Computers & Industrial Engineering 204 (2025) 111110

Computers &

Contents lists available at ScienceDirect
Industrial
Engineering

Computers & Industrial Engineering

FI. SEVIER

journal homepage: www.elsevier.com/locate/caie

L))

Check for

Human control mode enables accurate real-time risk warning in | e
human-machine systems

a,”

. . . b . 3
Chongfeng Li“, Xing Pan® , Linchao Yang’, Jun Wang “, Haobing Ma*

@ School of Reliability and Systems Engineering, Beihang University, 37 Xueyuan Road, Haidian, Beijing 100191, China

Y School of Economics and Management, North China Electric Power University, Beinong Road, Changping, Beijing 102206, China
€ School of Economics and Management, Beihang University, 37 Xueyuan Road, Haidian, Beijing 100191, China

ARTICLE INFO ABSTRACT

Keywords:

Industry risk
Human-machine systems
Human-centric risk warnings
Human control

Machine learning

Data-driven risk analysis serves as an essential approach to risk mitigation in human-machine systems. Presently,
risk management rooted in data often depends on labels extracted from risk outcomes, accentuating a causative
risk management paradigm. However, these labels frequently fall short in capturing the dynamic evolution of
risks in real-time, especially accounting for the impact of human intervention on risk dissemination. In striving
for greater precision in real-time risk prediction within human-machine systems, human control is identified as a
pivotal factor in shaping risk progression. A precise warning model is devised based on human control patterns,
discerned through clustering control data focusing on “timeliness,” “stability,” and “coordination.” This meth-
odology facilitates the development of machine learning-driven warning models. The viability of the proposed
approach is substantiated through a case study involving aircraft landing mishaps. This research furnishes a
conceptual framework and procedural guidelines to propel risk analysis within human-machine systems, with an

emphasis on human-centric risk warnings across diverse industrial contexts.

1. Introduction

With the increasing complexity of human-machine systems, the key
risk factors of human-machine systems are gradually shifting from the
machine itself to the human-machine interaction process (Hollnagel,
2018). Currently, data-driven risk warning is gradually being applied to
various human-machine system domains, such as manufacturing,
transportation, and aviation industries (Aziz & Dowling, 2019; Choi
et al., 2016). Real-time warning is a viable method to decrease accident
risk by providing timely alerts to drivers about potential risk (Li, Zhao,
etal., 2020; Oh et al., 2005). The core of data-driven risk warning lies in
learning the risk patterns from historical accident data and issuing
advance warnings before accidents occur (Guo et al., 2022). The accu-
racy of data risk labels directly impacts the effectiveness of the warnings.
As illustrated in Fig. 1, human-machine system risk labels mostly orig-
inate from risk outcomes, i.e., using past accidents to calibrate risk la-
bels, without considering the influence of human control. However, the
impact of human control on risks is increasingly uncertain, particularly
concerning real-time warnings. If real-time changes in human control
are not considered, accurate predictions of risk evolution cannot be
obtained. Therefore, current risk warnings based on risk outcomes as
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data labels overlook the uncertain risk control centered around human
control. From a data-driven perspective, this approach introduces
incorrect risk classification samples, like FN and FP in Fig. 1, leading to a
decrease in the accuracy of the warning models. Thus, combining risk
resistance based on real-time warning and human control is essential to
fully utilize risk data to enhance the prevention and control capabilities
of accidents.

The issues reflected in Fig. 1 exist in various domains where human
control is central, such as automotive driving systems (Matsuo et al.,
2022b; Sun et al., 2016), aviation transportation systems (Guo et al.,
2022; Li et al., 2023), industrial manufacturing systems (Bertoncel et al.,
2018), and nuclear industries (Hamer et al., 2021; Horita et al., 2018),
where risks are prevalent. Taking aviation risks as an illustration, the
global civil aviation industry has witnessed a resurgence following the
COVID-19 pandemic. However, amidst the annual increase in flight
frequencies and transportation capacities, there has been a surge in
aviation accidents, resulting in irreparable human casualties and eco-
nomic losses (ICAO, 2024). With the continuous development of com-
puter technology and air-to-ground data communication technology,
some countries have already achieved data-driven aviation risk man-
agement (Li et al., 2023), However, there also exists a problem of not
considering the impact of human control on the effectiveness of real-
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Nomenclature HC.C Coordination of HCS (\)
k k-SC clustering number (\)
A Accuracy of Machine Learning (\) m Gross weight of aircraft (kg)
AP Aircraft performance parameters (\) M Machine parameters (\)
ACS Auxiliary control sequence (\) MA Machine factors (\)
AD Machine state deviations (\) MCS main control sequence (\)
ALT The altitude of an aircraft relative to the ground (m) p Precision of Machine Learning (\)
B Pilot behavior parameters (\) Pg Static pressure (Pa)
Cp Drag coefficient (\) QAR Quick Access Recorder (\)
CL Lift coefficient (\) R Recall rate of Machine Learning (\)
DD Task degree of difficulty (\) S Takeoff distance (m)
Ducm Data for HCM prediction (\) SA Situation awareness (\)
DP Decision performance (\) Sw Wing reference area (m?)
E Environment parameters (\) SOP Standard Operating Procedure (\)
EC Environment Condition (\) t Time of operations (s)
Flap Flaps configuration (\) TH Task hardness (\)
F, F; score of Machine Learning (\) Ts Static temperature (°C)
g Gravity acceleration (m/s?) TP Track deviation (\)
H Human control parameters (\) Va The speed of aircraft indicated by instrument (m/s)
HC Human control data (\) VRer The reference speed of aircraft in Landing (m/s)
HCM Human control mode (\) Vw Tailwind speed (m/s)
HCS Human control sequences (\) wv Warning variables (\)
HC.T Timeliness of HCS (\) wP Warning points based on WV (\)
HCS Stability of HCS (\) p Atmospheric density (Kg/m>)

time warnings. This endeavor aims to augment the performance of real-
time warning models for aviation risk, thereby enhancing proactive
safety measures.

Therefore, this study targets the influence of human control on risk
evolution in human-machine systems. A real-time warning approach is
proposed for risks based on human control modes (HCM) and apply it to
the research on aviation industry. The primary contributions of this
research are as follows:

1) Introduction of a real-time warning framework for risk in human-
—machine systems based on HCM.

2) Exploration of typical HCM through the analysis of “timeliness,”
“stability,” and “coordination” of human control data.

3) Development of a risk warning method, encompassing methods for
HCM real-time analysis and risk prediction model by machine
learning.

4) Validation of the effectiveness and practical significance of the pro-
posed approach through its application to common aviation risks in
aviation industry.

