safety analysis of human-machine systems and require detailed research.
Following this approach, this paper places humans and machines on an
equal footing, investigates the fault logic within human-machine sys-
tems, and proposes the dynamic Bayesian simulation method for eval-
uating the safety of human-machine systems. To validate the method,
this section selects a typical human-machine system - the fuel filling
process in space launches. Through human-in-the-loop control analysis,
construction of DFT, conversion from DFT to DBN, Gibbs sampling
simulation, and importance analysis, critical nodes affecting the human-
machine system are identified, laying the foundation for subsequent
system safety enhancements.

Through the case study, this paper makes the following two findings:
(1) Expressing the logic of human-machine relationships in human-
machine systems is extremely challenging. This is because the interac-
tion between humans and machines in human-machine systems is often
widespread, with evident temporal and hierarchical relationships. For
example, in the fuel filling process during space launches, there exists
feedback and self-looping between humans and machines, making it
difficult for traditional analytical methods to extract the logic. There-
fore, more advanced logic analysis methods are needed to analyze
human-machine systems. This paper conducts the analysis from the
perspective of system control and draws control diagrams of human-
machine systems. Subsequently, by designing hierarchical and tempo-
ral logics, the logic in human-machine systems is classified. The method
proposed in this paper can clearly express the coupling logic in human-
machine systems, demonstrating rationality and comprehensiveness. (2)
The refined DBN structure is clear, capable of representing various
coupling relationships in human-machine systems, providing support
for the accuracy of subsequent calculations and solutions. Depending on
the scale, DBN networks can be accurately solved using methods such as
Junction Tree, or simulated using techniques like Gibbs sampling.
Among these methods, Gibbs sampling significantly reduces solving
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time while maintaining precision at a relatively small decrease, thus
offering high efficiency. Following the solving process, targeted
importance analysis can be conducted to identify critical nodes for
system safety.

Furthermore, it is noteworthy that the failure rates of each node in
this case study are based on authoritative database data. However, in
practical human-machine system case analyses, historical failure data is
often used to calculate failure rates. The lack or distortion of historical
data often leads to data uncertainty, which is a problem that must be
addressed when applying the method in practice. In such cases, appro-
priate importance analysis indicators can be chosen based on the ten-
dency of data uncertainty to correct the data to some extent. For
example, when the original data are significantly higher than the true
values, risk reduction-related indicators can be used for correction;
conversely, risk achievement-related indicators can be chosen for
correction. Existing literature has extensively studied these indicators
[40]. Additionally, fuzzy mathematics or grey system theory can be
employed to whiten the data in practical human-machine systems,
thereby obtaining more accurate and reliable failure rates data [45,46].
These methods effectively address the issue of data uncertainty in
human-machine systems, providing references for ensuring the accuracy
of the method’s practical application.

The case and the discussion above illustrate three advantages of the
dynamic Bayesian simulation method. Firstly, it considers machine
failures and human errors in detail and utilizes various data for safety
analysis. Secondly, it is good at characterizing the uncertainty and dy-
namics of human-machine systems. Finally, this method saves a lot of
time and increases the feasibility of continuous improvement of the
system, which is a great advantage for applications in engineering.

5. Conclusion

Quantitative safety analysis of human-machine systems faces chal-
lenges as these systems grow more complex and feature dynamic
human-machine coupling relationships. Traditional methods often fail
to elucidate this coupling logic and involve computationally intensive
direct modeling. In contrast, the dynamic Bayesian simulation method
proposed in this paper offers a more effective solution for human-
machine system safety assessment.

By analyzing the system’s fault mechanisms from a control
perspective, it establishes 10 types of logic between human errors and
machine failures, demystifying the human-machine coupling relation-
ship in safety analysis. Constructing the human-machine system’s DFT
based on this fault logic, followed by transforming it into a DBN, cir-
cumvents the challenges of directly establishing complex DBN and
avoids the combinatorial explosion problem inherent in DFTs. During
DBN simulation, the extended Gibbs sampling technique is employed to
optimize system reasoning time while ensuring accuracy. Based on the



X. Pan et al.

simulation results, this paper discusses methods for setting safety anal-
ysis indicators, allowing for the selection of more complex indicators
based on the requirements of specific cases. Through a case study of the
fuel filling process in space launches, the method identifies the "Fault of
outlet valve" as the weakest node in the current human-machine system
safety, paving the way for future rocket filling system improvements.
In summary, the dynamic Bayesian simulation method facilitates
rapid safety analysis and continuous enhancement of human-machine
systems by pinpointing risks and weak points in each node. It is of
great practical value in engineering for its better information utilization,
dynamic representation, and time performance. Future research could
delve deeper into human-machine system fault logic, considering factors
such as human situational awareness, to further refine its applications.
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