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A B S T R A C T

Data-driven risk analysis serves as an essential approach to risk mitigation in human–machine systems. Presently, 
risk management rooted in data often depends on labels extracted from risk outcomes, accentuating a causative 
risk management paradigm. However, these labels frequently fall short in capturing the dynamic evolution of 
risks in real-time, especially accounting for the impact of human intervention on risk dissemination. In striving 
for greater precision in real-time risk prediction within human–machine systems, human control is identified as a 
pivotal factor in shaping risk progression. A precise warning model is devised based on human control patterns, 
discerned through clustering control data focusing on “timeliness,” “stability,” and “coordination.” This meth
odology facilitates the development of machine learning-driven warning models. The viability of the proposed 
approach is substantiated through a case study involving aircraft landing mishaps. This research furnishes a 
conceptual framework and procedural guidelines to propel risk analysis within human–machine systems, with an 
emphasis on human-centric risk warnings across diverse industrial contexts.

1. Introduction

With the increasing complexity of human–machine systems, the key 
risk factors of human–machine systems are gradually shifting from the 
machine itself to the human–machine interaction process (Hollnagel, 
2018). Currently, data-driven risk warning is gradually being applied to 
various human–machine system domains, such as manufacturing, 
transportation, and aviation industries (Aziz & Dowling, 2019; Choi 
et al., 2016). Real-time warning is a viable method to decrease accident 
risk by providing timely alerts to drivers about potential risk (Li, Zhao, 
et al., 2020; Oh et al., 2005). The core of data-driven risk warning lies in 
learning the risk patterns from historical accident data and issuing 
advance warnings before accidents occur (Guo et al., 2022). The accu
racy of data risk labels directly impacts the effectiveness of the warnings. 
As illustrated in Fig. 1, human–machine system risk labels mostly orig
inate from risk outcomes, i.e., using past accidents to calibrate risk la
bels, without considering the influence of human control. However, the 
impact of human control on risks is increasingly uncertain, particularly 
concerning real-time warnings. If real-time changes in human control 
are not considered, accurate predictions of risk evolution cannot be 
obtained. Therefore, current risk warnings based on risk outcomes as 

data labels overlook the uncertain risk control centered around human 
control. From a data-driven perspective, this approach introduces 
incorrect risk classification samples, like FN and FP in Fig. 1, leading to a 
decrease in the accuracy of the warning models. Thus, combining risk 
resistance based on real-time warning and human control is essential to 
fully utilize risk data to enhance the prevention and control capabilities 
of accidents.

The issues reflected in Fig. 1 exist in various domains where human 
control is central, such as automotive driving systems (Matsuo et al., 
2022b; Sun et al., 2016), aviation transportation systems (Guo et al., 
2022; Li et al., 2023), industrial manufacturing systems (Bertoncel et al., 
2018), and nuclear industries (Hamer et al., 2021; Horita et al., 2018), 
where risks are prevalent. Taking aviation risks as an illustration, the 
global civil aviation industry has witnessed a resurgence following the 
COVID-19 pandemic. However, amidst the annual increase in flight 
frequencies and transportation capacities, there has been a surge in 
aviation accidents, resulting in irreparable human casualties and eco
nomic losses (ICAO, 2024). With the continuous development of com
puter technology and air-to-ground data communication technology, 
some countries have already achieved data-driven aviation risk man
agement (Li et al., 2023), However, there also exists a problem of not 
considering the impact of human control on the effectiveness of real- 
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time warnings. This endeavor aims to augment the performance of real- 
time warning models for aviation risk, thereby enhancing proactive 
safety measures.

Therefore, this study targets the influence of human control on risk 
evolution in human–machine systems. A real-time warning approach is 
proposed for risks based on human control modes (HCM) and apply it to 
the research on aviation industry. The primary contributions of this 
research are as follows: 

1) Introduction of a real-time warning framework for risk in human
–machine systems based on HCM.

2) Exploration of typical HCM through the analysis of “timeliness,” 
“stability,” and “coordination” of human control data.