R Risk evolution control

The research is divided into the following specific sections. Section 2
is a literature review, which starts from the limitations of risk warning
research in human-machine systems and proposes the perspective of
real-time warning considering human control. Section 3 introduces a
real-time risk warning method for human-machine systems based on
HCM, including the mining of HCM, the prediction of HCM, and the real-
time risk warning based on HCM. Section 4 uses the example of civil
aviation landing risk to illustrate the effectiveness of the proposed
method. The limitations of the current research and the conclusions are
explained in Section 5 and Section 6, respectively.

2. Literature review
2.1. Accident prediction and risk warning

Risk warning is a valuable way in enhancing system safety by
providing timely alerts and predictive warnings to human operators
(Ding et al., 2013). Risk warning, based on risk prediction, inform
people of the forecasted risks ahead of time, allowing for timely risk
control to prevent severe accident consequences (Saleh et al., 2013). The

a2

Rt HEIEIE T SEE e

Human Control Mode i, i=3

» Risk results
& analysis
1
FN-»\ RSk \/ LN real-
—/|  time
S I - Warning

«——Warning time window

| ,
i

TN: high risk in 7}, and high risk in 7}

FN: low risk in 7, and high risk in 7;

FP: high risk in 7}, and low risk in 7,

TP: lowrisk in 7, and low risk in 7,

Fig. 1. The background of research gap.
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essence of risk warning lies in providing relatively accurate risk infor-
mation at appropriate warning times, and a key aspect to achieving this
goal is understanding the evolution mechanism of risks as thoroughly as
possible. However, with the ongoing complexity of socio-technical sys-
tem structures, the uncertainty surrounding accident evolution mecha-
nisms continues to increase. Currently, data-driven approaches and
human expertise offer effective means to address the uncertainty in
accident evolution. Various methods have emerged, including rule-
based warnings (Wu & Chen, 2008), probability model-based warn-
ings (Kelly & Krzysztofowicz, 1994), machine learning-based warnings
(Ghoul et al., 2023; Zhang et al., 2022), deep learning-based warnings
(Bury et al., 2021), and Machine learning and deep learning are
important technologies of Al driven risk management. Based on the
accessibility of warning data and the maturity of data transmission
technology, data-driven warnings can be classified as proactive warn-
ings and real-time warnings, with real-time warnings being more
effective for risk prevention.

For typical human-machine systems, most related real-time warning
research focuses on using historical accident outcomes as risk labels and
pays attention to risk warnings based on system performance data (Li,
Gan, et al., 2020; Li et al., 2018; Matsuo et al., 2022a; Yu et al., 2021).
However, the current research rarely considers the influence of human
control on the risk evolution in historical accident data. As a result, it has
been challenging to derive relatively accurate risk warning models
based on historical data. Nowadays, extensive accident statistics from
various industries demonstrate the influence of real-time human control
on risk evolution (IATA, 2023; Poynter, 2023; Youlong et al., 2023).
Therefore, it is necessary to consider the influence of human control on
real-time warning results, which is possible to improve the accuracy of
risk warning and avoid more losses.

2.2. Risk evolution and human control

As mentioned earlier, the increasing complexity of socio-technical
systems has introduced a high level of uncertainty to the mechanisms
underlying risk evolution, which is influenced by factors such as
“human-machine-environment-management.” Against this backdrop,
real-time risk warnings not only need to consider changes in system
performance parameters but also pay attention to the human control
factors that trigger those changes (Summala, 1996). Taking the aviation
safety domain as an example, human control plays a critical role in flight
safety systems (Dolores and Gracja, 2018; Reason, 1990). Some re-
searchers have suggested that human pilot errors contribute to over 60
% of aviation accidents (Jarvis & Harris, 2010; Shappell et al., 2017).
Statistics from the International Air Transport Association (IATA) for
2016-2020 indicate that crew-related factors contributed to approxi-
mately 46 % of aircraft accidents (IATA, 2021). Relevant data from
sectors such as road transportation (Dzinyela et al., 2024; Poynter,
2023) and nuclear power plants (Youlong et al., 2023) also consistently
demonstrate the significant impact of human control on risk.

In typical human-machine systems, human control over the system is
the output of their cognitive processes, and the results directly influence
the risk evolution of the entire system. Human Reliability Analysis
(HRA) is a field specifically dedicated to studying the impact of human
behavior on system risk, including first-generation HRA, second-
generation HRA (Swain, 1990), and third-generation HRA methods
(Pan et al.,, 2017). Second-generation HRA models, represented by
methods such as the ATHEANA (Commission, 1999), CREAM
(Hollnagel, 1998), and ADS-IDAC (Mosleh & Chang, 2004), explain
human control behavior by establishing cognitive models.

Among them, Wickens introduced the concept from the field of in-
formation processing, treating humans as information processors, and
proposed the HIP Model (Wickens et al., 2021). The HIP describes the
human cognitive process from the perspective of information flow,
considering it as the flow of cognitive information in the human brain,
comprising three main stages: “input-processing-output.” The
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information processing model explains the mechanism of human control
behavior from the perspective of information flow and can be seen as a
key mechanism influencing risk evolution in the human-machine sys-
tems. Existing research based on cognitive models often assess human
error probability by evaluating PSFs (French et al., 2011). Few studies
have combined cognition-based human control processes with the real-
time operation of machines, especially risk evolution. However, it is
precisely the differences in real-time cognitive processes that lead to
variations in human control outcomes, directly affecting the results of
risk warnings. Therefore, as shown in Fig. 2, starting from the
perspective of data-driven real-time warnings, it is necessary to extract
variables representing human cognitive states (defined in this study as
HCM) from human control data. Furthermore, real-time analysis of HCM
should be conducted in the process of real-time warnings to fully iden-
tify the impact of human control on risk evolution.

In this study, human control, in conjunction with real-time risk
warning, is regarded as a crucial mechanism for safety of human-
—machine systems. This approach is expected to address the existing
issue of inaccurate warnings resulting from the failure to consider
human control in real-time risk alerts. It holds significant implications
for reducing risks in various human control systems by comprehensively
considering human factors and enhancing the accuracy and effective-
ness of warnings.

3. Method

This section firstly presents a framework for real-time risk warning
based on HCM, which illustrates the data sources and the overall idea of
achieving real-time risk warning through human control. Secondly, it
provides an HCM mining method for human control from three di-
mensions: “timeliness,” “stability,” and “coordination” of human control
data. Finally, a system risk warning method using machine learning is
proposed based on HCM.

