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A B S T R A C T

Situation awareness (SA) assessment is the process of acquiring and maintaining SA, which serves as a crucial 
indicator of operator task performance and behavioral safety in human-machine interaction. SA reliability is the 
evaluation of how well SA is established, and it is also the goal of SA assessment. Nonetheless, current SA 
assessment models rarely consider the influence of human physiological states, such as fatigue and mood, and 
rely heavily on subjective data. To address these deficiencies, this paper proposes a SA assessment model based 
on a Bayesian Neural Network (BNN) and Bayesian Network (BN), with a focus on examining the impact of 
fatigue and mood on the SA reliability. Firstly, fatigue and mood state classification models are developed using 
EEG data based on a BNN, and the uncertainty is assessed. Secondly, a BN model for SA reliability evaluation is 
proposed, where the uncertainty of BNN outputs is used as the prior probability, and conditional probability 
tables are established based on experimental statistics. Finally, a SA experiment is conducted using a civil 
aviation scenario based on the SAGAT platform to validate the proposed model. This model overcomes the 
limitations of previous approaches by leveraging objective physiological data and experimental statistics to infer 
the influence of physiological states on the SA reliability.

1. Introduction

Operators nowadays are required to make effective and immediate 
decisions in the face of increasingly complex operating systems [1]. 
Situation awareness (SA) is considered a prerequisite for operators to 
make effective decisions and perform correct operations, and it has been 
used in human factors research to explain the extent to which operators 
in complex human-computer systems are aware of what is going on in 
the system and the environment [2–4]. Maintaining proper SA among 
operators is essential for minimizing human errors, ultimately 
enhancing human reliability, which directly contributes to the improved 
overall reliability and safety of the human-computer system [5–7]. SA is 
defined as the perception of elements over the time and in the space, the 
understanding of their significance, and future prediction [8]. Largely, 
SA is regarded as a distinct knowledge state, while the process to achieve 
SA is termed situation assessment and refers to the methods for estab
lishing, acquiring, and sustaining SA. This process may vary 

significantly depending on individual and contextual factors. In brief, SA 
assessment serves as the process of forging SA, while SA represents the 
culmination of this process [9,10]. The development of SA assessment 
models forms the foundational framework for evaluating operators’ SA 
proficiency [11].

Many SA assessment models have been developed, and these models 
can be broadly categorized into two types: descriptive models and 
computational models. The descriptive models of SA assessment can 
elucidate the impact of both internal and external factors on SA and 
enhance the comprehension of the SA assessment process. A prime 
example of such models is Endsley’s Three-Level Model of SA [8], which 
delineates the hierarchical progression of SA assessment grounded in 
information processing: from perception (Level 1 SA) to comprehension 
(Level 2 SA) and to projection (Level 3 SA). In this model, the 
achievement of SA is influenced by memory, workload, task complexity, 
and interactions between them [12]. Many other descriptive models 
have been put forth by scholars, including Bedny and Meister’s 
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Perceptual-Action Loop [13] and Adams’ Event Flow Model [14], 
among others. These models primarily encapsulate the fundamental 
principles and common characteristics governing how individuals pro
cess information and interact with their surroundings to achieve SA.

While the descriptive models offer a systematic description of the 
development of SA, they fall short of predicting how SA will develop 
under specific conditions. In contrast, the computational models of SA 
assessment can anticipate the progression of SA assessment in particular 
circumstances, which is essential for the design of human decision- 
making systems [15]. Examples of such models are relatively fewer: 
Kim and Seong [16] proposed an analytical computational approach for 
nuclear power plant operator SA assessment based on Bayesian infer
ence. You and Guo [5] proposed a dynamic Bayesian network based 
reliability assessment method for short-term multi-round SA considering 
round dependencies, the effectiveness of the method was verified by 
Boeing 737–8 (MAX) accident. Schneider and Halekotte [17] proposed a 
systematic approach for SA assessment under emergency response based 
on Bayesian networks. All these models share a fundamental assumption 
that SA is essentially a kind of diagnostic inference. Consequently, they 
model SA assessment as an integrated diagnostic inference process, with 
the situation acting as the hypothesized cause, the event (high or low 
SA) as the effect, and the sensory (or sensor) data as the symptom 
(detected effect). Once the events are detected, Bayesian logic is 
employed to trace the situation-event relationships backward, evalu
ating their impact on the development of SA. Through inference based 
on the network of situation-event relationships, the occurrence of future 
events is better predicted with updated situation likelihood assessment. 
In summary, BN, functioning as causal inference networks, find wide
spread application in SA assessment models to capture the effects of 
various uncertainties on SA formation during human-computer inter
action [11]. Nonetheless, these computational BN-based models grapple 
with two notable shortcomings.

On one hand, existing computational models of SA assessment have 
limited applicability as most of them are developed for specific safety 
scenarios such as the nuclear industry [16], maritime traffic [7,18] and 
hazardous chemicals production [19,20]. These models primarily focus 
on the inference process of how an operator develops SA under specific 
conditions, incorporating equipment and environment as contextual 
elements. However, they often neglect the operator factors, which may 
significantly impact both the process and outcome of situation assess
ment. In particular, operator factors like fatigue [21] and mood [22] 
require close attention. Fatigue significantly reduces operator perfor
mance, leading to decreased accuracy and alertness as fatigue accu
mulates. A recent 15-year accident report from the U.S. Air Force 
indicated that 24 % of Class A accidents were fatigue-related [23], a 
figure comparable to the 23 % observed in the civil aviation industry 
[24]. Mood plays a critical role in reflecting an individual’s psycho
logical state, and studies have shown that mood significantly affects 
operators’ decision-making and alertness, thereby reducing perfor
mance [25,26]. Negative mood, in particular, is one of the contributing 
factors to traffic accidents [27]. In high-risk domains, it is essential to 
strictly control these factors to prevent accidents stemming from 
excessive fatigue and mood swings [28]. Therefore, more comprehen
sive consideration of the impact of fatigue and mood on the SA process is 
needed to enhance the accuracy and applicability of the assessment 
model.