3) Development of a risk warning method, encompassing methods for 
HCM real-time analysis and risk prediction model by machine 
learning.

4) Validation of the effectiveness and practical significance of the pro
posed approach through its application to common aviation risks in 
aviation industry.

The research is divided into the following specific sections. Section 2
is a literature review, which starts from the limitations of risk warning 
research in human–machine systems and proposes the perspective of 
real-time warning considering human control. Section 3 introduces a 
real-time risk warning method for human–machine systems based on 
HCM, including the mining of HCM, the prediction of HCM, and the real- 
time risk warning based on HCM. Section 4 uses the example of civil 
aviation landing risk to illustrate the effectiveness of the proposed 
method. The limitations of the current research and the conclusions are 
explained in Section 5 and Section 6, respectively.

2. Literature review

2.1. Accident prediction and risk warning

Risk warning is a valuable way in enhancing system safety by 
providing timely alerts and predictive warnings to human operators 
(Ding et al., 2013). Risk warning, based on risk prediction, inform 
people of the forecasted risks ahead of time, allowing for timely risk 
control to prevent severe accident consequences (Saleh et al., 2013). The 

Nomenclature

A Accuracy of Machine Learning (\)
AP Aircraft performance parameters (\)
ACS Auxiliary control sequence (\)
AD Machine state deviations (\)
ALT The altitude of an aircraft relative to the ground (m)
B Pilot behavior parameters (\)
CD Drag coefficient (\)
CL Lift coefficient (\)
DD Task degree of difficulty (\)
DHCM Data for HCM prediction (\)
DP Decision performance (\)
E Environment parameters (\)
EC Environment Condition (\)
Flap Flaps configuration (\)
F1 F1 score of Machine Learning (\)
g Gravity acceleration (m/s2)
H Human control parameters (\)
HC Human control data (\)
HCM Human control mode (\)
HCS Human control sequences (\)
HC_T Timeliness of HCS (\)
HC_S Stability of HCS (\)

HC_C Coordination of HCS (\)
k k-SC clustering number (\)
m Gross weight of aircraft (kg)
M Machine parameters (\)
MA Machine factors (\)
MCS main control sequence (\)
P Precision of Machine Learning (\)
PS Static pressure (Pa)
QAR Quick Access Recorder (\)
R Recall rate of Machine Learning (\)
S Takeoff distance (m)
SA Situation awareness (\)
SW Wing reference area (m2)
SOP Standard Operating Procedure (\)
t Time of operations (s)
TH Task hardness (\)
TS Static temperature (◦C)
TP Track deviation (\)
VA The speed of aircraft indicated by instrument (m/s)
VREF The reference speed of aircraft in Landing (m/s)
VW Tailwind speed (m/s)
WV Warning variables (\)
WP Warning points based on WV (\)
ρ Atmospheric density (Kg/m3)

Fig. 1. The background of research gap.
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essence of risk warning lies in providing relatively accurate risk infor
mation at appropriate warning times, and a key aspect to achieving this 
goal is understanding the evolution mechanism of risks as thoroughly as 
possible. However, with the ongoing complexity of socio-technical sys
tem structures, the uncertainty surrounding accident evolution mecha
nisms continues to increase. Currently, data-driven approaches and 
human expertise offer effective means to address the uncertainty in 
accident evolution. Various methods have emerged, including rule- 
based warnings (Wu & Chen, 2008), probability model-based warn
ings (Kelly & Krzysztofowicz, 1994), machine learning-based warnings 
(Ghoul et al., 2023; Zhang et al., 2022), deep learning-based warnings 
(Bury et al., 2021), and Machine learning and deep learning are 
important technologies of AI driven risk management. Based on the 
accessibility of warning data and the maturity of data transmission 
technology, data-driven warnings can be classified as proactive warn
ings and real-time warnings, with real-time warnings being more 
effective for risk prevention.

