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Situation awareness (SA) assessment is the process of acquiring and maintaining SA, which serves as a crucial
indicator of operator task performance and behavioral safety in human-machine interaction. SA reliability is the
evaluation of how well SA is established, and it is also the goal of SA assessment. Nonetheless, current SA
assessment models rarely consider the influence of human physiological states, such as fatigue and mood, and
rely heavily on subjective data. To address these deficiencies, this paper proposes a SA assessment model based
on a Bayesian Neural Network (BNN) and Bayesian Network (BN), with a focus on examining the impact of
fatigue and mood on the SA reliability. Firstly, fatigue and mood state classification models are developed using
EEG data based on a BNN, and the uncertainty is assessed. Secondly, a BN model for SA reliability evaluation is
proposed, where the uncertainty of BNN outputs is used as the prior probability, and conditional probability
tables are established based on experimental statistics. Finally, a SA experiment is conducted using a civil
aviation scenario based on the SAGAT platform to validate the proposed model. This model overcomes the
limitations of previous approaches by leveraging objective physiological data and experimental statistics to infer
the influence of physiological states on the SA reliability.

1. Introduction

Operators nowadays are required to make effective and immediate
decisions in the face of increasingly complex operating systems [1].
Situation awareness (SA) is considered a prerequisite for operators to
make effective decisions and perform correct operations, and it has been
used in human factors research to explain the extent to which operators
in complex human-computer systems are aware of what is going on in
the system and the environment [2-4]. Maintaining proper SA among
operators is essential for minimizing human errors, ultimately
enhancing human reliability, which directly contributes to the improved
overall reliability and safety of the human-computer system [5-7]. SA is
defined as the perception of elements over the time and in the space, the
understanding of their significance, and future prediction [8]. Largely,
SA isregarded as a distinct knowledge state, while the process to achieve
SA is termed situation assessment and refers to the methods for estab-
lishing, acquiring, and sustaining SA. This process may vary
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significantly depending on individual and contextual factors. In brief, SA
assessment serves as the process of forging SA, while SA represents the
culmination of this process [9,10]. The development of SA assessment
models forms the foundational framework for evaluating operators’ SA
proficiency [11].

Many SA assessment models have been developed, and these models
can be broadly categorized into two types: descriptive models and
computational models. The descriptive models of SA assessment can
elucidate the impact of both internal and external factors on SA and
enhance the comprehension of the SA assessment process. A prime
example of such models is Endsley’s Three-Level Model of SA [8], which
delineates the hierarchical progression of SA assessment grounded in
information processing: from perception (Level 1 SA) to comprehension
(Level 2 SA) and to projection (Level 3 SA). In this model, the
achievement of SA is influenced by memory, workload, task complexity,
and interactions between them [12]. Many other descriptive models
have been put forth by scholars, including Bedny and Meister’s
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Perceptual-Action Loop [13] and Adams’ Event Flow Model [14],
among others. These models primarily encapsulate the fundamental
principles and common characteristics governing how individuals pro-
cess information and interact with their surroundings to achieve SA.

While the descriptive models offer a systematic description of the
development of SA, they fall short of predicting how SA will develop
under specific conditions. In contrast, the computational models of SA
assessment can anticipate the progression of SA assessment in particular
circumstances, which is essential for the design of human decision-
making systems [15]. Examples of such models are relatively fewer:
Kim and Seong [16] proposed an analytical computational approach for
nuclear power plant operator SA assessment based on Bayesian infer-
ence. You and Guo [5] proposed a dynamic Bayesian network based
reliability assessment method for short-term multi-round SA considering
round dependencies, the effectiveness of the method was verified by
Boeing 737-8 (MAX) accident. Schneider and Halekotte [17] proposed a
systematic approach for SA assessment under emergency response based
on Bayesian networks. All these models share a fundamental assumption
that SA is essentially a kind of diagnostic inference. Consequently, they
model SA assessment as an integrated diagnostic inference process, with
the situation acting as the hypothesized cause, the event (high or low
SA) as the effect, and the sensory (or sensor) data as the symptom
(detected effect). Once the events are detected, Bayesian logic is
employed to trace the situation-event relationships backward, evalu-
ating their impact on the development of SA. Through inference based
on the network of situation-event relationships, the occurrence of future
events is better predicted with updated situation likelihood assessment.
In summary, BN, functioning as causal inference networks, find wide-
spread application in SA assessment models to capture the effects of
various uncertainties on SA formation during human-computer inter-
action [11]. Nonetheless, these computational BN-based models grapple
with two notable shortcomings.

On one hand, existing computational models of SA assessment have
limited applicability as most of them are developed for specific safety
scenarios such as the nuclear industry [16], maritime traffic [7,18] and
hazardous chemicals production [19,20]. These models primarily focus
on the inference process of how an operator develops SA under specific
conditions, incorporating equipment and environment as contextual
elements. However, they often neglect the operator factors, which may
significantly impact both the process and outcome of situation assess-
ment. In particular, operator factors like fatigue [21] and mood [22]
require close attention. Fatigue significantly reduces operator perfor-
mance, leading to decreased accuracy and alertness as fatigue accu-
mulates. A recent 15-year accident report from the U.S. Air Force
indicated that 24 % of Class A accidents were fatigue-related [23], a
figure comparable to the 23 % observed in the civil aviation industry
[24]. Mood plays a critical role in reflecting an individual’s psycho-
logical state, and studies have shown that mood significantly affects
operators’ decision-making and alertness, thereby reducing perfor-
mance [25,26]. Negative mood, in particular, is one of the contributing
factors to traffic accidents [27]. In high-risk domains, it is essential to
strictly control these factors to prevent accidents stemming from
excessive fatigue and mood swings [28]. Therefore, more comprehen-
sive consideration of the impact of fatigue and mood on the SA process is
needed to enhance the accuracy and applicability of the assessment
model.