On the other hand, it is not always possible to acquire sufficient data 
to obtain prior probabilities for BN [29]. Many existing SA assessment 
models choose assumptions and expert judgments [30], but it can be 
challenging to apply such subjective evaluation data in large-scale SA 
analysis. Another choice is objective evaluation. For instance, physio
logical measurements, such as data from electroencephalography (EEG) 
[31,32] sensors, can serve as objective indicators of an operator’s mood 
[33] and overall functional state (such as workload [34], mental fatigue 
[35], and alertness [38]). The typical research paradigm involves seg
menting EEG signals for feature extraction, followed by the use of 

machine learning or deep learning algorithms (particularly deep 
learning methods) to develop physiological state classification models 
[36,37]. However, the impact of uncertainty is an issue that these ap
proaches tend to overlook, such as the aleatoric uncertainty encoded by 
the randomness of the deep learning process and the epistemic uncer
tainty caused by insufficient data [38]. Without quantifying uncertainty, 
models may become overly confident in their predictions, which is 
intolerable for safety-critical applications and could lead to dangerous 
outcomes, such as in autonomous driving [39] or medical diagnosis 
[40].

In fact, the purpose of establishing the computational model for SA 
assessment is to evaluate the operator’s ability to correctly establish SA 
as a knowledge state within a specified time and under specific condi
tions. This is conceptually similar to the concept of human reliability, 
which refers to the operator’s ability to complete a specified task within 
a given time and under specific conditions, with the "specified task" here 
being the establishment of correct SA. From this perspective, the 
computational model of SA assessment is essentially evaluating the 
reliability of SA. This study formally introduces the definition of SA 
reliability: The operator’s ability to perceive environmental elements in 
time and space, understand their significance, and predict future states 
within a specified time window. Therefore, in this study, we refer to the 
computational model for SA assessment as the SA reliability evaluation 
model.

In summary, while existing studies have made significant progress in 
SA reliability evaluation, several critical challenges remain, such as the 
general neglect of the impact of fatigue and mood on SA, as well as the 
lack of objectivity in the models. To address the above issues, this paper 
proposes a new SA reliability model based on Bayesian Neural Networks 
(BNNs) and BN. BNNs are stochastic neural networks trained using 
Bayesian methods. Wang and Yeung [41] refer to them as a combination 
of deep learning for perception and traditional Bayesian models for 
reasoning. BNNs are considered a promising approach for handling 
uncertainty in deep learning [42]. BNNs can output the probability 
distribution of prediction uncertainty for samples, allowing them to be 
directly used as prior probabilities in BN models. The proposed BN 
model shows full consideration of the fatigue and mood in the formation 
of operator SA and constructs a causal conceptual model for SA reli
ability evaluation. Specifically, it accurately establishes the prior prob
ability distribution of BN based a BNN using EEG data. In addition, the 
conditional probability table (CPT) for the BN is determined based on 
experimental statistics, allowing for the construction of a complete BN 
for SA reliability evaluation. Finally, the model and the method are 
validated by the SA experiment based on civil aviation. The main con
tributions of this work are as follows: 

(1) A Bayesian Neural Network-Bayesian Network (BNN-BN) 
framework for SA reliability evaluation was developed, inte
grating physiological data with experimental data to ensure the 
objectivity of the assessment.

(2) Based on EEG data, a neural network is used to estimate the un
certainty of operator fatigue and mood, which is then applied as 
prior probabilities in the BN.

(3) A SA reliability evaluation model was developed based on a BN, 
accounting for the uncertainties in fatigue and mood. This 
approach enhances the reliability of the resulting probability 
data, improving both data quality and analysis accuracy.

(4) Considering the impact of fatigue and mood on SA reliability, a 
SA experiment is designed based on the OPEN-MATB platform, 
and a SAGAT question bank is proposed.

The rest of the paper is organized as follows: Section 2 introduces a 
new SA reliability evaluation model based on BNN-BN. Section 3 pre
sents the SA experiment based on civil aviation. Section 4 gives the re
sults of this study. And Section 5 discusses the results together with the 
proposed methodology. Section 6 summarizes the paper.
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2. A new SA reliability evaluation model based on BNN-BN

2.1. Framework of the methodology

This paper first uses a BNN to model the uncertainty distribution of 
fatigue and mood states reflected in EEG data samples (expressed in 
discrete probabilities). Based on this, a BN model for SA reliability 
evaluation is constructed, with fatigue and mood as the root nodes to 
comprehensively examine their impact on the SA reliability. The prob
ability distributions output by the BNN serve as prior probabilities for 
the BN model, and the CPT for the BN is obtained based on experimental 
statistics. Finally, the impact of fatigue and mood on SA reliability is 
investigated through a SA experiment set in the context of civil aviation, 
with the methodological framework illustrated in Fig. 1.

2.2. EEG data preprocessing and feature extraction

2.2.1. EEG data preprocessing
Raw EEG data is affected by various sources of noise, including but 

not limited to muscle activity (EMG), heartbeat (ECG), eye movements, 
and environmental electromagnetic interference. Preprocessing steps 
can be used to remove these non-brain sources of noise. The pre
processing of EEG data typically includes three steps: selecting reference 
electrodes, filtering, and Independent Component Analysis (ICA). 

(1) The first step involves selecting the reference electrodes. 
Commonly used reference electrodes include the mastoid refer
ence, earlobe reference, average reference, and common average 
reference [43].

(2) Next, filtering is applied to the EEG signals to isolate signals 
relevant to the research objectives. Typically, a low-pass filter is 
set at 0.1 Hz, while a high-pass filter is set at 40 Hz. When using a 
band-pass filter, the frequency range is set from 0.1 Hz to 40 Hz.

(3) Finally, data segmentation and ICA are performed. Data seg
mentation is used to extract features from time segments of in
terest, with 6 s chosen for this study. The goal of ICA is to 
eliminate artifacts from EMG, ECG, and eye movements that 
interfere with the EEG signals.

2.2.2. EEG data feature extraction
EEG data feature extraction is a crucial step for deriving meaningful 

features from preprocessed EEG data that represent brain activity pat
terns and can be used as input for subsequent deep learning. Commonly 
used EEG signal features include time-domain features, frequency- 
domain features, and other relevant features.