3.1. HCM-based framework for real-time risk warning

The real-time risk warning framework for risks based on HCM is
illustrated in Fig. 3. Initially, the disciplinary equation f (H, M, E) of
typical human-machine systems is referenced, and corresponding pa-
rameters from the three dimensions of the “human-machine-environ-
ment” are selected as inputs for the entire model. Essentially, the
performance of the system can be calculated in real-time through the
disciplinary equation of the physical system. However, due to the in-
fluence of human control, the required constraints and parameter
specifications of the disciplinary equation for the physical system are
often not accurately met. Therefore, the entire real-time warning
framework takes a data-centric approach, based on data exploration of
the general patterns of risks, especially quantifying the influence of
human control on risks. Ultimately, the framework achieves real-time
risk warning of accidents based on HCM.

Based on the input parameters, data-based HCM mining, HCM
analysis, and real-time risk warning are performed separately. The oft-
line HCM mining is conducted based on main control sequence (MCS)
and auxiliary control sequence (ACS), including the calculation of data
features and clustering. The purpose is to identify the typical modes of
human control in the current system and form HCM labels. The real-time
HCM analysis model considers factors such as human cognition (situa-
tion awareness, control performance, and task difficulty), machine state
factors, and environmental factors. Based on machine learning models, a
real-time HCM analysis method is constructed to analyze the selected
HCM used by humans in real-time operation. Furthermore, a corre-
sponding risk warning machine learning model is built based on the
selected HCM to achieve risk warning considering human control.
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Fig. 2. Risk warning concept based on HCM.
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Fig. 3. The framework of risk warning concept based on HCM.

3.2. HCM mining

In this study, HCM is defined as the data characteristics exhibited by
the control outcomes of typical human machine systems under specific
task profiles. HCM represents the culmination of human perception of
external information and the subsequent decision-making in control,
influenced by the integrated factors of human psychology, physiology,
and the external environment, thus inherently possessing uncertainty
(Wickens et al., 2021). To further explore the influence of HCM on the
risk evolution, it is imperative to quantify it. The historical data of
human-machine systems encompass a wealth of human control data,
reflecting human control behavior to some extent. Hence, typical HCM
can be discerned through data mining techniques.

For typical human-machine systems such as automotive driving,
machine operations, and aviation maneuvers, existing studies have
indicated that the stability of human control can impact the risks asso-
ciated with machines (Sun & Xiao, 2012). In this study, starting from the
characteristics of human control data, it is considered that apart from
the stability of control inputs, human control performance is also
manifested in the timeliness of control, i.e., whether the designated
operations are carried out at the prescribed locations in a timely manner.
Moreover, human control often results from the integration of two or
more types of operations, which can be simplified into MCS and ACS.
The coordination of them also significantly influences the outcomes of
human control. Therefore, as illustrated in Fig. 4, a HCM clustering
method based on timeliness, stability, and coordination is proposed.
Cluster analysis is conducted in a three-dimensional space to uncover
distinct HCM that can be clearly distinguished.

The specific process of mining HCM based on timeliness (HC_T),
stability (HC_S) and coordination (HC_C) is:

MCS={MCS,MCS,,...MCS,}
\_/z_\

ACS={ACS,ACS,,...,ACS,} )
\/\

| stability | Coordination |

J

| (HC T, HC S, HC.C) |

|
[ B Clustering

| HCM; |
Fig. 4. HCM analysis and mining.

1) Define HCM. To obtain historical human control sequences for spe-
cific control task profiles HCS = [HC;,HC,,....HG;],i = 1,2,....m,
where m represents the number of human control operations. In
practical applications, m is generally set to 2, indicating that humans
typically engage in two simultaneous operations. This study defines
these as MCS and ACS, thus HCS = [MCS, ACS|, where
MCS = [MCS;,MCSs, ...,MCS,] represent primary operations that
require a significant investment of time and resources, such as
steering wheel control in cars and aircraft control yoke manipula-
tion; ACS = [ACS1,ACSa, ...,ACS,] represent auxiliary operations,
such as the accelerator pedal control in cars and throttle lever control
in aircraft. The value of n is determined by the length of the task
profile. To ensure the practical applicability, subsequent analyses of
timeliness and stability are calculated based on MCS.

2) Calculate HC_T. Calculate HC_T under the task profile by:
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MCS; — MCS; ar

HC.T =Tj| AT

>k,j=1,2,...,n (€8]
where HC T is the timeliness of MCS, which is the position that satisfies
the slope requirement change; T is the sequence unit of MCS, also is the
warning point of risk warning model, such as time, altitude, etc. k is the
threshold of slop of MCS in AT, determined by the comprehensive
human task profile and historical MCS.

3) Calculate HC_S. Calculate HC S under the task profile by:

1 ¢ .
HCS = \j —1 ; (MCS; — MCS) 2

where HCS is the stability of MCS; MCS is the mean of MCS.

4) Calculate HC_C. Calculate HC_C under the task profile by:
HC_C = ||HC_-Tyy — HC_T4| - HC_Csop| 3

where HC_Tyy and HC_Ta are the HC.T of MCS and ACS; HC_Csop
depending on the technology or management requirements controlled
by humans.

5) Calculate HCM. Calculate HCM based on HC_T, HC S and HC_C. Each
HC is represented as a coordinate point in a three-dimensional space
consisting of HC_T, HC_S and HC_C, where HC = [HC_T, HC_S, HC_C].
The exploration of HCM can be conducted using a clustering-based
approach, with k-Means clustering being a commonly used and
effective method. Based on the classical k-Means clustering algo-
rithm (Krishna & Murty, 1999), an analysis is conducted to identify
several potential HCM that may exist within the current HC. The
specific steps involved are as follows:

Step 1: Define the number of clusters k. The appropriate number
of k is typically determined by practical requirements and the size
of the HC. Additionally, to ensure the validity of the clustering
results, we have set the sequence sample size for HCM clustering
to be greater than 50 k based on empirical experience and
removed outliers.

Step 2: Distance measurement. Assigning data points to the
cluster with the nearest cluster center requires a nearest-neighbor
distance measurement strategy. Since HC = [HC_T, HC_S, HC C]
represents points in a three-dimensional Euclidean space, the
Euclidean distance metric is used to measure the distance be-
tween points. The calculation formula is as follows:

d(HC1,HG,) = Z (HC;,HC,)? @)

i=1

Step 3: Calculation of new cluster centers [HC_T., HC_S., HC_C.lx. For
each of the k clusters generated after classification, calculate the
point within the cluster that has the smallest average distance to
other points. This point is then assigned as the new cluster center
[HC.T., HC S, HC C.]. Continue this process iteratively to calculate
the updated cluster centers.

Step 4: Determine if k-Means should stop. If the cluster centers no
longer change or if the maximum number of iterations is reached, the
process stops. At this point, the final set of cluster labels and their
corresponding cluster centers [HC T, HCS. HC C.lx represents
HCM.