For typical human–machine systems, most related real-time warning 
research focuses on using historical accident outcomes as risk labels and 
pays attention to risk warnings based on system performance data (Li, 
Gan, et al., 2020; Li et al., 2018; Matsuo et al., 2022a; Yu et al., 2021). 
However, the current research rarely considers the influence of human 
control on the risk evolution in historical accident data. As a result, it has 
been challenging to derive relatively accurate risk warning models 
based on historical data. Nowadays, extensive accident statistics from 
various industries demonstrate the influence of real-time human control 
on risk evolution (IATA, 2023; Poynter, 2023; Youlong et al., 2023). 
Therefore, it is necessary to consider the influence of human control on 
real-time warning results, which is possible to improve the accuracy of 
risk warning and avoid more losses.

2.2. Risk evolution and human control

As mentioned earlier, the increasing complexity of socio-technical 
systems has introduced a high level of uncertainty to the mechanisms 
underlying risk evolution, which is influenced by factors such as 
“human-machine-environment-management.” Against this backdrop, 
real-time risk warnings not only need to consider changes in system 
performance parameters but also pay attention to the human control 
factors that trigger those changes (Summala, 1996). Taking the aviation 
safety domain as an example, human control plays a critical role in flight 
safety systems (Dolores and Gracja, 2018; Reason, 1990). Some re
searchers have suggested that human pilot errors contribute to over 60 
% of aviation accidents (Jarvis & Harris, 2010; Shappell et al., 2017). 
Statistics from the International Air Transport Association (IATA) for 
2016–2020 indicate that crew-related factors contributed to approxi
mately 46 % of aircraft accidents (IATA, 2021). Relevant data from 
sectors such as road transportation (Dzinyela et al., 2024; Poynter, 
2023) and nuclear power plants (Youlong et al., 2023) also consistently 
demonstrate the significant impact of human control on risk.

In typical human–machine systems, human control over the system is 
the output of their cognitive processes, and the results directly influence 
the risk evolution of the entire system. Human Reliability Analysis 
(HRA) is a field specifically dedicated to studying the impact of human 
behavior on system risk, including first-generation HRA, second- 
generation HRA (Swain, 1990), and third-generation HRA methods 
(Pan et al., 2017). Second-generation HRA models, represented by 
methods such as the ATHEANA (Commission, 1999), CREAM 
(Hollnagel, 1998), and ADS-IDAC (Mosleh & Chang, 2004), explain 
human control behavior by establishing cognitive models.

Among them, Wickens introduced the concept from the field of in
formation processing, treating humans as information processors, and 
proposed the HIP Model (Wickens et al., 2021). The HIP describes the 
human cognitive process from the perspective of information flow, 
considering it as the flow of cognitive information in the human brain, 
comprising three main stages: “input-processing-output.” The 

information processing model explains the mechanism of human control 
behavior from the perspective of information flow and can be seen as a 
key mechanism influencing risk evolution in the human–machine sys
tems. Existing research based on cognitive models often assess human 
error probability by evaluating PSFs (French et al., 2011). Few studies 
have combined cognition-based human control processes with the real- 
time operation of machines, especially risk evolution. However, it is 
precisely the differences in real-time cognitive processes that lead to 
variations in human control outcomes, directly affecting the results of 
risk warnings. Therefore, as shown in Fig. 2, starting from the 
perspective of data-driven real-time warnings, it is necessary to extract 
variables representing human cognitive states (defined in this study as 
HCM) from human control data. Furthermore, real-time analysis of HCM 
should be conducted in the process of real-time warnings to fully iden
tify the impact of human control on risk evolution.

In this study, human control, in conjunction with real-time risk 
warning, is regarded as a crucial mechanism for safety of human
–machine systems. This approach is expected to address the existing 
issue of inaccurate warnings resulting from the failure to consider 
human control in real-time risk alerts. It holds significant implications 
for reducing risks in various human control systems by comprehensively 
considering human factors and enhancing the accuracy and effective
ness of warnings.