The most direct and important type of EEG data features are time- 
domain features. Common time-domain features include the signal’s 
maximum and minimum values, peak value, mean, root mean square, 
square root amplitude, average amplitude, variance, mean square error, 
root mean square error, skewness, and kurtosis.

Frequency-domain features of EEG data, also known as brain 
rhythms. The brain rhythms of interest to researchers can be categorized 
by frequency from low to high as δ, θ, α, and β waves. By analyzing these 
rhythms in the frequency domain, the absolute power of each rhythm 
can be extracted as a feature. Additionally, the ratio of power between 
different rhythms can reflect various physiological states.

In addition to time-domain and frequency-domain features, other 
features are also used in EEG-related research, such as renyi entropy, 
shannon entropy, minimum entropy, collision entropy, hartley entropy, 
log energy entropy, tsallis entropy, and approximate entropy [44]. 
Furthermore, other nonlinear features, such as the largest Lyapunov 
exponent and complexity measures like co-complexity, are also applied 
in EEG analysis.

In this study, 21 time-domain features, 13 frequency-domain fea
tures, and 9 other features were selected, totaling 43 features for the 
analysis of fatigue and mood. Detailed information on the features can 
be found in Appendix A.

2.3. Probability distribution of fatigue and mood based on BNN

2.3.1. Bayesian neural network
This study aims to use a BN model to account for the impact of fa

tigue and mood on the SA reliability. However, obtaining the prior 
probabilities for fatigue and mood presents a challenge. Traditional 
machine learning and deep learning methods typically output labels 
indicating an operator’s state, which neglects the presence of uncer
tainty. BNN are considered promising approaches for addressing un
certainty in deep learning, as they combine deep learning with 
traditional Bayesian inference to output probability distributions for 

Fig. 1. The framework of the methodology.

S. Ding et al.                                                                                                                                                                                                                                     Reliability Engineering and System Safety 260 (2025) 110962 

3 



prediction samples. Therefore, this study uses a BNN based on EEG data 
to obtain the probability distributions of fatigue and mood for each 
sample, which are then used as prior probabilities in the BN model.

BNNs combine deep learning with traditional Bayesian inference, so 
the first step in designing a BNN is to choose a deep neural network 
architecture, represented as Y = Φθ(X), also known as the function 
model, where Y represents the label, X represents the features, and θ 
represents the parameters. A traditional artificial neural network typi
cally consists of an input layer (l0), a series of hidden layers (li, i = 0,
1…n,), and an output layer (ln). In the simplest feedforward neural 
network, each layer l represents a linear transformation followed by a 
nonlinear activation function s: 

l0 = X (1) 

li = si(wili− 1 + bi) ∀i ∈ [1, n] (2) 

Y = ln (3) 

where θ = (w, b) represents the model’s parameters, si represents the 
activation function of layer li.Deep learning is essentially the process of 
regressing these parameters from the data D = {(X1, Y1), …, (Xn, Yn)}. 
The standard approach is to use the backpropagation algorithm to 
obtain point estimates for each parameter. While this simplifies the 
deployment of software packages, it often lacks interpretability and can 
lead to overconfidence in predictions for unseen data.

A BNN can be defined as any artificial neural network trained using 
Bayesian inference. It simulates multiple possible model parameters θ 
and their associated distributions p(θ) by assigning random weights to 
the network, providing a better understanding of the uncertainty related 
to the underlying process. If different models agree, uncertainty is low; 
otherwise, uncertainty is high [45]. This process can be represented as 
follows: 

θ = p(θ) (4) 

Y = Φθ(X) + ε (5) 

where ε represents random noise, used to account for the fact that the 
function Φθ is only an approximation.

In addition to selecting a function model, a stochastic model must 
also be chosen to determine the prior distribution of the model param
eters θ and the prior confidence in the model’s predictive ability p(Y|X,
θ). Let the training dataset be D, the training labels be DY , and the 
training features be DX. Using Bayes’ theorem, the Bayesian posterior of 
the model parameters can be expressed as follows: 

p(θ|D) =
p(DY |DX, θ)p(θ)∫

θp(DY |DX, θʹ)p(θʹ)dθʹ∝p(DY |DX, θ)p(θ) (6) 

accurately estimating p(θ|D) is challenging, as it is a high-dimensional, 
highly non-convex probability distribution, particularly when calcu
lating the evidence 

∫

θ
p(DY |DX,θʹ)p(θʹ)dθʹ. Therefore, two widely adopted 

methods have been introduced: (1) Variational Inference [46] and (2) 
Markov Chain Monte Carlo [47]. This study does not provide a detailed 
explanation of the parameter inference process, and interested readers 
are encouraged to refer to the literature [46,47].

The prediction output of a BNN is p(Y|X, D), which quantifies the 
model’s uncertainty in its predictions and is referred to as the marginal 
distribution. Given p(θ|D) and p(Y|X,D) it can be computed as follows: 

p(Y|X,D) =
∫

θ

p(Y|X, θʹ)p(θʹ|D)dθʹ (7) 

in practical applications, indirect sampling is performed using Eq. (5), 
and the final prediction results are summarized using statistics 
computed via the Monte Carlo method. A large number of weight sets 

θi ∈ Θ are sampled from the posterior to compute the corresponding 
outputs Yi ∈ Y. For classification tasks, the average model prediction 
provides the relative probability for each classification, which can be 
considered a measure of output uncertainty: 

p̂ =
1
Θ
∑

θi∈Θ
Φθi (X) (8) 

The final prediction result is the most likely class: 

Ŷ = argmax
i

pi ∈ p̂ (9) 

2.3.2. Parameters used in the fatigue and mood BNN model
Based on the data used in this study, a multilayer perceptron (MLP) 

was chosen as the architecture for the BNN, consisting of an input layer, 
a hidden layer, and an output layer. The ReLU function was used as the 
activation function, allowing the model to handle nonlinear relation
ships. In the BNN model, the input and hidden layers of the MLP are 
Bayesian linear layers, where the weights are estimated as probability 
distributions. For the basic architecture, the standard approach is to use 
a normal prior with a mean of 0 and a diagonal covariance matrix σI on 
the network’s weights [48]. 

p(θ) = N (0, σI) (10) 

it is worth noting that while a normal prior is preferred in practice due to 
its mathematical properties, there is no theoretical evidence suggesting 
it is superior to other formulations. The optimizer used is the Adam 
optimizer, with a learning rate set to 0.01.