On the other hand, it is not always possible to acquire sufficient data
to obtain prior probabilities for BN [29]. Many existing SA assessment
models choose assumptions and expert judgments [30], but it can be
challenging to apply such subjective evaluation data in large-scale SA
analysis. Another choice is objective evaluation. For instance, physio-
logical measurements, such as data from electroencephalography (EEG)
[31,32] sensors, can serve as objective indicators of an operator’s mood
[33] and overall functional state (such as workload [34], mental fatigue
[351, and alertness [38]). The typical research paradigm involves seg-
menting EEG signals for feature extraction, followed by the use of
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machine learning or deep learning algorithms (particularly deep
learning methods) to develop physiological state classification models
[36,37]. However, the impact of uncertainty is an issue that these ap-
proaches tend to overlook, such as the aleatoric uncertainty encoded by
the randomness of the deep learning process and the epistemic uncer-
tainty caused by insufficient data [38]. Without quantifying uncertainty,
models may become overly confident in their predictions, which is
intolerable for safety-critical applications and could lead to dangerous
outcomes, such as in autonomous driving [39] or medical diagnosis
[40].

In fact, the purpose of establishing the computational model for SA
assessment is to evaluate the operator’s ability to correctly establish SA
as a knowledge state within a specified time and under specific condi-
tions. This is conceptually similar to the concept of human reliability,
which refers to the operator’s ability to complete a specified task within
a given time and under specific conditions, with the "specified task" here
being the establishment of correct SA. From this perspective, the
computational model of SA assessment is essentially evaluating the
reliability of SA. This study formally introduces the definition of SA
reliability: The operator’s ability to perceive environmental elements in
time and space, understand their significance, and predict future states
within a specified time window. Therefore, in this study, we refer to the
computational model for SA assessment as the SA reliability evaluation
model.

In summary, while existing studies have made significant progress in
SA reliability evaluation, several critical challenges remain, such as the
general neglect of the impact of fatigue and mood on SA, as well as the
lack of objectivity in the models. To address the above issues, this paper
proposes a new SA reliability model based on Bayesian Neural Networks
(BNNs) and BN. BNNs are stochastic neural networks trained using
Bayesian methods. Wang and Yeung [41] refer to them as a combination
of deep learning for perception and traditional Bayesian models for
reasoning. BNNs are considered a promising approach for handling
uncertainty in deep learning [42]. BNNs can output the probability
distribution of prediction uncertainty for samples, allowing them to be
directly used as prior probabilities in BN models. The proposed BN
model shows full consideration of the fatigue and mood in the formation
of operator SA and constructs a causal conceptual model for SA reli-
ability evaluation. Specifically, it accurately establishes the prior prob-
ability distribution of BN based a BNN using EEG data. In addition, the
conditional probability table (CPT) for the BN is determined based on
experimental statistics, allowing for the construction of a complete BN
for SA reliability evaluation. Finally, the model and the method are
validated by the SA experiment based on civil aviation. The main con-
tributions of this work are as follows:

(1) A Bayesian Neural Network-Bayesian Network (BNN-BN)
framework for SA reliability evaluation was developed, inte-
grating physiological data with experimental data to ensure the
objectivity of the assessment.

(2) Based on EEG data, a neural network is used to estimate the un-
certainty of operator fatigue and mood, which is then applied as
prior probabilities in the BN.

(3) A SA reliability evaluation model was developed based on a BN,
accounting for the uncertainties in fatigue and mood. This
approach enhances the reliability of the resulting probability
data, improving both data quality and analysis accuracy.

(4) Considering the impact of fatigue and mood on SA reliability, a
SA experiment is designed based on the OPEN-MATB platform,
and a SAGAT question bank is proposed.

The rest of the paper is organized as follows: Section 2 introduces a
new SA reliability evaluation model based on BNN-BN. Section 3 pre-
sents the SA experiment based on civil aviation. Section 4 gives the re-
sults of this study. And Section 5 discusses the results together with the
proposed methodology. Section 6 summarizes the paper.
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2. A new SA reliability evaluation model based on BNN-BN
2.1. Framework of the methodology

This paper first uses a BNN to model the uncertainty distribution of
fatigue and mood states reflected in EEG data samples (expressed in
discrete probabilities). Based on this, a BN model for SA reliability
evaluation is constructed, with fatigue and mood as the root nodes to
comprehensively examine their impact on the SA reliability. The prob-
ability distributions output by the BNN serve as prior probabilities for
the BN model, and the CPT for the BN is obtained based on experimental
statistics. Finally, the impact of fatigue and mood on SA reliability is
investigated through a SA experiment set in the context of civil aviation,
with the methodological framework illustrated in Fig. 1.

2.2. EEG data preprocessing and feature extraction

2.2.1. EEG data preprocessing

Raw EEG data is affected by various sources of noise, including but
not limited to muscle activity (EMG), heartbeat (ECG), eye movements,
and environmental electromagnetic interference. Preprocessing steps
can be used to remove these non-brain sources of noise. The pre-
processing of EEG data typically includes three steps: selecting reference
electrodes, filtering, and Independent Component Analysis (ICA).

(1) The first step involves selecting the reference electrodes.
Commonly used reference electrodes include the mastoid refer-
ence, earlobe reference, average reference, and common average
reference [43].

(2) Next, filtering is applied to the EEG signals to isolate signals
relevant to the research objectives. Typically, a low-pass filter is
set at 0.1 Hz, while a high-pass filter is set at 40 Hz. When using a
band-pass filter, the frequency range is set from 0.1 Hz to 40 Hz.

(3) Finally, data segmentation and ICA are performed. Data seg-
mentation is used to extract features from time segments of in-
terest, with 6 s chosen for this study. The goal of ICA is to
eliminate artifacts from EMG, ECG, and eye movements that
interfere with the EEG signals.
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2.2.2. EEG data feature extraction

EEG data feature extraction is a crucial step for deriving meaningful
features from preprocessed EEG data that represent brain activity pat-
terns and can be used as input for subsequent deep learning. Commonly
used EEG signal features include time-domain features, frequency-
domain features, and other relevant features.

The most direct and important type of EEG data features are time-
domain features. Common time-domain features include the signal’s
maximum and minimum values, peak value, mean, root mean square,
square root amplitude, average amplitude, variance, mean square error,
root mean square error, skewness, and kurtosis.