3. Method

This section firstly presents a framework for real-time risk warning 
based on HCM, which illustrates the data sources and the overall idea of 
achieving real-time risk warning through human control. Secondly, it 
provides an HCM mining method for human control from three di
mensions: “timeliness,” “stability,” and “coordination” of human control 
data. Finally, a system risk warning method using machine learning is 
proposed based on HCM.

3.1. HCM-based framework for real-time risk warning

The real-time risk warning framework for risks based on HCM is 
illustrated in Fig. 3. Initially, the disciplinary equation f (H, M, E) of 
typical human–machine systems is referenced, and corresponding pa
rameters from the three dimensions of the “human–machine-environ
ment” are selected as inputs for the entire model. Essentially, the 
performance of the system can be calculated in real-time through the 
disciplinary equation of the physical system. However, due to the in
fluence of human control, the required constraints and parameter 
specifications of the disciplinary equation for the physical system are 
often not accurately met. Therefore, the entire real-time warning 
framework takes a data-centric approach, based on data exploration of 
the general patterns of risks, especially quantifying the influence of 
human control on risks. Ultimately, the framework achieves real-time 
risk warning of accidents based on HCM.

Based on the input parameters, data-based HCM mining, HCM 
analysis, and real-time risk warning are performed separately. The off
line HCM mining is conducted based on main control sequence (MCS) 
and auxiliary control sequence (ACS), including the calculation of data 
features and clustering. The purpose is to identify the typical modes of 
human control in the current system and form HCM labels. The real-time 
HCM analysis model considers factors such as human cognition (situa
tion awareness, control performance, and task difficulty), machine state 
factors, and environmental factors. Based on machine learning models, a 
real-time HCM analysis method is constructed to analyze the selected 
HCM used by humans in real-time operation. Furthermore, a corre
sponding risk warning machine learning model is built based on the 
selected HCM to achieve risk warning considering human control.
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3.2. HCM mining

In this study, HCM is defined as the data characteristics exhibited by 
the control outcomes of typical human machine systems under specific 
task profiles. HCM represents the culmination of human perception of 
external information and the subsequent decision-making in control, 
influenced by the integrated factors of human psychology, physiology, 
and the external environment, thus inherently possessing uncertainty 
(Wickens et al., 2021). To further explore the influence of HCM on the 
risk evolution, it is imperative to quantify it. The historical data of 
human–machine systems encompass a wealth of human control data, 
reflecting human control behavior to some extent. Hence, typical HCM 
can be discerned through data mining techniques.

For typical human–machine systems such as automotive driving, 
machine operations, and aviation maneuvers, existing studies have 
indicated that the stability of human control can impact the risks asso
ciated with machines (Sun & Xiao, 2012). In this study, starting from the 
characteristics of human control data, it is considered that apart from 
the stability of control inputs, human control performance is also 
manifested in the timeliness of control, i.e., whether the designated 
operations are carried out at the prescribed locations in a timely manner. 
Moreover, human control often results from the integration of two or 
more types of operations, which can be simplified into MCS and ACS. 
The coordination of them also significantly influences the outcomes of 
human control. Therefore, as illustrated in Fig. 4, a HCM clustering 
method based on timeliness, stability, and coordination is proposed. 
Cluster analysis is conducted in a three-dimensional space to uncover 
distinct HCM that can be clearly distinguished.

The specific process of mining HCM based on timeliness (HC_T), 
stability (HC_S) and coordination (HC_C) is: 

1) Define HCM. To obtain historical human control sequences for spe
cific control task profiles HCS = [HC1,HC2, ...,HCi], i = 1, 2, ...,m, 
where m represents the number of human control operations. In 
practical applications, m is generally set to 2, indicating that humans 
typically engage in two simultaneous operations. This study defines 
these as MCS and ACS, thus HCS = [MCS, ACS], where 
MCS = [MCS1,MCS2, ...,MCSn] represent primary operations that 
require a significant investment of time and resources, such as 
steering wheel control in cars and aircraft control yoke manipula
tion; ACS = [ACS1,ACS2, ...,ACSn] represent auxiliary operations, 
such as the accelerator pedal control in cars and throttle lever control 
in aircraft. The value of n is determined by the length of the task 
profile. To ensure the practical applicability, subsequent analyses of 
timeliness and stability are calculated based on MCS.