Step 5: The categories formed based on the cluster centers [HC T,
HC_S., HC C_ i provide a basis for subsequent risk warning based on
HCM. In practical applications across different domains, the identi-
fied HCM types can be assigned specific meanings and explanations.
For example, an HCM characterized by early timeliness and good
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stability can be defined as conservative, while a late timeliness can
be defined as adventurous. In other words, the category labels can be
named and interpreted based on practical experience.

3.3. HCM-based real-time warning method for risk

In the current data-driven risk warning framework, traditional
Safety-I models rely solely on risk data to construct warning methods,
while Safety-II emphasizes the impact of risk evolution (Hollnagel,
2018). This study considers the influence of HCM on real-time risk
warning. During real-time operations, the first step is to predict the HCM
category currently employed by humans. Subsequently, risk warning is
conducted based on the identified HCM. This section will provide ex-
planations for both the data-based HCM analysis method and the risk
warning method based on HCM. The following content outlines the
methods for analyzing HCM based on data and conducting risk warnings
based on HCM.

(1) HCM analysis method

HCM describes the control outcomes of humans over HC_ T, HC S and
HC_C. Accurately identifying the factors that influence humans to
exhibit different control modes is crucial for predicting HCM accurately.
In order to extract relevant features from a data perspective, the analysis
commences by adopting the “Human-Machine-Environment” perspec-
tive within the framework of a “human-in-loop” control system. With
the human information processing process at its core—situation
awareness, decision-making, and control—the data features are extrac-
ted as shown in Fig. 5.

As depicted in Fig. 5, the features used to construct the HCM analysis
model can be classified into three categories: human factors, machine
factors, and environmental factors. The human factors consist of situa-
tion awareness (SA), decision performance (DP), and task hardness
(TH).

1) SA represents the ability of humans to perceive the current task
environment. Its magnitude is influenced by factors such as

HCM
Data

HCM
Feature

HCM-
Model

D - SA

r HCM;

P

DD -

MP - MA |

EN 4+ EC |

LN
1
;'_,\> HCM2
2’
N HCM,
M

BDEOE

Fig. 5. Features and corresponding data for HCM analysis.
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attention, physiological state, and psychological state (Endsley,
2021). SA directly affects the human capacity to gather information
from the surrounding environment and may thus influence the
resulting HCM. It is assumed that the deviation of man-machine
system state can reflect the quality of human situational awareness
(Zhirabok et al., 2018). Therefore, machine state deviations (AD),
such as vehicle speed exceeding limits or aircraft airspeed exceeding
limits, are used to measure the SA performance of humans. A larger
AD indicates less accurate perception of the machine situation, while
a smaller AD signifies more accurate perception.

DP measures how efficiently and accurately humans make decisions
based on SA. It reflects the utilization of attentional resources, con-
trol knowledge, and control experience in making decisions
regarding the current human-machine interaction. DP is eventually
manifested in the performance of human-machine interaction tasks.
In the study, parameters like trajectory stability in cars or aircraft
track deviation (TP) are used to represent DP. A larger TP indicates
less accurate perception of the machine situation, while a smaller TP
signifies more accurate perception.

TH represents the complexity and difficulty of the current human-
—machine interaction task, which also reflects the level of risk in the
system. Higher task hardness requires more demanding control
decision-making and may also influence physiological and psycho-
logical states of humans, such as increased stress and fatigue. In the
study, TH is characterized using a task degree of difficulty (DD), such
as road bend radius or weather conditions

2

—

3

(7

As shown in Fig. 5, AD, TP, DD are used to describe the SA and DP
states of humans in the information processing process. DD is an
important variable that influences decision-making and needs to be
selected based on the profiles of human control tasks. Additionally,
other machine factors (MA) and environmental condition factors (EC)
serve as HCM features input into the machine learning process of human
information processing, ultimately outputting HCM.

This study assumes that humans maintain a constant HCM within a
certain task profile, meaning that individuals tend to choose a fixed
control mode over a period of time. By using machine learning to
simulate the human information processing process based on the
aforementioned HCM features and corresponding HCM data, the study
aims to predict HCM. The specific steps are illustrated in Fig. 6.

Step 1: Referencing the typical task process of the “human-in-loop”
control system, collect a dataset Dycy consisting of sequential data
for HCM prediction, based on the task profile determined by the
warning requirements.

Step 2: Calculate HCM based on the method proposed in section 3.2,
which serves as the label for the Dycym.

Step 3: Based on the warning requirements and the identified
warning variables (WV), such as time and altitude, split the Dycy
dataset using the sampling frequency of WV. This is done to increase
the sample size of the Dycy dataset and improve the accuracy of

Calculate HCM
prediction features

Select human control
task profile

Data sources

Featrues+Lables

Calculate HCM for Sample Comparing the performance of
sample data data ML-Models
HCM Lables Optimization ML-Model
Constructing training data HCM Machine Learning
based on warning variable Prediction Model

Fig. 6. HCM analysis steps.
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Dycm analysis based on machine learning, assuming a constant HCM
within the task profile. A common data splitting process, as shown in
Fig. 7, is used in this study, where the sequential data is divided into
segments for HCM analysis based on WV.

Step 4: Calculate the data features as depicted in Fig. 5 and extract
HCM analysis features and HCM labels from DHCM, forming a
dataset Dycyv-ML for machine learning. In HCM feature calculation,
the importance of features is analyzed based on the Gini coefficient
from the random forest model, and the inter-feature correlation is
assessed using the Pearson correlation coefficient.

Step 5: Utilize various types of machine learning models, such as
Decision tree, Random Forest, XGBoost, LGBoost, on the Dycy-ML.
Compare the performance of these models and select the optimal
model as the prediction model for HCM. The prediction accuracy A,
precision P, recall R and comprehensive evaluation index F; are
calculated to verify the availability of the HCM analysis model. The
calculation formula of A, P, R, and F; is shown in formula (5):

TP + TN
TP+ TN+ FPFN
P
TP+ FP
TP
R=%
2PR

F=
'"P+R

A

P
(5)

where TP indicates that the positive class is predicted as positive class;
FP means that the negative class is predicted as positive class; A indicates
that the classification accuracy of all categories; P is the proportion of
the real risk samples divided into corresponding risk labels; R means the
classification accuracy rate of the actual risk samples; F; is the
comprehensive evaluation index of the model.