Frequency-domain features of EEG data, also known as brain
rhythms. The brain rhythms of interest to researchers can be categorized
by frequency from low to high as §, 6, a, and  waves. By analyzing these
rhythms in the frequency domain, the absolute power of each rhythm
can be extracted as a feature. Additionally, the ratio of power between
different rhythms can reflect various physiological states.

In addition to time-domain and frequency-domain features, other
features are also used in EEG-related research, such as renyi entropy,
shannon entropy, minimum entropy, collision entropy, hartley entropy,
log energy entropy, tsallis entropy, and approximate entropy [44].
Furthermore, other nonlinear features, such as the largest Lyapunov
exponent and complexity measures like co-complexity, are also applied
in EEG analysis.

In this study, 21 time-domain features, 13 frequency-domain fea-
tures, and 9 other features were selected, totaling 43 features for the
analysis of fatigue and mood. Detailed information on the features can
be found in Appendix A.

2.3. Probability distribution of fatigue and mood based on BNN

2.3.1. Bayesian neural network

This study aims to use a BN model to account for the impact of fa-
tigue and mood on the SA reliability. However, obtaining the prior
probabilities for fatigue and mood presents a challenge. Traditional
machine learning and deep learning methods typically output labels
indicating an operator’s state, which neglects the presence of uncer-
tainty. BNN are considered promising approaches for addressing un-
certainty in deep learning, as they combine deep learning with
traditional Bayesian inference to output probability distributions for
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prediction samples. Therefore, this study uses a BNN based on EEG data
to obtain the probability distributions of fatigue and mood for each
sample, which are then used as prior probabilities in the BN model.

BNNs combine deep learning with traditional Bayesian inference, so
the first step in designing a BNN is to choose a deep neural network
architecture, represented as Y = ®y(X), also known as the function
model, where Y represents the label, X represents the features, and 6
represents the parameters. A traditional artificial neural network typi-
cally consists of an input layer (Ip), a series of hidden layers (1;,i = 0,
1...n,), and an output layer (I,). In the simplest feedforward neural
network, each layer I represents a linear transformation followed by a
nonlinear activation function s:

L=X (€D)]
li = si(wili—l +b,) Vie [1,71] (@3]
Y=1 (€))

where 6 = (w,b) represents the model’s parameters, s; represents the
activation function of layer ;.Deep learning is essentially the process of
regressing these parameters from the data D = {(X1, Y1),..., (Xn, Ya)}-
The standard approach is to use the backpropagation algorithm to
obtain point estimates for each parameter. While this simplifies the
deployment of software packages, it often lacks interpretability and can
lead to overconfidence in predictions for unseen data.

A BNN can be defined as any artificial neural network trained using
Bayesian inference. It simulates multiple possible model parameters 0
and their associated distributions p(@) by assigning random weights to
the network, providing a better understanding of the uncertainty related
to the underlying process. If different models agree, uncertainty is low;
otherwise, uncertainty is high [45]. This process can be represented as
follows:

0=p(9) “)
Y =@(X) +e ®

where ¢ represents random noise, used to account for the fact that the
function ®y is only an approximation.

In addition to selecting a function model, a stochastic model must
also be chosen to determine the prior distribution of the model param-
eters 6 and the prior confidence in the model’s predictive ability p(Y|X,
6). Let the training dataset be D, the training labels be Dy, and the
training features be Dx. Using Bayes’ theorem, the Bayesian posterior of
the model parameters can be expressed as follows:

___ p(Dy|Dx,0)p(0)
PO = oDy Dy, 00100

-op(Dy|Dx, 0)p(6) (6)

accurately estimating p(|D) is challenging, as it is a high-dimensional,

highly non-convex probability distribution, particularly when calcu-

lating the evidence [p(Dy|Dx,0')p(6')d0'. Therefore, two widely adopted
0

methods have been introduced: (1) Variational Inference [46] and (2)
Markov Chain Monte Carlo [47]. This study does not provide a detailed
explanation of the parameter inference process, and interested readers
are encouraged to refer to the literature [46,47].

The prediction output of a BNN is p(Y|X, D), which quantifies the
model’s uncertainty in its predictions and is referred to as the marginal
distribution. Given p(@|D) and p(Y|X, D) it can be computed as follows:

D)do )

p(YX.D) = /pmx 0)p(6

in practical applications, indirect sampling is performed using Eq. (5),
and the final prediction results are summarized using statistics
computed via the Monte Carlo method. A large number of weight sets
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0; € © are sampled from the posterior to compute the corresponding
outputs Y; € Y. For classification tasks, the average model prediction
provides the relative probability for each classification, which can be
considered a measure of output uncertainty:

~ 1
p= @Z(Da‘ (X) €]

6,0

The final prediction result is the most likely class:

Y= argmaxp; € p (©)]

2.3.2. Parameters used in the fatigue and mood BNN model

Based on the data used in this study, a multilayer perceptron (MLP)
was chosen as the architecture for the BNN, consisting of an input layer,
a hidden layer, and an output layer. The ReLU function was used as the
activation function, allowing the model to handle nonlinear relation-
ships. In the BNN model, the input and hidden layers of the MLP are
Bayesian linear layers, where the weights are estimated as probability
distributions. For the basic architecture, the standard approach is to use
a normal prior with a mean of 0 and a diagonal covariance matrix oI on
the network’s weights [48].

p(0) = .7(0,0I) 10)

it is worth noting that while a normal prior is preferred in practice due to
its mathematical properties, there is no theoretical evidence suggesting
it is superior to other formulations. The optimizer used is the Adam
optimizer, with a learning rate set to 0.01.

To mitigate overfitting, the loss function comprises two components:
the cross-entropy loss, which measures classification performance, and
the Kullback-Leibler (KL) divergence loss, which quantifies the
discrepancy between the model’s weight posterior distribution and the
prior distribution.

1&g i Pri(X;)
Loss = —— YPlog(p") + Y Pri(X;)lo ( - ) an
N;;J (+") )Z; (X108 | posx)
L(Yp) D, (Pri[Pos)

where L(Y,p) denotes the cross-entropy loss function, where N is the
number of samples, C is the number of classes, Y}i) represents the
probability that sample i belongs to classj. If sample i actually belongs to
class j, then Yj(i) = 1; otherwise, Y}i) = 0. The term p}i) represents the
model’s predicted probability that sample i belongs to class j.
Dky,(Pri || Pos) refers to the KL divergence, which quantifies the differ-
ence between the model’s weight posterior distribution Pos(X;) and the
prior distribution Pri(X;). f is a weight coefficient used to balance the
relative importance of the cross-entropy and KL divergence losses, with
a default value set to 0.01.