2) Calculate HC_T. Calculate HC_T under the task profile by:

Fig. 2. Risk warning concept based on HCM.

Fig. 3. The framework of risk warning concept based on HCM.

Fig. 4. HCM analysis and mining.
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HC T = Tj|
MCSj − MCSj+ΔT

ΔT
> k, j = 1, 2, ..., n (1) 

where HC_T is the timeliness of MCS, which is the position that satisfies 
the slope requirement change; T is the sequence unit of MCS, also is the 
warning point of risk warning model, such as time, altitude, etc. k is the 
threshold of slop of MCS in ΔT, determined by the comprehensive 
human task profile and historical MCS. 

3) Calculate HC_S. Calculate HC_S under the task profile by:

HC S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n − 1

∑n

j=1

(
MCSj − MCS

)2

√
√
√
√ (2) 

where HC_S is the stability of MCS; MCS is the mean of MCS. 

4) Calculate HC_C. Calculate HC_C under the task profile by:

HC C = ||HC TM − HC TA| - HC CSOP| (3) 

where HC TM and HC TA are the HC_T of MCS and ACS; HC CSOP 
depending on the technology or management requirements controlled 
by humans. 

5) Calculate HCM. Calculate HCM based on HC_T, HC_S and HC_C. Each 
HC is represented as a coordinate point in a three-dimensional space 
consisting of HC_T, HC_S and HC_C, where HC = [HC_T, HC_S, HC_C]. 
The exploration of HCM can be conducted using a clustering-based 
approach, with k-Means clustering being a commonly used and 
effective method. Based on the classical k-Means clustering algo
rithm (Krishna & Murty, 1999), an analysis is conducted to identify 
several potential HCM that may exist within the current HC. The 
specific steps involved are as follows: 

Step 1: Define the number of clusters k. The appropriate number 
of k is typically determined by practical requirements and the size 
of the HC. Additionally, to ensure the validity of the clustering 
results, we have set the sequence sample size for HCM clustering 
to be greater than 50 k based on empirical experience and 
removed outliers.
Step 2: Distance measurement. Assigning data points to the 
cluster with the nearest cluster center requires a nearest-neighbor 
distance measurement strategy. Since HC = [HC_T, HC_S, HC_C] 
represents points in a three-dimensional Euclidean space, the 
Euclidean distance metric is used to measure the distance be
tween points. The calculation formula is as follows:

d(HC1,HC2) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(HC1,HC2)

2

√

(4) 

Step 3: Calculation of new cluster centers [HC_Tc, HC_Sc, HC_Cc]k. For 
each of the k clusters generated after classification, calculate the 
point within the cluster that has the smallest average distance to 
other points. This point is then assigned as the new cluster center 
[HC_Tc, HC_Sc, HC_Cc]. Continue this process iteratively to calculate 
the updated cluster centers.
Step 4: Determine if k-Means should stop. If the cluster centers no 
longer change or if the maximum number of iterations is reached, the 
process stops. At this point, the final set of cluster labels and their 
corresponding cluster centers [HC_Tc, HC_Sc, HC_Cc]k represents 
HCM.
Step 5: The categories formed based on the cluster centers [HC_Tc, 
HC_Sc, HC_Cc]k provide a basis for subsequent risk warning based on 
HCM. In practical applications across different domains, the identi
fied HCM types can be assigned specific meanings and explanations. 
For example, an HCM characterized by early timeliness and good 

stability can be defined as conservative, while a late timeliness can 
be defined as adventurous. In other words, the category labels can be 
named and interpreted based on practical experience.