(2) HCM-based approach to risk warning

Traditional data-based risk warning builds machine learning models
based directly on risk outcome data, with little consideration of the
impact of human control on risk labelling. After obtaining the human
control model, it is necessary to synthesize the changes in machine
motion and environmental states in the human-machine systems in real
time to make more accurate judgements on risks. Unlike the assumption
that the HCM is consistent across the task profile, there is uncertainty in
the change of risk during the warning cycle, i.e., there are differences in
the risk prediction model and prediction accuracy at different warning
locations. The warning location has a significant impact on the change of
system risk over the time-series, e.g., radio altitude is commonly used in
civil aviation safety to provide risk alerts for take-off and landing pro-
cesses. Further, risk alerting is also limited by the alerting mechanism,
which includes the actual task requirements (e.g., the number of alerts)
and the human’s response time for emergency handling, and the real-
time data transmission limitations, which include the data acquisition
frequency and the data latency. In summary, the construction method of
the risk warning model of the HCM-based human-machine systems is
shown in Fig. 8.

Step 1: Select the warning points that trigger alerts {WP;, WPx, ...,
WP, }. The value of n is determined by the sampling frequency of WP
and the desired recall rate of the final model.

Step 2: Choose the data slicing range AWP = (WPpyax-WPnin)/n and
construct the risk alert dataset DW = {DW - S;} i = 1,2,...,n, for
machine learning training.

Step 3: Within each data slice DW — S;, group the DW — S; based on
the predicted results of HCM, forming the DW-S-HCM dataset.
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Step 4: Referencing the disciplinary equations of the human-machine
system, select machine state parameters and environmental change
parameters as features for risk prediction.

Step 5: Set the risk labels based on typical risks in the human-
-machine environment and corresponding risk management
thresholds.

Step 6: Train machine learning models within DW-S-HCM and
calculate the average risk recall rate DW — S; of each model on the
test data.

Step 7: Select the optimal AWP, ensuring that the corresponding
DW — S; of Rpw.s is above 70 %.

Step 8: Train machine learning models at the optimal warning posi-
tion corresponding to AWP.

Step 9: Select the machine learning model with the highest risk recall
rate to construct the optimal real-time risk warning based on HCM.

4. Case study

The case study focuses on aviation industry, specifically examining
the impact of pilot HCM on flight accidents. Among them, the aircraft
approach and landing phase is a high-risk stage for flight accidents.
Currently, aircraft landing has not been fully automated and relies
mainly on manual control by pilots. Improper pilot control may induce
unsafe events such as hard landings, long landings, and tail strikes (Tong
etal., 2018; Wang, Wu, & Sun, 2013; Wang et al., 2018). This system is a
typical “human-in-loop” control system with high risk. To ensure an
acceptable level of flight safety, it is urgently needed to develop effective
risk warning methods based on flight data, focusing on HCM.

The case study focuses on the real-time risk warning based on flight
data and human control for the two typical landing risks: hard landing
and long landing, which could do risk warning by flight data by machine
learning (Xiangzhang et al., 2024; Zhang et al., 2023). Flight risk
warning relies on real-time air-ground data transmission technologies,
including Automatic Dependent Surveillance-Broadcast (ADS-B),
Communication, Navigation, Surveillance / Air Traffic Management
Datalink (CNS/ATM Datalink), On-Board Avionic Networking System
(OANS), Very High Frequency (VHF) radio communications, and satel-
lite communications, etc. Currently, the Quick Access Recorder (QAR)
data is an important foundation for aircraft state estimation and safety
assessment (Wang, Wu, & Sun, 2014), which includes pilot control data.
Therefore, the case study uses QAR data for feasibility verification of the
method, without considering the impact of air-ground data transmission
technologies on the warning effectiveness.

4.1. Selection of parameters for aircraft landing risk warning

The landing risk of an aircraft is the result of the combined effects of
human control, machine state, and environmental changes. To accu-
rately obtain the warning parameters for landing risk, relevant variables
can be obtained from the perspective of the underlying physical laws of
the aircraft landing system, thereby guiding the selection of risk warning
parameters.

(1) Parameters for Hard Landing warning

Hard landing is a physical phenomenon that occurs when an aircraft
makes contact with the ground during landing, characterized by
excessive longitudinal acceleration. Taking symmetric landing, where
the main landing gears touch the ground simultaneously, as an example,
the parameters for hard landing risk warning are analyzed.

As shown in Fig. 9 and Fig. 10, in the two-point grounding, i.e., the
main landing gear grounding phase, the equations of motion can be
described as:

mz = — 2F, ycosa+ W (6)

1
w= mngpS(V —Vw)’CL (7)

174

Fig. 9. Side view of aircraft landing.
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where m is the aircraft gross weight; 2 is vertical acceleration of aircraft;
F;_p, is the impact force of the main landing gear on the fuselage of an
aircraft; a is the angle between the aircraft fuselage reference line and
the ground is called the pitch angle; W is the equivalent weight of the
aircraft, including comprehensive lift; g is the gravitational acceleration;
p is the atmospheric density; S is the wing reference area; V is the
touchdown speed; Vyy is the vertical wind speed (headwind is positive);
Cy, is the lift coefficient; I, is the moment of inertia of an aircraft around
its horizontal axis; I, is the moment of inertia of an aircraft around its
longitudinal axis; @, and @y is the angular acceleration of the aircraft’s
rotational motion around the horizontal axis and the vertical axis,
respectively; b is the distance from the longitudinal axis to the center of
gravity at the connection point between the main landing gear and the
fuselage of the aircraft; c is the distance from the horizontal axis to the
center of gravity at the connection point between the main landing gear
and the fuselage of the aircraft.

It can be seen that excessive z will cause a hard landing of the main
landing gear, that is, the vertical descent rate of the aircraft is too high,
resulting in excessive ground forces on the main landing gear, and thus
an excessive impact force on the fuselage. At the same time, during the
three-point touchdown phase, if the rate of change in pitch angle is too
large, the F;_, acting on the fuselage by the front landing gear will also
be too large when the front landing gear touches down, causing a hard
landing of the front landing gear. The pilot’s HCM is the direct cause of
the change in pitch angle. Meanwhile, the uncertain changes in Vi can
also cause fluctuations in 2, such as wind shear. The changes in other
parameters during the grounding phase are relatively small and will not
be considered temporarily.

(2) Parameters for Long Landing warning

Aircraft landing refers to the process of descending, touchdown,
rolling, and ultimately coming to a stop on the runway, starting from a
height of 50 ft above the threshold of the runway. The landing phase is
typically divided into three stages: the descent and flare phase, the
transition phase, and the deceleration and rollout phase, as depicted in

VREF

Fig. 11. Schematic diagram of aircraft landing phase.
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Fig. 11.