To mitigate overfitting, the loss function comprises two components: 
the cross-entropy loss, which measures classification performance, and 
the Kullback-Leibler (KL) divergence loss, which quantifies the 
discrepancy between the model’s weight posterior distribution and the 
prior distribution. 

Loss = −
1
N

∑N

i=1

∑C

j=1
Y(i)

j log
(

p(i)
j

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
L(Y,p)

+ β
∑

Xi∈X
Pri(Xi)log

(
Pri(Xi)

Pos(Xi)

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
DKL(Pri‖Pos)

(11) 

where L(Y, p) denotes the cross-entropy loss function, where N is the 
number of samples, C is the number of classes, Y(i)

j represents the 
probability that sample i belongs to class j. If sample i actually belongs to 
class j, then Y(i)

j = 1; otherwise, Y(i)
j = 0. The term p(i)j represents the 

model’s predicted probability that sample i belongs to class j. 
DKL(Pri ‖ Pos) refers to the KL divergence, which quantifies the differ
ence between the model’s weight posterior distribution Pos(Xi) and the 
prior distribution Pri(Xi). β is a weight coefficient used to balance the 
relative importance of the cross-entropy and KL divergence losses, with 
a default value set to 0.01.

The proposed BNN model is implemented using the PyTorch library 
and the Torchbnn library in Python.

2.4. BN model for SA reliability evaluation

2.4.1. Bayesian network
BN is a kind of directed acyclic graph, in which nodes represent 

random variables of influencing factors or events and edges between 
nodes represent their causality (from “cause” to “result”) [49]. If the 
random variables in BN are represented by x, then the probability of 
each node is expressed by its parent nodes PA(x), as shown in Eq. (12). 
The probability of each node is calculated based on the joint probability 
distribution of BNs. 

P(x1,⋯, xi) =
∏n

i=1
P(xi|PA(xi)) (12) 

BN can combine multiple information sources (e.g., physiological 
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data and experimental data) to model the influence of uncertainties on 
cognitive process with a strong basis in cognitive theory [50,51]. The 
construction of a BN generally consists of two critical steps: (1) defining 
the BN’s logical structure, and (2) estimating the parameters.

2.4.2. Logical structure of the proposed BN model
The basis of the proposed BN-based SA reliability model is the causal 

conceptual model of SA, which demonstrates the hierarchical relation
ships and logical structure underlying SA. As Fig. 2 illustrates, this model 
considers factors in two dimensions: 

a) Levels of SA: SA can be divided into three key levels, namely 
perception, comprehension, and projection. Each of these levels is 
influenced differently, so the SA at different levels is modeled 
separately to increase the accuracy of the model.

b) Performance shaping factors (PSFs): This study primarily in
vestigates the influence of physiological factors on the SA reliability, 
with a specific focus on fatigue and mood, both of which are widely 
acknowledged to significantly affect human cognitive process. Other 
factors, such as environmental conditions, equipment, and task- 
related variables, are beyond the scope of this research.

In existing SA reliability models, the three levels of SA are closely 
related. In other words, if one cannot perceive the surrounding envi
ronment correctly, he cannot have a correct understanding of the cur
rent scenario, and cannot predict the future state correctly. However, in 
practice, it is still possible to form a correct understanding and predic
tion even with incorrect perception, and incorrect understanding does 
not necessarily lead to incorrect prediction. Existing SA disruption 
measurement methods do not always lead to the accurate judgment of 
SA, so there is a great possibility for such discordance to occur. It would 
be problematic to disregard the possibility, and treating the discordance 
entirely as anomalous state data is a deviation from the actual situation. 
To solve this problem, this paper proposes the concepts of nominal and 
actual SA. The actual SA is directly determined by the projection SA, 
while the nominal SA is jointly determined by the SA of the perception, 
comprehension, and projection level. The relationships between these 
concepts are shown in Fig. 3.

Based on the PSFs (fatigue and mood) affecting SA and the in
teractions (causality) between the factors, a causal conceptual BN model 
for SA reliability evaluation is developed, as shown in Fig. 4.

2.4.3. The parameter estimation of the proposed BN
Conducting SA reliability evaluation using a BN requires the precise 

determination of its parameters. Typically, these parameters consist of 

the prior probabilities for the root nodes and the CPTs for the remaining 
nodes. In the proposed BN model, parameter estimation involves the 
prior probability distributions for the ’fatigue’ and ’mood’ nodes, 
alongside the CPTs for the other nodes. One of the key advantages of BN 
is their capacity for uncertainty reasoning. However, constrained by 
data scarcity, many BN models rely on expert knowledge to define prior 
probability distributions and CPTs, introducing cognitive uncertainty 
and reducing both the reliability and applicability of the model in real- 
world scenarios. To address this limitation, the parameter estimation in 
this study is derived from objective EEG data and experimental results, 
aiming to construct a model that more accurately represents real-world 
conditions. The SAGAT technique measures the success rate of SA 
establishment by pausing the task at predetermined time points, during 
which participants are asked to quickly answer questions about their 
current perception of the situation. Their responses are then compared 
with the correct answers. This success rate is represented by the Eq. (13): 

P(sa=R) =
1
N

⋅
∑N

j=1
σ(j) (13) 

whereby : σ(j) =
{

1 if the jth item is correct
0 otherwise 

where sa ∈
{
SAp, SAc, SAF , ASA, NSA

}
, P(sa= R) represents the proba

bility of correct for nodes related to SA. When using the SAGAT tech
nique, time is frozen to measure the operator’s success rate in 
establishing SA under the current task conditions. This process in
corporates three elements from the concept of SA reliability: specified 
time, specified conditions, and the establishment of correct SA. There
fore, our model can be regarded as an assessment of the reliability of 
each level of SA, considering factors such as fatigue and mood 
influences.