3.3. HCM-based real-time warning method for risk

In the current data-driven risk warning framework, traditional 
Safety-I models rely solely on risk data to construct warning methods, 
while Safety-II emphasizes the impact of risk evolution (Hollnagel, 
2018). This study considers the influence of HCM on real-time risk 
warning. During real-time operations, the first step is to predict the HCM 
category currently employed by humans. Subsequently, risk warning is 
conducted based on the identified HCM. This section will provide ex
planations for both the data-based HCM analysis method and the risk 
warning method based on HCM. The following content outlines the 
methods for analyzing HCM based on data and conducting risk warnings 
based on HCM. 

(1) HCM analysis method

HCM describes the control outcomes of humans over HC_T, HC_S and 
HC_C. Accurately identifying the factors that influence humans to 
exhibit different control modes is crucial for predicting HCM accurately. 
In order to extract relevant features from a data perspective, the analysis 
commences by adopting the “Human-Machine-Environment” perspec
tive within the framework of a “human-in-loop” control system. With 
the human information processing process at its core—situation 
awareness, decision-making, and control—the data features are extrac
ted as shown in Fig. 5.

As depicted in Fig. 5, the features used to construct the HCM analysis 
model can be classified into three categories: human factors, machine 
factors, and environmental factors. The human factors consist of situa
tion awareness (SA), decision performance (DP), and task hardness 
(TH). 

1) SA represents the ability of humans to perceive the current task 
environment. Its magnitude is influenced by factors such as 

Fig. 5. Features and corresponding data for HCM analysis.
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attention, physiological state, and psychological state (Endsley, 
2021). SA directly affects the human capacity to gather information 
from the surrounding environment and may thus influence the 
resulting HCM. It is assumed that the deviation of man–machine 
system state can reflect the quality of human situational awareness 
(Zhirabok et al., 2018). Therefore, machine state deviations (AD), 
such as vehicle speed exceeding limits or aircraft airspeed exceeding 
limits, are used to measure the SA performance of humans. A larger 
AD indicates less accurate perception of the machine situation, while 
a smaller AD signifies more accurate perception.

2) DP measures how efficiently and accurately humans make decisions 
based on SA. It reflects the utilization of attentional resources, con
trol knowledge, and control experience in making decisions 
regarding the current human–machine interaction. DP is eventually 
manifested in the performance of human–machine interaction tasks. 
In the study, parameters like trajectory stability in cars or aircraft 
track deviation (TP) are used to represent DP. A larger TP indicates 
less accurate perception of the machine situation, while a smaller TP 
signifies more accurate perception.

3) TH represents the complexity and difficulty of the current human
–machine interaction task, which also reflects the level of risk in the 
system. Higher task hardness requires more demanding control 
decision-making and may also influence physiological and psycho
logical states of humans, such as increased stress and fatigue. In the 
study, TH is characterized using a task degree of difficulty (DD), such 
as road bend radius or weather conditions

As shown in Fig. 5, AD, TP, DD are used to describe the SA and DP 
states of humans in the information processing process. DD is an 
important variable that influences decision-making and needs to be 
selected based on the profiles of human control tasks. Additionally, 
other machine factors (MA) and environmental condition factors (EC) 
serve as HCM features input into the machine learning process of human 
information processing, ultimately outputting HCM.

This study assumes that humans maintain a constant HCM within a 
certain task profile, meaning that individuals tend to choose a fixed 
control mode over a period of time. By using machine learning to 
simulate the human information processing process based on the 
aforementioned HCM features and corresponding HCM data, the study 
aims to predict HCM. The specific steps are illustrated in Fig. 6. 