Long landing refers to the situation where an aircraft utilizes a
runway length that is excessive, which can lead to an runway overrun.
The physical principles behind long landing can be illustrated using the
descent and Sp an example. Prior to formally entering the landing phase,
the aircraft remains on the approach glide slope. The phase in which the
aircraft transitions from the glide path to the flare is known as the
descent and flare phase. During this phase, the aircraft’s throttle is set to
idle, and it descends at a glide angle of 3° with Vrgg. This process can be
further divided into a straight descent segment and a flare arc segment.
In the straight descent segment, the aircraft can be approximated as
undergoing a constant descent with a glide angle of 3° and a velocity of
Vger. In the flare arc segment, the aircraft is assumed to maneuver along
a circular arc with a radius of R, as depicted in Fig. 12.

The dynamic analysis of this process is as follows:

Hix 4
Sa = E +R 3 (10)
where Hx is the vertical altitude at which the aircraft passes through the
runway threshold; 6 is the sliding angle, tan6 ~ sind = 222 R is the
radius of flare control, R = % p%"L éﬁ;
the sliding and leveling section:

Sa is the horizontal distance of

Hix sﬂ(%[)_v%)
Sa = o an
(@) en-1)G

The analysis of the various landing motion equations discussed
above is based on the assumption of rigid body aircraft, neglecting the
elastic deformation of the aircraft at the moment of landing. Through an
analysis based on physical principles, it is evident that parameters such
as landing weight, longitudinal acceleration, descent rate, pitch angle,
roll angle, lateral acceleration, longitudinal wind speed, and their in-
terrelationships truly reflect the actual conditions of aircraft landing,
serving as the primary warning parameters for aircraft landing. Among
them, the uncertainty of the pitch angle and roll angle is influenced by
HCM. Additionally, the variability of wind speed introduces uncertainty,
making it challenging to derive precise results for warning based on
physical principles.

Therefore, this study takes a data science approach, quantifying the
pilot’s HCM based on historical flight data and training machine
learning models with strong time-series prediction capabilities to ach-
ieve accurate warning of aircraft hard landings. Integrating the afore-
mentioned equation analysis and the variables that can be recorded by
the Quick Access Recorder (QAR) data of the B737-800 aircraft, aircraft
risk warning parameters are selected from “Human-Machine-Environ-
ment” perspective, with the current QAR sampling frequency set at 1 Hz.

Fig. 12. Schematic diagram of aircraft approach and leveling phase.
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The final selection of QAR parameters is presented in Table 1.

4.2. Pilot HCM mining

The case study considers the pilot’s column control as the main
control (MC) and the throttle control as the auxiliary control (AC),
calculates the timeliness, stability and coordination using MCS and ACS,
and identifies typical pilot HCM based on clustering. Since aviation
mostly use altitude as the reference variable, the Fig. 13 and Fig. 14
shows the changes of MCS and ACS within the current QAR data during
the landing phase (50 ft-0 ft), and the subsequent risk warnings will use
altitude as the reference variable for the warning point as well.

Referring to the B737-800 SOP (Academia, 2024)for landing oper-
ation, the pilot enters the landing operation after reaching Vggr at 50ft,
and pulls the stick smoothly and continuously by throttling down in
order to ground the aircraft. The SOP suggests that the pilot adopts a
timely and smooth landing operation, and suggests that pulling the
control column and throttle column down should be started at the same
time, which means HC_Csop = 0 in formula (3). Thus, according to SOP,
the C_T, HC_S and HC_C of MCS and ACS may directly affect the evo-
lution of the flight risk and the outcome of the risk warning.

However, as shown in Fig. 13 and Fig. 14, it can be seen that there are
situations where the operations taken by the pilots do not fully comply
with the SOP, i.e., there are problems such as untimely operation, poor
stability, or lack of co-ordination that may become potential factors for
inducing risks. From the physical equations in 4.1, it can be seen that the
pilot’s control directly affects the change of the aircraft’s motion in the
horizontal and vertical directions. Therefore, the altitude in flare is
chosen to characterize HC_T, the control column fluctuation after flare is
chosen to characterize HC S, and the gap between the stick pull opera-
tion and the throttle retract operation is chosen to characterize HC C,
which were calculated based on Egs. (1)-(3). The Fig. 15 show the
statistical distribution of the above three parameters in the landing
phase, respectively.

Further the data were analyzed by k-Means with HC_ T, HC_ S and
HC_C as the three-dimensional spatial coordinates, and the results are
shown in Fig. 16.

The k-Means clustering results indicate that there are three types of
HCM for the pilots represented by control data, which are defined based
on practical experience in civil aviation safety, such as Flight Crew

Table 1
Parameters affecting HCM and risk in aircraft landing safety.

Classification Symbol  Description

Human Control (HC) MmcC The angle of control column deviated from
original point
AC The angle of thrust column deviated from

original point

Aircraft Performance m Gross weight of aircraft

(AP) ALT The altitude of an aircraft relative to the ground
Va The speed of aircraft indicated by instrument
VREr The reference speed of aircraft in Landing
FLAP The setting position of flap handle
LG The position of landing gear
v The aircraft descent rate
VRTG The vertical acceleration of aircraft
PITCH The pitch of aircraft
ROLL The roll of aircraft
GD The glide slope deviation of the aircraft
Environment (EN) Vw The wind speed along the longitudinal axis of
the aircraft
Pg The static pressure of air
Ts The static temperature of air
P

The density of air, calculated by p = }f—;,where
S
R = 287.15 J/(kg-k)
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Operation Manual (Skybrary, 2024), in order to make them easier to
understand for safety managers. The individual HCM labels were
defined as SOP, Conservative and Adventurous from the clustering
centers and their corresponding coordinates, as shown in Table 2.

From Table 2, it can be seen that the three types of control modes
represented by HCM differ in HC_T, HC_S and HC C, reflecting the three
types of different control strategies of different pilots in the past landing
control process, and whether these three types of HCM affect the risk
evolution needs to be analyzed in the context of a specific risk warning
model.

4.3. Machine learning based real-time warning of risks

After mining the pilot HCM in the historical flight data, they are
applied in the real-time warning of aircraft landing risk. Firstly, it is
necessary to judge the HCM adopted by the current pilot based on the
real-time data, and then to warn the landing risk of the current HCM
based on the real-time data.

(1) Pilot HCM analysis and prediction

Pilot switches off autopilot and starts manual control at about
1300ft, so analysis of pilot HCM is based on the data between 1300ft-
50ft. The general aircraft descent rate is about 3 m/s, that is, the pilot
takes over the aircraft at 1300f and starts landing at 50 ft after about 2
min. Therefore, we assuming that the pilot HCM selected by the pilot
during the period of 1300 ft-50 ft remains unchanged from 50 ft-0 ft
during the landing phase (which lasts for about 5 s or so). Then, as
shown in Fig. 17, the historical high-dimensional sequence data can be
sliced based on altitude according to the altitude to obtain sample data
for constructing the pilot HCM prediction model.