Initially, the outputs p(YF |X,D) and p(YM|X,D) from the BNN serve 
as the prior probabilities for the ‘fatigue’ and ‘mood’ nodes. Subse
quently, multiple SA experiments were conducted on a multi-attribute 
task platform. These experiments involved obtaining fatigue and mood 
labels from participants using standardized scales. The SAGAT was then 
employed to evaluate participants’ SA reliability across different levels.

Finally, the CPTs of each node were determined based on statistical 
analysis of experimental data. For instance, the conditional probability 
P(SAC = R|SAP = R, F = N,M = P) was computed using the following 
equation:  

Fig. 2. Logical structure of SA reliability evaluation.
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where Sample(SAC = R, SAP = R, F= N,M= P) denotes the number of 
occurrences of the event (SAC = Right) ∩ (SAP = Right) ∩ (F =

No) ∩ (M = Positive); and Sample(SAP = R, F= N,M= P) represents the 
number of occurrences of the event (SAP = Right) ∩ (F = No) ∩ (M =

Positive), which can be obtained from experimental statistical data.
In addition to the nodes discussed above, the CPTs of two nodes also 

need to be determined: "Nominal SA" and "Actual SA". These two nodes 
have strong logical relationships, so they can be determined by directly 
choosing the appropriate logic gates.

"Nominal SA" should be strictly defined as deterministic nodes cor
responding only to {0,1}. "Nominal SA" can be considered correct only 
when the "Perception SA", " Comprehension SA", and " Projection SA" are 

all correct. Therefore, the "and" logic is chosen to describe the "Nominal 
SA" node, and its Boolean logic relationship of the node is shown in Eq. 
(15). 

B(NSA) = B(SAP) × B(SAC) × B(SAF) (15) 

where B(NSA)=1 denotes Nominal SA is right and B(NSA)=0 denotes 
Nominal SA is wrong.

The actual SA is directly determined by the projection SA.
The proposed BN model is implemented using GeNIe 4.0 software.

Fig. 3. Nominal SA and Actual SA.

Fig. 4. Causal conceptual model for SA reliability evaluation of BN.

P(SAC =R|SAP =R, F=N,M=P) =
Sample(SAC = R, SAP = R, F = N,M = P)

Sample(SAP = R, F = N,M = P)
(14) 
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3. Experient

3.1. Participants

18 students from Beihang University participated in the experiment, 
including 9 males and 9 females, with an average age of 22 ± 2 years. All 
participants had normal or corrected-to-normal vision, were right- 
handed, and were in good physical health. Informed consent was ob
tained from all participants prior to the commencement of the study.

3.2. Experimental apparatus and task

To measure the participants’ EEG signals, the experiment employed 
the Bitbrain wireless portable EEG measurement system equipped with 
water-based electrodes. This system comprises 32 channels arranged in 
accordance with the standard 10–20 system and operates with a sam
pling frequency of 256 Hz. Data transmission is conducted wirelessly via 
Bluetooth, allowing for real-time monitoring of EEG dynamics.

The experiment utilizes a multi-attribute task to design the SA 
experiment. The multi-attribute task is implemented using OPEN-MATB, 
which is derived from the Multi-Attribute Task Battery (MATB) devel
oped by NASA. It provides a set of benchmarking tasks that can be used 
for a wide range of laboratory research on human performance and 
workload assessment. It has been used in several fields to simulate 
various tasks faced by pilots during flight and explore various theories 
[52,53], and studies have been conducted to demonstrate the persua
siveness of the MATB platform [54]. In this case study, the tasks 
included the communication task, the tracking task, the system moni
toring task, and the resource management task. The task interface is 
shown in Fig. 5.

3.3. Experimental design

The degradation of SA among pilots is a major factor affecting flight 
safety. According to statistical data, 35.1 % of minor incidents and 51.6 
% of major accidents are attributed to pilot decision-making errors, with 
a significant proportion linked to inadequate SA or SA errors rather than 
actual decision-making faults [55]. Fatigue and mood are pivotal factors 
contributing to the loss of SA or SA errors in pilots. However, there is a 
scarcity of research investigating the impact of fatigue and mood on the 
SA reliability in pilots. Accordingly, this study designed a series of 
experimental tasks based on the typical phases of civil aviation oper
ations—takeoff, level flight, and landing—using the OPEN-MATB 

platform.
The task mapping for the typical flight scenarios is depicted in Fig. 6, 

illustrating the tasks that pilots are required to perform during the 
takeoff, level flight, and landing phases. During the takeoff phase, pilots 
engage in communication with the control tower while simultaneously 
managing tracking, system monitoring, and fuel resource management 
tasks. In the level flight phase, pilots can opt for autopilot or manual 
tracking, yet they must continue to manage fuel resources. For instance, 
in the event of a fuel system malfunction, pilots may need to allocate 
additional cognitive resources to coordination. During the landing 
phase, pilots sustain communication with the control tower while per
forming manual tracking and system monitoring tasks.

Prior to the formal experiment, participants engaged in a 5-minute 
pre-experiment to familiarize themselves with the task procedures. 
Following this, they completed a 12-minute formal experimental ses
sion, during which EEG data were continuously recorded. The experi
mental protocol incorporated two interruptions to facilitate the 
assessment of participants’ SA using the SAGAT.

3.4. Measurement of fatigue, mood and SA

The primary objective of this study is to investigate the impact of 
fatigue and mood on the SA reliability. To this end, participants’ fatigue 
and mood states are systematically induced, measured, and recorded to 
serve as labels for the BNN model. Furthermore, during designated 
interruption intervals, participants’ SA reliability are rigorously assessed 
to evaluate the impact of these variables on SA reliability.

Fatigue was induced through controlled sleep deprivation. Due to the 
individual differences in susceptibility to sleep deprivation, partici
pants’ fatigue levels were assessed using the Stanford Sleepiness Scale 
(SSS) [56]. Based on the SSS, participants’ fatigue was classified into 
three categories: no fatigue, mild fatigue, and severe fatigue.

Mood states were induced by exposing participants to auditory 
stimuli over an extended duration. Prior to the experimental procedures, 
participants’ mood states were evaluated using the Profile of Mood 
States (POMS) [57]. The results from the POMS assessment enabled the 
classification of mood states into two distinct categories: positive and 
negative.