The proposed BNN model is implemented using the PyTorch library
and the Torchbnn library in Python.

2.4. BN model for SA reliability evaluation

2.4.1. Bayesian network

BN is a kind of directed acyclic graph, in which nodes represent
random variables of influencing factors or events and edges between
nodes represent their causality (from “cause” to “result”) [49]. If the
random variables in BN are represented by x, then the probability of
each node is expressed by its parent nodes PA(x), as shown in Eq. (12).
The probability of each node is calculated based on the joint probability
distribution of BNs.

P(X],"',Xi) = ﬁP(xJPA(x,)) (12)

i=1

BN can combine multiple information sources (e.g., physiological
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data and experimental data) to model the influence of uncertainties on
cognitive process with a strong basis in cognitive theory [50,51]. The
construction of a BN generally consists of two critical steps: (1) defining
the BN’s logical structure, and (2) estimating the parameters.

2.4.2. Logical structure of the proposed BN model

The basis of the proposed BN-based SA reliability model is the causal
conceptual model of SA, which demonstrates the hierarchical relation-
ships and logical structure underlying SA. As Fig. 2 illustrates, this model
considers factors in two dimensions:

a) Levels of SA: SA can be divided into three key levels, namely
perception, comprehension, and projection. Each of these levels is
influenced differently, so the SA at different levels is modeled
separately to increase the accuracy of the model.

Performance shaping factors (PSFs): This study primarily in-
vestigates the influence of physiological factors on the SA reliability,
with a specific focus on fatigue and mood, both of which are widely
acknowledged to significantly affect human cognitive process. Other
factors, such as environmental conditions, equipment, and task-
related variables, are beyond the scope of this research.

b

-

In existing SA reliability models, the three levels of SA are closely
related. In other words, if one cannot perceive the surrounding envi-
ronment correctly, he cannot have a correct understanding of the cur-
rent scenario, and cannot predict the future state correctly. However, in
practice, it is still possible to form a correct understanding and predic-
tion even with incorrect perception, and incorrect understanding does
not necessarily lead to incorrect prediction. Existing SA disruption
measurement methods do not always lead to the accurate judgment of
SA, so there is a great possibility for such discordance to occur. It would
be problematic to disregard the possibility, and treating the discordance
entirely as anomalous state data is a deviation from the actual situation.
To solve this problem, this paper proposes the concepts of nominal and
actual SA. The actual SA is directly determined by the projection SA,
while the nominal SA is jointly determined by the SA of the perception,
comprehension, and projection level. The relationships between these
concepts are shown in Fig. 3.

Based on the PSFs (fatigue and mood) affecting SA and the in-
teractions (causality) between the factors, a causal conceptual BN model
for SA reliability evaluation is developed, as shown in Fig. 4.

2.4.3. The parameter estimation of the proposed BN
Conducting SA reliability evaluation using a BN requires the precise
determination of its parameters. Typically, these parameters consist of

PSFs
Ve
Ve
- T T T ~ //
s N s
/ A
/ P
| )\ -
N / N
N Fatigue P N
N P N
\\ /// \
=== AN

Situation Awareness

Situation Awareness

Situation Awareness

Reliability Engineering and System Safety 260 (2025) 110962

the prior probabilities for the root nodes and the CPTs for the remaining
nodes. In the proposed BN model, parameter estimation involves the
prior probability distributions for the ’fatigue’ and 'mood’ nodes,
alongside the CPTs for the other nodes. One of the key advantages of BN
is their capacity for uncertainty reasoning. However, constrained by
data scarcity, many BN models rely on expert knowledge to define prior
probability distributions and CPTs, introducing cognitive uncertainty
and reducing both the reliability and applicability of the model in real-
world scenarios. To address this limitation, the parameter estimation in
this study is derived from objective EEG data and experimental results,
aiming to construct a model that more accurately represents real-world
conditions. The SAGAT technique measures the success rate of SA
establishment by pausing the task at predetermined time points, during
which participants are asked to quickly answer questions about their
current perception of the situation. Their responses are then compared
with the correct answers. This success rate is represented by the Eq. (13):

P(sa=R) = 1

2|

=Y ol) a3)
j=1

. 1 if the jth item is correct

whereby : o(j) = { if 0] otherwise

where sa € {SAp, SA;, SAr,ASA,NSA}, P(sa= R) represents the proba-
bility of correct for nodes related to SA. When using the SAGAT tech-
nique, time is frozen to measure the operator’s success rate in
establishing SA under the current task conditions. This process in-
corporates three elements from the concept of SA reliability: specified
time, specified conditions, and the establishment of correct SA. There-
fore, our model can be regarded as an assessment of the reliability of
each level of SA, considering factors such as fatigue and mood
influences.

Initially, the outputs p(Yr|X,D) and p(Yu|X,D) from the BNN serve
as the prior probabilities for the ‘fatigue’ and ‘mood’ nodes. Subse-
quently, multiple SA experiments were conducted on a multi-attribute
task platform. These experiments involved obtaining fatigue and mood
labels from participants using standardized scales. The SAGAT was then
employed to evaluate participants’ SA reliability across different levels.

Finally, the CPTs of each node were determined based on statistical
analysis of experimental data. For instance, the conditional probability
P(SAc =R|SAp =R,F = N,M = P) was computed using the following
equation:

Levels of SA SA

Perception

(S4r)

Situation
Awareness
(84)

Comprehension

(SA4¢)

Projection

(SA4F)

Fig. 2. Logical structure of SA reliability evaluation.
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Perception SA
Right (R) | Wrong (W)

y

Comprehension SA

Right (R) | Wrong (W)

y
Projection SA

Right (R)

Wrong (W)
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Nominal SA
Wrong (W)

Right (R)

Actual SA
Right (R)

Wrong (W)

Fig. 3. Nominal SA and Actual SA.