During the landing process, the pilot uses various parameters to
judge the control mode adopted. For the control process of the landing
process, based on the results of the analysis of the human factors in 3.3
and the results of the analysis of the equations in 4.1, the QAR param-
eters selected for the prediction of the pilot HCM are shown in Fig. 18.

Based on the samples constructed from the sliced data and the HCM
warning features, the machine learning-based HCM analysis model is
constructed, and the performance results of its performance on the test
dataset are as in Table 3:

As can be seen from Table 3, DT has the best overall performance for
HCM, and all performance indicators are higher than 90 %, so DT is
chosen as the HCM analysis model for real-time warning of aircraft
landing risk, which is used to subsequently make more accurate warning
of the risk of landing accidents brought about by different HCM.

(2) HCM-based risk warning for flight landing accidents

Further predictions of typical aircraft landing risks were made based
on the acquisition of HCM. The flight landing risk warning risk labels
used for the case study include: Safety (S), hard landing (H), long
landing (L), hard landing and long landing (H&L). Based on the
parameter selection in 4.1 and the current airline judgement criteria for
hard landing and long landing, the landing risk prediction characteris-
tics and risk labels used are given as shown in Table 4.

Selecting an appropriate machine learning model for risk prediction
is the core of flight landing risk warning, and the performance of the
machine learning model is limited by the number of samples in each risk
category, which is affected by the combined effect of data collection
frequency and WP. The current landing radio altitude warning interval
for civil airliners is 100ft, and the data between 100ft and 200ft, i.e.,
AWP = 100ft, is used as an example to train the risk warning machine
learning models for different HCM, and the results are shown in Fig. 19.

Preliminarily, from the Fig. 19, at AWP = 100ft:
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Fig. 14. AC in aircraft landing stage.

1) the mean recall for H, L and H&L is higher in the HCM group than in
the no HCM group;

2) the recall rates for the H, S, and L risk categories within each HCM
group are greater than 60 %, providing risk warning significance.

3) H&L within each HCM group could not achieve a satisfactory recall
rate.

4) There are differences in the prediction performance of different
machine learning for risks other than category S.

As can be seen, before considering which machine learning model to
use, the AWP needs to be selected reasonably so that the warning model
can have a high recall for all types of risks. Therefore, the recall of the
model at different warning heights needs to be further explored, espe-
cially for risk categories such as H&L, where the sample proportion is
small. Based on the processing in Fig. 20 to obtain data slices corre-
sponding to the radio altitude, the average recall of the machine learning
model under different AWP is explored for the H&L class, which is
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currently the worst classified class.

As shown in Fig. 21, different AWPs are selected to set the warning
points in the range of 1300ft-50ft to further explore the recall of the
model for H&L under different warning point configurations and find
the optimal warning points.

As can be seen from Fig. 21:

1) As AWP increases, it makes the machine learning model’s recall for
H&L increase due to the increase in the number of samples;

2) After the warning interval is higher than 200ft, the recall of the
machine learning model for the H&L class starts to be higher than 50
%;

3) The warning point after AWP is higher than 400ft meets the actual
warning needs, i.e., 2-3 warnings are performed.

Comprehensive H&L recall rate and to achieve effective warning to
pilots, the selected warning altitude interval is 400ft, i.e., three landing



C. Lietal Computers & Industrial Engineering 204 (2025) 111110

0.05 Table 2
/ HCM label illustration.
0.04 HCM Cluster HCM explain HCM
Label center
£ 0.03 SOP [19.29, The flare height is moderate, the Timely, stable, and
§ 0.17, control is stable, and the control coordinated control
E 12.95] coordination is moderate
0.02 CON [31.82, The flare height is high, the Control early, very
0.14, control is very stable, and the stable, and
00 25.52] coordination of control is weak uncoordinated
ADV [10.53, The flare height is low, the Late control, stable,
= 0.17, 4.06] control is stable, and the control and well-coordinated
0.00 B o % m o coordination is great
HC T

=

/ ‘N Data in 1300f-50ft | [ Data for HC-Model training |
AD TP TL MP EN —X——><1>

[0 [AD[TP[TL[MP [ENIC | ADTPTLMPENJ—I(?l

[

7, AT I : 1
E TH)
£, 13001t iR 241

, ‘

1

9 0.05 0.10 0.15 0.20 0.25 0.30 0.35 O.4IO

HC S
Fig. 17. Altitude-based data slicing for HCM analysis.
0.051
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comprehensive performance (average recall rate of each risk category)
are shown in Table 5.
As can be seen from Table 5:

Frequency
=)
>
3

g
S
5

1) the machine learning models in the HCM group have high prediction
a0 accuracy for landing risk;

NT 2) The average recall rate of machine learning models can be generally
0.00

10 20 30 4 lower than that of the HCM group when HCM is not considered;
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Fig. 15. Frequency histograms of HC-T, HC-S, and HC-C. learning models.

In the actual prediction process, it is necessary to judge the HCM

% Cluster Center 1 (5.8, 0.17,3.95) before risk prediction. Therefore, the prediction model of HCM and the

A Cluster Center 2(9.70,0.14,7.78) corresponding risk prediction model together determine the perfor-

® Situice= - CELOMLI20 mance of the HCM-based risk warning model. Based on the recall of the

HCM analysis model using DT in Section 4.2, the performance of the

oo final HCM —based risk warning model is calculated as shown in Fig. 22.

From the table, it can be seen that the early warning model can recall

more risk samples after considering HCM, and for risk warning, a dif-

ference of 1 % may mean serious accident consequences. Therefore, risk

prediction based on HCM has important practical significance. Eventu-

ally, the recall rate of each HCM for various types of risk labels at
different warning positions is shown in Fig. 23.

As can be seen from Fig. 23:

1) the recall of each HCM model for safe samples is close to each other,
while there is a difference in the recall for risky samples, with the
lowest recall for H&L;

2) For the same warning location, the SOP and ADV models have higher
recalls, and the CON has a slightly lower recall;

3) for different warning positions, 500ft has the highest recall across
HCM models.

005 5. Discussion and future work

Fig. 16. Results of HCM by k-Means.

In order to improve the accuracy of real-time risk warning methods,

11



C. Lietal

Computers & Industrial Engineering 204 (2025) 111110

QAR-parameters HCM
Data
Va-Vrer » 4D
GD » TP
ALT >@
MV, IVV,VRTG,PITCH,ROLL >@
Vw, 0 » EC

HCM HCM 37 77777777777
Factors Model ! Machine
N i Learning
sor }
i DT
CP }
<j RM
TH CON i
i XGB
|
|
MA i LGB
ADV }
EA 1
|
|
|

Fig. 18. HCM prediction features and machine learning model selection.