Step 1: Referencing the typical task process of the “human-in-loop” 
control system, collect a dataset DHCM consisting of sequential data 
for HCM prediction, based on the task profile determined by the 
warning requirements.
Step 2: Calculate HCM based on the method proposed in section 3.2, 
which serves as the label for the DHCM.
Step 3: Based on the warning requirements and the identified 
warning variables (WV), such as time and altitude, split the DHCM 
dataset using the sampling frequency of WV. This is done to increase 
the sample size of the DHCM dataset and improve the accuracy of 

DHCM analysis based on machine learning, assuming a constant HCM 
within the task profile. A common data splitting process, as shown in 
Fig. 7, is used in this study, where the sequential data is divided into 
segments for HCM analysis based on WV.
Step 4: Calculate the data features as depicted in Fig. 5 and extract 
HCM analysis features and HCM labels from DHCM, forming a 
dataset DHCM-ML for machine learning. In HCM feature calculation, 
the importance of features is analyzed based on the Gini coefficient 
from the random forest model, and the inter-feature correlation is 
assessed using the Pearson correlation coefficient.
Step 5: Utilize various types of machine learning models, such as 
Decision tree, Random Forest, XGBoost, LGBoost, on the DHCM-ML. 
Compare the performance of these models and select the optimal 
model as the prediction model for HCM. The prediction accuracy A, 
precision P, recall R and comprehensive evaluation index F1 are 
calculated to verify the availability of the HCM analysis model. The 
calculation formula of A, P, R, and F1 is shown in formula (5):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
TP + TN

TP + TN + FP + FN

P =
TP

TP + FP

R =
TP
P

F1 =
2PR

P + R

(5) 

where TP indicates that the positive class is predicted as positive class; 
FP means that the negative class is predicted as positive class; A indicates 
that the classification accuracy of all categories; P is the proportion of 
the real risk samples divided into corresponding risk labels; R means the 
classification accuracy rate of the actual risk samples; F1 is the 
comprehensive evaluation index of the model. 

(2) HCM-based approach to risk warning

Traditional data-based risk warning builds machine learning models 
based directly on risk outcome data, with little consideration of the 
impact of human control on risk labelling. After obtaining the human 
control model, it is necessary to synthesize the changes in machine 
motion and environmental states in the human–machine systems in real 
time to make more accurate judgements on risks. Unlike the assumption 
that the HCM is consistent across the task profile, there is uncertainty in 
the change of risk during the warning cycle, i.e., there are differences in 
the risk prediction model and prediction accuracy at different warning 
locations. The warning location has a significant impact on the change of 
system risk over the time-series, e.g., radio altitude is commonly used in 
civil aviation safety to provide risk alerts for take-off and landing pro
cesses. Further, risk alerting is also limited by the alerting mechanism, 
which includes the actual task requirements (e.g., the number of alerts) 
and the human’s response time for emergency handling, and the real- 
time data transmission limitations, which include the data acquisition 
frequency and the data latency. In summary, the construction method of 
the risk warning model of the HCM-based human–machine systems is 
shown in Fig. 8. 

Step 1: Select the warning points that trigger alerts {WP1, WP2, ...,

WPn}. The value of n is determined by the sampling frequency of WP 
and the desired recall rate of the final model.
Step 2: Choose the data slicing range ΔWP = (WPmax-WPmin)/n and 
construct the risk alert dataset DW = {DW − Si} i = 1,2,…,n, for 
machine learning training.
Step 3: Within each data slice DW − Si, group the DW − Si based on 
the predicted results of HCM, forming the DW-S-HCM dataset.

Fig. 6. HCM analysis steps.
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Step 4: Referencing the disciplinary equations of the human–machine 
system, select machine state parameters and environmental change 
parameters as features for risk prediction.
Step 5: Set the risk labels based on typical risks in the human
–machine environment and corresponding risk management 
thresholds.
Step 6: Train machine learning models within DW-S-HCM and 
calculate the average risk recall rate DW − Si of each model on the 
test data.
Step 7: Select the optimal ΔWP, ensuring that the corresponding 
DW − Si of RDW-S is above 70 %.
Step 8: Train machine learning models at the optimal warning posi
tion corresponding to ΔWP.
Step 9: Select the machine learning model with the highest risk recall 
rate to construct the optimal real-time risk warning based on HCM.