SA reliability was assessed using the SAGAT [58]. As discussed 
before, this technique involves interrupting the task to prompt operators 
to quickly respond to questions regarding their current understanding of 
the situation. Their responses are then compared to the actual situation 
to objectively evaluate their SA. Responses that match the actual 

Fig. 5. MATB task interface for the case study.
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situation are deemed right, while discrepancies are considered wrong.
In this study, EEG data, including those obtained during interruption 

periods, were segmented into 6-second time slices, yielding a total of 
3768 samples. These samples were then used to construct the dataset for 
the BNN model, which focuses on analyzing fatigue and mood.

4. Results

Based on the experimental data collected, we developed and trained 
two BNNs to assess the participants’ fatigue and mood states, respec
tively. The CPTs for the nodes in the proposed BN were subsequently 
computed. The output from the BNN model was used to establish the 
prior probabilities for the fatigue and mood nodes within the BN 
framework. Following this, Bayesian inference and sensitivity analyses 
were performed to examine the influence of fatigue and mood on SA 
reliability.

4.1. BNN models of fatigue and mood

The BNN model proposed in this study was trained on EEG data from 
participants, with an 80 % training and 20 % testing data split. Model 
performance was assessed by calculating accuracy, recall, precision, and 
F1-score for each category, as detailed in Table 1 and Table 2. The re
sults demonstrate that the BNN models for fatigue and mood achieved 
high accuracy rates of 95 % and 98 %, respectively. Furthermore, the 
other performance metrics were also commendable, with all values 
surpassing 0.9. These outcomes affirm the robustness of the BNN 
model’s uncertainty outputs, making them highly reliable for use as 
prior probabilities in subsequent BN model.

To quantify uncertainty, multiple forward propagations were 

conducted using the trained BNN. Specifically, for each test sample, 
1000 forward propagations were performed, and the results were 
averaged to derive the final uncertainty. We selected five samples from 
the test sets for fatigue and mood to illustrate the model’s uncertainty. 
As presented in Fig. 7 and Fig. 8, the BNN effectively assessed the un
certainty in predicting fatigue and mood from EEG data. For example, 
certain samples demonstrated low uncertainty: sample 3 was classified 
with 100 % certainty as experiencing mild fatigue. Conversely, other 
samples exhibited higher uncertainty, for instance, sample 4 had a 58.19 
% probability of being categorized as negative.

4.2. The impact of fatigue and mood on the SA reliability

Using Eq. (13), we derived the CPTs for each node from the experi
mental statistics, as shown in Tables 3–6.

The CPTs for "Nominal SA" and "Actual SA" can be derived from the 
logical gates, as detailed in Table 6 and Table 7.

Based on the CPTs above and the prior probabilities for the fatigue 
and mood nodes derived from the BNN model outputs, we subsequently 
conducted posterior probability inference using the BN. This approach 
allowed us to compute the SA reliability across different levels for the 
EEG data of sample 1. The results are presented in Fig. 9.

Furthermore, we conducted a comparative analysis of BN posterior 
inference results with and without incorporating uncertainties associ
ated with the fatigue and mood nodes. In the comparison, we utilized the 
classification results from a standard MLP, wherein probabilities for 
specific fatigue and mood states were assigned as 100 %, resulting in 
what is termed the MLP-BN model. As detailed in Fig. 10, the proposed 
BNN-BN model, which accounts for uncertainties in fatigue and mood, 
offers a more nuanced assessment by mitigating potential 

Fig. 6. Task mapping or the typical flight task.

Table 1 
The results of the fatigue BNN model

Category Accuracy Precision Recall F1-score

No 0.95 0.94 0.93 0.93
Mild 0.90 0.93 0.92
Severe 0.98 0.96 0.97

Table 2 
The results of the mood BNN model

Category accuracy Precision Recall F1-score

Positive 0.98 0.99 0.98 0.99
Negative 0.98 1.00 0.99
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overestimation or underestimation of the physiological states’ impact on 
SA during BN posterior inference. For example, in the posterior infer
ence for sample 4, P(SAP = R) = 67.46░%, whereas the BNN-BN 
model estimates a probability of 69.85 %. This disparity suggests that 
the MLP-BN model may underestimate the influence of physiological 
states on SA reliability.

4.3. Sensitivity analysis of the established SA model

BN sensitivity analysis involves assessing how minor variations in 
input parameters (such as prior probabilities and CPTs) influence the 

output parameters (posterior probabilities). Parameters exhibiting high 
sensitivity significantly impact the inference outcomes. The GeNIe 
software utilizes the sensitivity analysis algorithm developed by Kjaer
ulff and van der Gaag [59], which is designed to perform fundamental 
sensitivity assessments within BN. Broadly speaking, for a given set of 
target nodes, this algorithm efficiently computes the full set of 

Fig. 7. Uncertainty of fatigue Samples on the test Set (Part).

Fig. 8. Uncertainty of mood Samples on the test Set (Part).

Table 3 
The CPT of node Perception SA

Fatigue Mood Perception SA

Right Wrong

No Positive 0.831168831 0.168831169
Negative 0.761904762 0.238095238

Mild Positive 0.732142857 0.267857143
Negative 0.674603175 0.325396825

Severe Positive 0.642857143 0.357142857
Negative 0.592592593 0.407407407

Table 4 
The CPT of node Comprehension SA

Perception SA Fatigue Mood Comprehension SA

Right Wrong

Right(R) No Positive 0.918181818 0.0818182
Negative 0.883333333 0.1166667

Mild Positive 0.9125 0.0875
Negative 0.85 0.15

Severe Positive 0.8625 0.1375
Negative 0.811111111 0.1888889

Wrong(W) No Positive 0.159090909 0.8409091
Negative 0.104166667 0.8958333

Mild Positive 0.09375 0.90625
Negative 0.125 0.875

Severe Positive 0.09375 0.90625
Negative 0.111111111 0.8888889
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derivatives of the posterior probability distributions at these nodes with 
respect to each numerical parameter in the BN. These derivatives indi
cate the significance of the precision of the network’s numerical pa
rameters for computing the posterior probabilities of the targets. A large 
derivative implies that even minor changes in the parameter can lead to 
substantial variations in the posterior probabilities. Conversely, a small 
derivative suggests that significant changes in the parameter will have 
minimal impact on the posterior probabilities.