Table 3
Comparison of HCM prediction model performance.
ML-Model HCM Precision Recall F1-score Accuracy
DT SOP 0.95 0.97 0.95 0.95
CON 0.95 0.93 0.94
ADV 0.96 0.96 0.96
RM SOP 0.93 0.98 0.96 0.93
CON 0.99 0.89 0.93
ADV 0.93 0.98 0.96
XGBOOST SOP 0.95 0.99 0.97 0.95
CON 0.95 0.86 0.90
ADV 0.92 0.96 0.94
LightGBM SOP 0.88 0.89 0.88 0.88
CON 0.96 0.74 0.84
ADV 0.86 0.94 0.90
Table 4
Features of Aircraft Landing Risk warning and Explanation of Risk Labels.
Risk warning Labels Label Determination Label
features X Y content parameters determination
rules
Va, Vw, p, IVV, S No risk \ \
VRTG, H Hard VRTG VRTG >1.6¢g
PITCH, ROLL, landing
SD L Long Sa Sa > 800 m
landing
H&L Hard and VRTG &Sa VRTG >1.6¢g
long &Sy
landing

human control is considered as a key mechanism influencing the real-
time risk evolution of human-machine systems. The research is dis-
cussed as follows:

(1) HCM mining

The “timeliness”, “stability” and “coordination” in the HCM mining
method are directly derived from human control sequences, including
main control and auxiliary control, to achieve the objective features of
human-machine interaction. In the flight safety scenario, three types of
typical pilots were identified based on “timeliness”, “stability” and
“coordination” through k-Means, which were named as SOP, CON and
ADV. Among them, CON tends to control early and smoothly, but with
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poor coordination; ADV tends to control late and coordinately, but with
poor stability; SOP is more in line with the recommendation of flight
control, i.e., timely control with stability and coordination. The results
of the performance evaluation of HCM-based risk real-time warning
model further indicate that HCM has an impact on the warning results of
the risk, suggesting that mining the HCM has research and application
value at human-machine systems risk management. However, the
interpretability of HCM labels needs to be further studied through
human factors experiments or questionnaires.

(2) “Human-Machine-Environment” orientated HCM analysis

In order to obtain an accurate HCM in the risk real-time warning
process, the features affecting the HCM are analyzed based on the
human information processing model, and concludes that the HCM is the
result of human information processing and is affected by human situ-
ational awareness, decision-making performance, task difficulty, and a
combination of machine state and environmental conditions. However,
this deterministic approach may overlook emergent cognitive dynamics
(Flach, 1995). Future iterations may integrate Ecological Interface
Design principles to better support situated decision-making
(Rasmussen, 1999). In the flight safety scenario, a pilot HCM analysis
model with an accuracy of up to 95 % is obtained based on the decision
tree algorithm to support the realization of accurate real-time risk
warning. After the risk warning model integrates the accuracy of HCM
analysis, it finally achieves a risk recall rate as high as 85 %, which is
higher than the risk warning model without considering HCM, and thus
has great practical significance at the human-machine systems risk
prevention.

(3) HCM-based risk warning

The study concludes that the selection of warning points affects the
accuracy of the HCM-based risk warning model, and proposes a method
for selecting warning points based on warning demand and data trans-
mission frequency. In the flight landing risk warning scenario, three
warning points are finally selected at the altitudes of 100ft, 500ft and
900ft. Meanwhile, the machine learning models selected for different
HCM risk warning models at different warning points are different. The
final result shows that the recall rates of the risk warning model at the
three altitudes of 100ft, 500ft and 900ft meet the requirements for use,
in which the scheme has the highest risk recall rate at 500ft, and the
CON group and SOP group have higher risk recall rates at the three
warning points. The above results show the importance of the reason-
able selection of warning points and the effectiveness of building HCM-
based risk warning model.
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A400 warning standard.

wpP HCM ML-Model Mean Recall
900ft SOP LGB 0.84
CON LGB 0.83
ADV DT 0.85
No HC DT 0.77
500ft SOP XGB 0.90
CON LGB 0.87
ADV XGB 0.92
No HC XGB 0.80
100ft SOP XGB 0.88
CON LGB 0.85
ADV LGB 0.88
No HC LGB 0.79

(4) Future study

In future research, HCM can be considered to be extracted from
richer data, such as video data and audio data, or more clustering
methods, such as density-based clustering, probability-based clustering,
and sequence-based clustering, can be used to mine richer HCM ex-
pressions. Meanwhile, further research on the interpretable model of
HCM is needed to identify the human cognitive factors and structures
affecting HCM, such as attention, situational awareness, fatigue, and
stress, etc., and to find the accurate representations of the above human
factors on control data through physiological-psychological
experiments.

For the research of real-time risk warning, firstly, it is necessary to

13
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explore the influence mechanism of HCM on specific risk types based on
the consideration of HCM, for example, pay more attention to the
change of SA in the process of real-time dynamic interaction between
human and machine, so as to prompt the effectiveness of early warning
(Wen et al., 2023); secondly, it is necessary to further strengthen the
data coverage and transmission rate from the perspective of sub-risk
management, in which the data coverage solves the problem of
covering various types of uncertain risks and reduces the data imbal-
ance; The transmission rate solves the real-time problem of warning,
especially the collection of various human control data is used to achieve
real-time analyses of human control status, however, such analyses need
to pay attention to the ethical and privacy issues in the application
process.

While case study focuses on aviation, the methods developed can be
extended to other industries relying on Human-Machine Interfaces and
Supervisory Control and Data Acquisition (SCADA) systems. By inte-
grating human behavior and machine state data, the approach can
enhance real-time monitoring and predictive analytics in sectors like
manufacturing. This could help prevent equipment failures and opera-
tional anomalies, improving safety and efficiency. Future work will
explore these applications, demonstrating the broad potential of human-
centric risk warnings across various domains.

6. Conclusion

Human control is regarded as an essential driver in the dynamic
progression of real-time risk within human-machine systems. In order to
solve the problem of the influence of human control on risk warning, this
study proposes a real-time risk warning method based on HCM. The
method takes human control sequences as the core, calculates the fea-
tures of sequences from three dimensions of “timeliness”, “stability” and
“coordination”, and uses clustering method to derive typical HCM. On
the basis of precise HCM prediction based on human information pro-
cessing model, the HCM is used to achieve more accurate risk warning.
The proposed methodology is applicable to typical flight landing risk
warning scenarios, and is useful for improving data-driven flight safety
management and reducing risks in other similar areas. Meanwhile, in
the context of the current lack of research on human factor mechanisms,
HCM-based risk warning at the data-driven level has a wide range of
industry applications, which emphasizes risk control in human-machine
systems.
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