Fatigue (F)

Perception
Situation Awareness
(SAr)

Nominal SA
(NSA)

omprehension
Situation Awareness
(SAc)

Actual SA
(ASA)

Projection
Situation Awareness
(SAF)

Fig. 4. Causal conceptual model for SA reliability evaluation of BN.

P(SAc =R|SAp=R,F=N,M=P) =

_ Sample(SA¢c = R,SAp = R,F = N,M = P)

Sample(SAp = R,F = N,M = P)

where Sample(SAc=R,SAp=R,F=N,M=P) denotes the number of
occurrences of the event (SAc = Right)N(SAp = Right)N(F =
No) N (M = Positive); and Sample(SAp = R,F = N, M = P) represents the
number of occurrences of the event (SAp = Right) N (F = No)N (M =
Positive), which can be obtained from experimental statistical data.

In addition to the nodes discussed above, the CPTs of two nodes also
need to be determined: "Nominal SA" and "Actual SA". These two nodes
have strong logical relationships, so they can be determined by directly
choosing the appropriate logic gates.

"Nominal SA" should be strictly defined as deterministic nodes cor-
responding only to {0,1}. "Nominal SA" can be considered correct only
when the "Perception SA", " Comprehension SA", and " Projection SA" are

14

all correct. Therefore, the "and" logic is chosen to describe the "Nominal
SA" node, and its Boolean logic relationship of the node is shown in Eq.
(15).

B(NSA) = B(SAp) x B(SA¢) x B(SAr) (15)

where B(NSA)=1 denotes Nominal SA is right and B(NSA)=0 denotes
Nominal SA is wrong.

The actual SA is directly determined by the projection SA.

The proposed BN model is implemented using GeNlIe 4.0 software.
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3. Experient
3.1. Participants

18 students from Beihang University participated in the experiment,
including 9 males and 9 females, with an average age of 22 + 2 years. All
participants had normal or corrected-to-normal vision, were right-
handed, and were in good physical health. Informed consent was ob-
tained from all participants prior to the commencement of the study.

3.2. Experimental apparatus and task

To measure the participants’ EEG signals, the experiment employed
the Bitbrain wireless portable EEG measurement system equipped with
water-based electrodes. This system comprises 32 channels arranged in
accordance with the standard 10-20 system and operates with a sam-
pling frequency of 256 Hz. Data transmission is conducted wirelessly via
Bluetooth, allowing for real-time monitoring of EEG dynamics.

The experiment utilizes a multi-attribute task to design the SA
experiment. The multi-attribute task is implemented using OPEN-MATB,
which is derived from the Multi-Attribute Task Battery (MATB) devel-
oped by NASA. It provides a set of benchmarking tasks that can be used
for a wide range of laboratory research on human performance and
workload assessment. It has been used in several fields to simulate
various tasks faced by pilots during flight and explore various theories
[52,53], and studies have been conducted to demonstrate the persua-
siveness of the MATB platform [54]. In this case study, the tasks
included the communication task, the tracking task, the system moni-
toring task, and the resource management task. The task interface is
shown in Fig. 5.

3.3. Experimental design

The degradation of SA among pilots is a major factor affecting flight
safety. According to statistical data, 35.1 % of minor incidents and 51.6
% of major accidents are attributed to pilot decision-making errors, with
a significant proportion linked to inadequate SA or SA errors rather than
actual decision-making faults [55]. Fatigue and mood are pivotal factors
contributing to the loss of SA or SA errors in pilots. However, there is a
scarcity of research investigating the impact of fatigue and mood on the
SA reliability in pilots. Accordingly, this study designed a series of
experimental tasks based on the typical phases of civil aviation oper-
ations—takeoff, level flight, and landing—using the OPEN-MATB
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platform.

The task mapping for the typical flight scenarios is depicted in Fig. 6,
illustrating the tasks that pilots are required to perform during the
takeoff, level flight, and landing phases. During the takeoff phase, pilots
engage in communication with the control tower while simultaneously
managing tracking, system monitoring, and fuel resource management
tasks. In the level flight phase, pilots can opt for autopilot or manual
tracking, yet they must continue to manage fuel resources. For instance,
in the event of a fuel system malfunction, pilots may need to allocate
additional cognitive resources to coordination. During the landing
phase, pilots sustain communication with the control tower while per-
forming manual tracking and system monitoring tasks.

Prior to the formal experiment, participants engaged in a 5-minute
pre-experiment to familiarize themselves with the task procedures.
Following this, they completed a 12-minute formal experimental ses-
sion, during which EEG data were continuously recorded. The experi-
mental protocol incorporated two interruptions to facilitate the
assessment of participants’ SA using the SAGAT.

3.4. Measurement of fatigue, mood and SA

The primary objective of this study is to investigate the impact of
fatigue and mood on the SA reliability. To this end, participants’ fatigue
and mood states are systematically induced, measured, and recorded to
serve as labels for the BNN model. Furthermore, during designated
interruption intervals, participants’ SA reliability are rigorously assessed
to evaluate the impact of these variables on SA reliability.

Fatigue was induced through controlled sleep deprivation. Due to the
individual differences in susceptibility to sleep deprivation, partici-
pants’ fatigue levels were assessed using the Stanford Sleepiness Scale
(SSS) [56]. Based on the SSS, participants’ fatigue was classified into
three categories: no fatigue, mild fatigue, and severe fatigue.

Mood states were induced by exposing participants to auditory
stimuli over an extended duration. Prior to the experimental procedures,
participants’ mood states were evaluated using the Profile of Mood
States (POMS) [57]. The results from the POMS assessment enabled the
classification of mood states into two distinct categories: positive and
negative.

SA reliability was assessed using the SAGAT [58]. As discussed
before, this technique involves interrupting the task to prompt operators
to quickly respond to questions regarding their current understanding of
the situation. Their responses are then compared to the actual situation
to objectively evaluate their SA. Responses that match the actual
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situation are deemed right, while discrepancies are considered wrong.

In this study, EEG data, including those obtained during interruption
periods, were segmented into 6-second time slices, yielding a total of
3768 samples. These samples were then used to construct the dataset for
the BNN model, which focuses on analyzing fatigue and mood.