Finally, a sensitivity analysis of the developed SA reliability evalu
ation model was conducted, focusing on the "Actual SA" node as the core 
element. Fig. 11 presents a tornado diagram for the sensitivity analysis 
of the NSA node. The diagram illustrates the top ten most sensitive pa
rameters affecting the probability of NSA=Right. For each parameter, 
the model displays its precise location (the node and its state, which 
depend on the states of the parent nodes). The bar graph shows the range 
of changes in the target state when the parameter varies within its 
bounds (in this case, its current value fluctuates between [0,1]). The 
color of the bars indicates the direction of change in the target state, 
with red representing negative change and green positive change.

The results indicate that the parameter P(SAF = R|SAC = R, F = Mild,
M = Positive) has the greatest influence on P(ASA = Right). Moreover, 
fatigue has a more significant impact on ASA than mood. In terms of 
sensitivity, the parameters ranked as P(F = Severe) > P(F = No) > P(F =

Mild) > P(Mood = Positive) > P(Mood = Negative).

5. Discussion

Our study demonstrates that integrating BNN-derived uncertainty 
into BN significantly improves the robustness of SA reliability assess
ment. Compared to traditional models relying on subjective expert 
judgments [30], our BNN-BN framework reduces overconfidence in 
predictions of SA reliability by considering the uncertainty of fatigue 
and emotional EEG samples (Fig. 10). This advance addresses the critical 
gap in existing SA models that neglect physiological state uncertainties. 
This methodology can be discussed in the following aspects.

(1) SA experimental design based on the OPEN-MATB platform.
Our SA experiment, designed around the OPEN-MATB platform, 

represents a significant advancement in simulating real-world aviation 
scenarios. By incorporating tasks such as communication, tracking, and 
resource management, we replicated the cognitive demands faced by 
pilots during critical flight phases. This design provides a standardized 

Table 5 
The CPT of node Projection SA

Comprehension SA Fatigue Mood Projection SA

Right Wrong

Right(R) No Positive 0.939393939 0.0606061
Negative 0.925925926 0.0740741

Mild Positive 0.944444444 0.0555556
Negative 0.87037037 0.1296296

Severe Positive 0.875 0.125
Negative 0.851851852 0.1481481

Wrong(W) No Positive 0.151515152 0.8484848
Negative 0.138888889 0.8611111

Mild Positive 0.125 0.875
Negative 0.222222222 0.7777778

Severe Positive 0.166666667 0.8333333
Negative 0.111111111 0.8888889

Table 6 
The CPT of node Nominal SA

Perception 
SA

Comprehension 
SA

Projection 
SA

Nominal SA

Right Wrong

Right Right Right 1 0
Wrong 0 1

Wrong Right 0 1
Wrong 0 1

Right Right 0 1
Wrong 0 1

Wrong Wrong Right 0 1
Wrong 0 1

Right Right 0 1
Wrong 0 1

Wrong Right 0 1
Wrong 0 1

Table 7 
The CPT of node Actual SA

Projection SA Actual SA

Right Wrong

Right 1 0
Wrong 0 1

Fig. 9. The Forward Inference Results of Sample 1 with BN.
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framework for future SA research. For instance, the SAGAT question 
bank developed in this study (Appendix B) can be adapted to other high- 
risk domains, such as nuclear power plant operations or autonomous 
vehicle supervision, where SA reliability is equally critical.

The proposed experimental framework allows researchers to sys
tematically investigate the impact of various factors (e.g., workload, 
stress) on SA reliability. This capability is particularly valuable for 
designing targeted interventions, such as adaptive automation systems 
that adjust task complexity based on real-time operator states.

(2) Utilizing BNNs to assess the uncertainty in operators’ physio
logical states

Traditional deep learning models, while achieving high accuracy in 
physiological state classification, often fail to account for prediction 
uncertainty, leading to overconfident and potentially hazardous out
comes [60,61]. In contrast, our BNN-based approach quantifies both 
aleatoric and epistemic uncertainties, providing a more reliable foun
dation for SA reliability assessment. For example, the BNN model’s 
uncertainty estimates (Fig. 7 and Fig. 8) reveal that certain EEG samples 

Fig. 10. Comparison of inference results between BNN-BN and NN-BN.
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exhibit high ambiguity (e.g., sample 4 with 58.19 % probability of 
negative mood), which would be overlooked by deterministic models.

By integrating Bayesian inference with deep learning, our BNN 
framework not only achieves high classification accuracy (95 % for fa
tigue, 98 % for mood) but also evaluates the uncertainty of fatigue and 
mood. This dual capability is crucial for safety-critical applications, 
where overconfidence in predictions can have severe consequences.

(3) SA reliability evaluation considering the uncertainty of physio
logical states

Our BNN-BN framework bridges the gap between data-driven un
certainty quantification and causal reasoning, offering a novel approach 
to SA reliability evaluation. Unlike traditional BN models that rely on 
subjective expert judgments [62,63], our approach leverages objective 
EEG data and experimental statistics to derive prior probabilities and 
CPTs. This integration not only enhances model credibility but also 
provides a scalable solution for real-time SA assessment in dynamic 
environments.

The sensitivity analysis (Fig. 11) highlights that fatigue has a greater 
impact on Actual SA than mood. This can be attributed to the fact that 
fatigue directly impairs key cognitive functions such as attention, 
memory, decision-making, and reaction time, all of which are critical for 
maintaining a high SA [64,65]. While mood also influences individual 
behavior and performance, the mood states in this study were induced 
through audio stimuli, which may not exert as strong an effect on 
cognitive functions as more severe mood conditions such as depression 
or anxiety. In other words, participants might be able to mitigate the 
influence of mood on SA through conscious effort, whereas overcoming 
the detrimental effects of fatigue is far more challenging. This result 
underscores the need for real-time fatigue monitoring systems in avia
tion. Our model’s ability to quantify this impact can inform the design of 
adaptive interventions, such as workload redistribution or rest sched
uling, to mitigate fatigue-induced SA degradation. Furthermore, the 
framework’s modular design allows for the incorporation of additional 
factors (e.g., environmental noise, task complexity), making it adaptable 
to diverse operational contexts.