4. Results

Based on the experimental data collected, we developed and trained
two BNNs to assess the participants’ fatigue and mood states, respec-
tively. The CPTs for the nodes in the proposed BN were subsequently
computed. The output from the BNN model was used to establish the
prior probabilities for the fatigue and mood nodes within the BN
framework. Following this, Bayesian inference and sensitivity analyses
were performed to examine the influence of fatigue and mood on SA
reliability.

4.1. BNN models of fatigue and mood

The BNN model proposed in this study was trained on EEG data from
participants, with an 80 % training and 20 % testing data split. Model
performance was assessed by calculating accuracy, recall, precision, and
F1-score for each category, as detailed in Table 1 and Table 2. The re-
sults demonstrate that the BNN models for fatigue and mood achieved
high accuracy rates of 95 % and 98 %, respectively. Furthermore, the
other performance metrics were also commendable, with all values
surpassing 0.9. These outcomes affirm the robustness of the BNN
model’s uncertainty outputs, making them highly reliable for use as
prior probabilities in subsequent BN model.

To quantify uncertainty, multiple forward propagations were

Table 1

The results of the fatigue BNN model
Category Accuracy Precision Recall F1-score
No 0.95 0.94 0.93 0.93
Mild 0.90 0.93 0.92
Severe 0.98 0.96 0.97

Table 2

The results of the mood BNN model
Category accuracy Precision Recall F1-score
Positive 0.98 0.99 0.98 0.99
Negative 0.98 1.00 0.99

conducted using the trained BNN. Specifically, for each test sample,
1000 forward propagations were performed, and the results were
averaged to derive the final uncertainty. We selected five samples from
the test sets for fatigue and mood to illustrate the model’s uncertainty.
As presented in Fig. 7 and Fig. 8, the BNN effectively assessed the un-
certainty in predicting fatigue and mood from EEG data. For example,
certain samples demonstrated low uncertainty: sample 3 was classified
with 100 % certainty as experiencing mild fatigue. Conversely, other
samples exhibited higher uncertainty, for instance, sample 4 had a 58.19
% probability of being categorized as negative.

4.2. The impact of fatigue and mood on the SA reliability

Using Eq. (13), we derived the CPTs for each node from the experi-
mental statistics, as shown in Tables 3-6.

The CPTs for "Nominal SA" and "Actual SA" can be derived from the
logical gates, as detailed in Table 6 and Table 7.

Based on the CPTs above and the prior probabilities for the fatigue
and mood nodes derived from the BNN model outputs, we subsequently
conducted posterior probability inference using the BN. This approach
allowed us to compute the SA reliability across different levels for the
EEG data of sample 1. The results are presented in Fig. 9.

Furthermore, we conducted a comparative analysis of BN posterior
inference results with and without incorporating uncertainties associ-
ated with the fatigue and mood nodes. In the comparison, we utilized the
classification results from a standard MLP, wherein probabilities for
specific fatigue and mood states were assigned as 100 %, resulting in
what is termed the MLP-BN model. As detailed in Fig. 10, the proposed
BNN-BN model, which accounts for uncertainties in fatigue and mood,
offers a more nuanced assessment by mitigating potential
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Table 3
The CPT of node Perception SA

Table 4
The CPT of node Comprehension SA

Fatigue Mood Perception SA Perception SA Fatigue Mood Comprehension SA
Right Wrong Right Wrong
No Positive 0.831168831 0.168831169 Right(R) No Positive 0.918181818 0.0818182
Negative 0.761904762 0.238095238 Negative 0.883333333 0.1166667
Mild Positive 0.732142857 0.267857143 Mild Positive 0.9125 0.0875
Negative 0.674603175 0.325396825 Negative 0.85 0.15
Severe Positive 0.642857143 0.357142857 Severe Positive 0.8625 0.1375
Negative 0.592592593 0.407407407 Negative 0.811111111 0.1888889
Wrong(W) No Positive 0.159090909 0.8409091
Negative 0.104166667 0.8958333
overestimation or underestimation of the physiological states’ impact on Mild Positive 0.09375 0.90625
SA during BN posterior inference. For example, in the posterior infer- y ';eg,jﬁve 3'33275 8'23225
evere ositive 3 A
- - i -
ence for sample 4, P(SAp = R) = 67.46 %, whereas the BNN-BN Negative 0111111111 0.8888889

model estimates a probability of 69.85 %. This disparity suggests that
the MLP-BN model may underestimate the influence of physiological
states on SA reliability.

4.3. Sensitivity analysis of the established SA model

BN sensitivity analysis involves assessing how minor variations in
input parameters (such as prior probabilities and CPTs) influence the

output parameters (posterior probabilities). Parameters exhibiting high
sensitivity significantly impact the inference outcomes. The GeNle
software utilizes the sensitivity analysis algorithm developed by Kjaer-
ulff and van der Gaag [59], which is designed to perform fundamental
sensitivity assessments within BN. Broadly speaking, for a given set of
target nodes, this algorithm efficiently computes the full set of
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Table 5
The CPT of node Projection SA
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derivatives of the posterior probability distributions at these nodes with
respect to each numerical parameter in the BN. These derivatives indi-
cate the significance of the precision of the network’s numerical pa-

Comprehension SA Fatigue Mood Projection SA
Right Wrong rameters for computing the posterior probabilities of the targets. A large
derivative implies that even minor changes in the parameter can lead to
Right(R) No Positive 0.939393939 0.0606061 substantial variations in the posterior probabilities. Conversely, a small
Mild l:ssgi?it‘l: g:ziiiiijii g:g;gg;gé derivative suggests that significant changes in the parameter will have
Negative 0.87037037 0.1296296 minimal impact on the posterior probabilities.
Severe Positive 0.875 0.125 Finally, a sensitivity analysis of the developed SA reliability evalu-
Negative 0.851851852 0.1481481 ation model was conducted, focusing on the "Actual SA" node as the core
Wrong(W) No ;°Siti‘_’e g'igégégégg 3’22???}‘? element. Fig. 11 presents a tornado diagram for the sensitivity analysis
Mild P:Sgi?it‘l,ze 0125 0.875 of the NSA node. The diagram illustrates the top ten most sensitive pa-
Negative 0.222222222 0.7777778 rameters affecting the probability of NSA=Right. For each parameter,
Severe Positive 0.166666667 0.8333333 the model displays its precise location (the node and its state, which
Negative 0111111111 0.8888889 depend on the states of the parent nodes). The bar graph shows the range
of changes in the target state when the parameter varies within its
bounds (in this case, its current value fluctuates between [0,1]). The
Table 6 color of the bars indicates the direction of change in the target state,
The CPT of node Nominal SA with red representing negative change and green positive change.
Perception Comprehension Projection Nominal SA The results indicate that the parameter P(SAr = R|SA¢c = R, F = Mild,
SA SA SA Right Wrong M = Positive) has the greatest influence on P(ASA = Right). Moreover,
fatigue has a more significant impact on ASA than mood. In terms of
Right Right \l}virg:; é ? sensitivity, the parameters ranked as P(F = Severe) > P(F = No) > P(F =
Wrong Rightg 0 1 Mild) > P(Mood = Positive) > P(Mood = Negative).
Wrong 0 1
Right Right 0 1 5. Discussion
Wrong 0 1
Wrong Wrong &f:;g g 1 Our study demonstrates that integrating BNN-derived uncertainty
Right Right 0 1 into BN significantly improves the robustness of SA reliability assess-
Wrong 0 1 ment. Compared to traditional models relying on subjective expert
Wrong Right 0 1 judgments [30], our BNN-BN framework reduces overconfidence in
Wrong 0 ! predictions of SA reliability by considering the uncertainty of fatigue
and emotional EEG samples (Fig. 10). This advance addresses the critical
gap in existing SA models that neglect physiological state uncertainties.
Table 7 This methodology can be discussed in the following aspects.
The CPT of node Actual SA (1) SA experimental design based on the OPEN-MATB platform.
Projection SA Actual SA Our SA experiment, designed around the OPEN-MATB platform,
Right Wrong represents a significant advancement in simulating real-world aviation
Right 1 o scenarios. By incorporating tasks such as communication, tracking, and
Wrong 0 1 resource management, we replicated the cognitive demands faced by
pilots during critical flight phases. This design provides a standardized
O Fatigue ©  Perception SA O  Nominal SA
No  45% I Right 78% D >
Mild  55%) Wrong22%
Severe 0%| o o
@] Mood - A -
Positive 100% O Comprehension SA
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Fig. 9. The Forward Inference Results of Sample 1 with BN.
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framework for future SA research. For instance, the SAGAT question
bank developed in this study (Appendix B) can be adapted to other high-
risk domains, such as nuclear power plant operations or autonomous
vehicle supervision, where SA reliability is equally critical.

The proposed experimental framework allows researchers to sys-
tematically investigate the impact of various factors (e.g., workload,
stress) on SA reliability. This capability is particularly valuable for
designing targeted interventions, such as adaptive automation systems
that adjust task complexity based on real-time operator states.

11

(2) Utilizing BNNs to assess the uncertainty in operators’ physio-
logical states

Traditional deep learning models, while achieving high accuracy in
physiological state classification, often fail to account for prediction
uncertainty, leading to overconfident and potentially hazardous out-
comes [60,61]. In contrast, our BNN-based approach quantifies both
aleatoric and epistemic uncertainties, providing a more reliable foun-
dation for SA reliability assessment. For example, the BNN model’s
uncertainty estimates (Fig. 7 and Fig. 8) reveal that certain EEG samples



S. Ding et al.

Reliability Engineering and System Safety 260 (2025) 110962

Sensitivity for Actual_SA=Right
Current value: 0.675251 Reachable range: [0.164389 .. 0.884734]

0.2 0.3 0.4 05

06 0.7 0.8

1: Projection_SA=Right | Comprehension_SA=Right, Fatigue=Mild, Mood=Positive

2: Perception_SA=Right | Fatigue=Mild, Mood=Posi

3: Comprehension_SA=Right | Perception_SA=Right, Fatigue=Mild, Mood=Positjve

4: Projection_SA=Right | Comprehension_|SA=Wrong, Fatigue=Mild, Mood=Positive|

5: Comprehension_SA=Right | Perception_|SA=Wrong, Fatigue=Mild, Mood=Positive

10: Projection_SA=Right | Comprehension_SAgRight, Fatigue=Mild, Mood=Negative

6: Fatigue=Sever

7: Fatigue=No

9: Mood=Posifive

Fig. 11. Tornado plot for ASA nodal sensitivity analysis.

exhibit high ambiguity (e.g., sample 4 with 58.19 % probability of
negative mood), which would be overlooked by deterministic models.

By integrating Bayesian inference with deep learning, our BNN
framework not only achieves high classification accuracy (95 % for fa-
tigue, 98 % for mood) but also evaluates the uncertainty of fatigue and
mood. This dual capability is crucial for safety-critical applications,
where overconfidence in predictions can have severe consequences.

(3) SA reliability evaluation considering the uncertainty of physio-
logical states

Our BNN-BN framework bridges the gap between data-driven un-
certainty quantification and causal reasoning, offering a novel approach
to SA reliability evaluation. Unlike traditional BN models that rely on
subjective expert judgments [62,63], our approach leverages objective
EEG data and experimental statistics to derive prior probabilities and
CPTs. This integration not only enhances model credibility but also
provides a scalable solution for real-time SA assessment in dynamic
environments.

The sensitivity analysis (Fig. 11) highlights that fatigue has a greater
impact on Actual SA than mood. This can be attributed to the fact that
fatigue directly impairs key cognitive functions such as attention,
memory, decision-making, and reaction time, all of which are critical for
maintaining a high SA [64,65]. While mood also influences individual
behavior and performance, the mood states in this study were induced
through audio stimuli, which may not exert as strong an effect on
cognitive functions as more severe mood conditions such as depression
or anxiety. In other words, participants might be able to mitigate the
influence of mood on SA through conscious effort, whereas overcoming
the detrimental effects of fatigue is far more challenging. This result
underscores the need for real-time fatigue monitoring systems in avia-
tion. Our model’s ability to quantify this impact can inform the design of
adaptive interventions, such as workload redistribution or rest sched-
uling, to mitigate fatigue-induced SA degradation. Furthermore, the
framework’s modular design allows for the incorporation of additional
factors (e.g., environmental noise, task complexity), making it adaptable
to diverse operational contexts.