(4) Limitations and Future Directions
Despite its advancements, our study has two key limitations. First, 

the model does not account for non-physiological factors (e.g., task 
complexity, environmental noise), which may influence SA reliability. 
Second, the participant-dependent nature of the BNN training limits 

generalizability to other operator cohorts (e.g., professional pilots vs. 
novices).

To address these limitations, future work should: (1) Expand the BN 
to include additional nodes for task complexity and environmental 
factors, leveraging multi-modal data (e.g., eye-tracking, heart rate 
variability); (2) Validate the framework in real-world settings, such as 
flight simulators or nuclear control rooms, to assess its practical utility.

6. Conclusion

SA is a critical prerequisite for effective decision-making and suc
cessful task execution, SA reliability is the evaluation of how well SA is 
established, and it is also the goal of SA assessment. While numerous 
descriptive models of SA have been proposed, SA reliability evaluation 
models often suffer from limited applicability and objectivity, particu
larly in failing to account for the effects of fatigue and mood. To address 
these gaps, this paper presents a novel SA reliability evaluation model 
using the BNN-BN approach. This approach integrates the effects of fa
tigue and mood on SA reliability, leveraging EEG data to innovatively 
capture the uncertainty in predictions of fatigue and mood states via 
BNNs. The uncertainty is then used as prior probabilities in a BN model, 
which helps to prevent overestimation or underestimation of the results. 
The SA experiment is designed around a typical flight scenario, taking 
into account the three levels of SA, with CPTs derived from experimental 
data. The results demonstrate that the proposed BNN-BN model is 
capable of directly assessing an operator’s SA reliability from EEG data, 
providing a theoretical foundation for real-time SA reliability evaluation 
based on physiological data.
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Appendix A

The time-domain features selected from EEG signal for this study are as follows:
Tables 8, 9, 10

Table 8 
The time-domain features used in this study.

Number Feature Number Feature Number Feature

1 Maximum value 8 Sample standard deviation 15 Crest factor
2 Minimum value 9 Standard error 16 Impulse factor
3 Mean value 10 Coefficient of variation 17 Margin factor
4 Arithmetic mean 11 Root mean square (RMS) value 18 Skewness factor
5 Peak value 12 Root amplitude 19 Kurtosis factor
6 Variance (effective estimate/population) 13 Skewness 20 Population standard deviation
7 Variance (unbiased/sample) 14 Kurtosis 21 Form factor

The frequency-domain features selected from EEG signal for this study are as follows:.

Table 9 
The frequency-domain features used in this study.

Number Feature Number Feature

22 Absolute energy of δ wave 29 Relative energy of α/(δ+θ+α+β)
23 Absolute energy of θ wave 30 Relative energy of α/(δ+θ+α+β)
24 Absolute energy of α wave 31 Relative energy of α/(δ+θ+α+β)
25 Absolute energy of β wave 32 Relative energy of α/(δ+θ+α+β)
26 Total absolute energy 33 Relative energy of (θ+α)/(β+α)
27 Relative energy of δ/(δ+θ+α+β) 34 Relative energy of θ/β
28 Relative energy of θ/(δ+θ+α+β) ​ ​

The other features selected from EEG signal for this study are as follows:.

Table 10 
The other features used in this study.

Number Feature Number Feature

35 Information entropy/Shannon entropy 40 First-order differential standard deviation
36 Log energy entropy 41 Second-order differential standard deviation
37 Threshold entropy 42 Mobility
38 Deterministic entropy 43 Complexity
39 Norm entropy ​ ​

Appendix B

Table 11

Table 11 
The SAGAT question bank for the OPEN-MATB platform.

Number Question Task Level of SA

1 Were the F1-F4 values within the normal range during the aforementioned time period? Monitoring Perception
2 What were the colors representing the normal states of F5 and F6 during the aforementioned time period? Monitoring Perception
3 Did you notice when F1-F4 moved to the upper or lower boundary during the recent time period? Monitoring Perception
4 What action is required when the green color of F5 disappears? Monitoring Comprehension
5 What action needs to be taken when the red color of F6 appears? Monitoring Comprehension
6 What changes occurred in the status of F1-F4 when you clicked on them? Monitoring Projection
7 What changes occurred in the status of F5 when you clicked on it? Monitoring Projection
8 What changes occurred in the status of F6 when you clicked on it? Monitoring Projection
9 What was the status of the tracking task during the recent period? Tracking Perception
10 Did you notice when the tracking task was in automatic mode? Tracking Perception

(continued on next page)
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Table 11 (continued )

Number Question Task Level of SA

11 Did you immediately notice when the tracking task was in manual mode? Tracking Perception
12 What actions did you take when the tracking task switched to manual mode? Tracking Comprehension
13 What actions are required when the cursor center deviates from the central box? Tracking Projection
14 Who was the recipient of the last voice call? Communication Perception
15 Were you aware of the significance of the voice call recipient being NASA504? Communication Comprehension
16 Were you aware of the significance when the voice call instructed you to switch the radio to the designated channel? Communication Projection
17 Did you notice the schedule displayed in the upper-right corner? Scheduling Perception
18 How many minutes into the schedule is the next voice task expected to occur? Scheduling Perception
19 Does the schedule indicate that the next operation will be received after the first minute? Scheduling Perception
20 What do the green indicators in the C and T columns represent? Scheduling Comprehension
21 What action should you take when the T column is about to change from red to green? Scheduling Projection
22 What are the current fuel levels in main tanks A and B, respectively? Resource management Perception
23 What are the current fuel levels in auxiliary tanks C and D, respectively? Resource management Perception
24 Which valve is currently indicated in red? Resource management Perception
25 What does it signify when the valve status is indicated in red? Resource management Comprehension
26 What are the consequences when a particular valve fails? Resource management Projection
27 What happens when all the valves are open? Resource management Projection
28 What actions do you need to take when the fuel levels in tanks A and B fall below 2500? Resource management Comprehension
29 What actions should you take when the fuel level in tank A is below 2500 and the fuel level in tank B is above 2500? Resource management Comprehension

Data availability

Data will be made available on request.
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