(4) Limitations and Future Directions

Despite its advancements, our study has two key limitations. First,
the model does not account for non-physiological factors (e.g., task
complexity, environmental noise), which may influence SA reliability.
Second, the participant-dependent nature of the BNN training limits
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generalizability to other operator cohorts (e.g., professional pilots vs.
novices).

To address these limitations, future work should: (1) Expand the BN
to include additional nodes for task complexity and environmental
factors, leveraging multi-modal data (e.g., eye-tracking, heart rate
variability); (2) Validate the framework in real-world settings, such as
flight simulators or nuclear control rooms, to assess its practical utility.

6. Conclusion

SA is a critical prerequisite for effective decision-making and suc-
cessful task execution, SA reliability is the evaluation of how well SA is
established, and it is also the goal of SA assessment. While numerous
descriptive models of SA have been proposed, SA reliability evaluation
models often suffer from limited applicability and objectivity, particu-
larly in failing to account for the effects of fatigue and mood. To address
these gaps, this paper presents a novel SA reliability evaluation model
using the BNN-BN approach. This approach integrates the effects of fa-
tigue and mood on SA reliability, leveraging EEG data to innovatively
capture the uncertainty in predictions of fatigue and mood states via
BNNs. The uncertainty is then used as prior probabilities in a BN model,
which helps to prevent overestimation or underestimation of the results.
The SA experiment is designed around a typical flight scenario, taking
into account the three levels of SA, with CPTs derived from experimental
data. The results demonstrate that the proposed BNN-BN model is
capable of directly assessing an operator’s SA reliability from EEG data,
providing a theoretical foundation for real-time SA reliability evaluation
based on physiological data.
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The time-domain features selected from EEG signal for this study are as follows:
Tables 8, 9, 10

Table 8

The time-domain features used in this study.

Number Feature Number Feature Number Feature
1 Maximum value 8 Sample standard deviation 15 Crest factor
2 Minimum value 9 Standard error 16 Impulse factor
3 Mean value 10 Coefficient of variation 17 Margin factor
4 Arithmetic mean 11 Root mean square (RMS) value 18 Skewness factor
5 Peak value 12 Root amplitude 19 Kurtosis factor
6 Variance (effective estimate/population) 13 Skewness 20 Population standard deviation
7 Variance (unbiased/sample) 14 Kurtosis 21 Form factor
The frequency-domain features selected from EEG signal for this study are as follows:.
Table 9
The frequency-domain features used in this study.
Number Feature Number Feature
22 Absolute energy of 5 wave 29 Relative energy of o/(8+6+0-+p)
23 Absolute energy of 6 wave 30 Relative energy of a/(8+0-+a-+p)
24 Absolute energy of a wave 31 Relative energy of a/(8+0-+a-+p)
25 Absolute energy of p wave 32 Relative energy of o/(8+0+0-+p)
26 Total absolute energy 33 Relative energy of (6+a)/(p+o)
27 Relative energy of 8/(5+6-a-+p) 34 Relative energy of 6/f
28 Relative energy of 0/(5+6-+a-+p)
The other features selected from EEG signal for this study are as follows:.
Table 10
The other features used in this study.
Number Feature Number Feature
35 Information entropy/Shannon entropy 40 First-order differential standard deviation
36 Log energy entropy 41 Second-order differential standard deviation
37 Threshold entropy 42 Mobility
38 Deterministic entropy 43 Complexity
39 Norm entropy
Appendix B
Table 11
Table 11
The SAGAT question bank for the OPEN-MATB platform.
Number Question Task Level of SA
1 Were the F1-F4 values within the normal range during the aforementioned time period? Monitoring Perception
2 What were the colors representing the normal states of F5 and F6 during the aforementioned time period? Monitoring Perception
3 Did you notice when F1-F4 moved to the upper or lower boundary during the recent time period? Monitoring Perception
4 What action is required when the green color of F5 disappears? Monitoring Comprehension
5 What action needs to be taken when the red color of F6 appears? Monitoring Comprehension
6 What changes occurred in the status of F1-F4 when you clicked on them? Monitoring Projection
7 What changes occurred in the status of F5 when you clicked on it? Monitoring Projection
8 What changes occurred in the status of F6 when you clicked on it? Monitoring Projection
9 What was the status of the tracking task during the recent period? Tracking Perception
10 Did you notice when the tracking task was in automatic mode? Tracking Perception
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Table 11 (continued)

Reliability Engineering and System Safety 260 (2025) 110962

Number Question Task Level of SA

11 Did you immediately notice when the tracking task was in manual mode? Tracking Perception

12 What actions did you take when the tracking task switched to manual mode? Tracking Comprehension
13 What actions are required when the cursor center deviates from the central box? Tracking Projection

14 Who was the recipient of the last voice call? Communication Perception

15 Were you aware of the significance of the voice call recipient being NASA504? Communication Comprehension
16 Were you aware of the significance when the voice call instructed you to switch the radio to the designated channel? Communication Projection

17 Did you notice the schedule displayed in the upper-right corner? Scheduling Perception

18 How many minutes into the schedule is the next voice task expected to occur? Scheduling Perception

19 Does the schedule indicate that the next operation will be received after the first minute? Scheduling Perception

20 What do the green indicators in the C and T columns represent? Scheduling Comprehension
21 What action should you take when the T column is about to change from red to green? Scheduling Projection

22 What are the current fuel levels in main tanks A and B, respectively? Resource management Perception

23 What are the current fuel levels in auxiliary tanks C and D, respectively? Resource management Perception

24 Which valve is currently indicated in red? Resource management Perception

25 What does it signify when the valve status is indicated in red? Resource management Comprehension
26 What are the consequences when a particular valve fails? Resource management Projection

27 What happens when all the valves are open? Resource management Projection

28 What actions do you need to take when the fuel levels in tanks A and B fall below 2500? Resource management Comprehension
29 What actions should you take when the fuel level in tank A is below 2500 and the fuel level in tank B is above 2500? Resource management Comprehension

Data availability

Data will be made available on request.
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