4. Case study

The case study focuses on aviation industry, specifically examining 
the impact of pilot HCM on flight accidents. Among them, the aircraft 
approach and landing phase is a high-risk stage for flight accidents. 
Currently, aircraft landing has not been fully automated and relies 
mainly on manual control by pilots. Improper pilot control may induce 
unsafe events such as hard landings, long landings, and tail strikes (Tong 
et al., 2018; Wang, Wu, & Sun, 2013; Wang et al., 2018). This system is a 
typical “human-in-loop” control system with high risk. To ensure an 
acceptable level of flight safety, it is urgently needed to develop effective 
risk warning methods based on flight data, focusing on HCM.

The case study focuses on the real-time risk warning based on flight 
data and human control for the two typical landing risks: hard landing 
and long landing, which could do risk warning by flight data by machine 
learning (Xiangzhang et al., 2024; Zhang et al., 2023). Flight risk 
warning relies on real-time air-ground data transmission technologies, 
including Automatic Dependent Surveillance-Broadcast (ADS-B), 
Communication, Navigation, Surveillance / Air Traffic Management 
Datalink (CNS/ATM Datalink), On-Board Avionic Networking System 
(OANS), Very High Frequency (VHF) radio communications, and satel
lite communications, etc. Currently, the Quick Access Recorder (QAR) 
data is an important foundation for aircraft state estimation and safety 
assessment (Wang, Wu, & Sun, 2014), which includes pilot control data. 
Therefore, the case study uses QAR data for feasibility verification of the 
method, without considering the impact of air-ground data transmission 
technologies on the warning effectiveness.

4.1. Selection of parameters for aircraft landing risk warning

The landing risk of an aircraft is the result of the combined effects of 
human control, machine state, and environmental changes. To accu
rately obtain the warning parameters for landing risk, relevant variables 
can be obtained from the perspective of the underlying physical laws of 
the aircraft landing system, thereby guiding the selection of risk warning 
parameters. 

(1) Parameters for Hard Landing warning

Hard landing is a physical phenomenon that occurs when an aircraft 
makes contact with the ground during landing, characterized by 
excessive longitudinal acceleration. Taking symmetric landing, where 
the main landing gears touch the ground simultaneously, as an example, 
the parameters for hard landing risk warning are analyzed.

As shown in Fig. 9 and Fig. 10, in the two-point grounding, i.e., the 
main landing gear grounding phase, the equations of motion can be 
described as: 

mż = − 2Fs mcosα+W (6) 

W = mg −
1
2

ρS(V − VW)
2CL (7) 

Fig. 7. Data segmentation.

Risk warning model building based on HCM

Warning Point selection

Grouping data based on HCM

Select warning features

Confirm risk labels

Training warning models

Optimal warning points

HCM prediction results

R=fHCM (M, E)

Risk warning threshold

Machine learning models

Select Warning Point(WP)Warning task description S1

No

Risk recall>70%

Slicing training Data Using △WP

Yes

WP={WP1,WP2,…,WPn}

Test dataset

Machine learning models S8

Optimal warning models with HCMRecall rate comparation S9

Fig. 8. Risk warning method based on HCM.

Fig. 9. Side view of aircraft landing.
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Iyω̇y = − 2bFs m (8) 

Ixω̇x = − 2cFs mcosα (9) 

where m is the aircraft gross weight; ż is vertical acceleration of aircraft; 
Fs m is the impact force of the main landing gear on the fuselage of an 
aircraft; α is the angle between the aircraft fuselage reference line and 
the ground is called the pitch angle; W is the equivalent weight of the 
aircraft, including comprehensive lift; g is the gravitational acceleration; 
ρ is the atmospheric density; S is the wing reference area; V is the 
touchdown speed; VW is the vertical wind speed (headwind is positive); 
CL is the lift coefficient; Iy is the moment of inertia of an aircraft around 
its horizontal axis; Ix is the moment of inertia of an aircraft around its 
longitudinal axis; ω̇y and ω̇x is the angular acceleration of the aircraft’s 
rotational motion around the horizontal axis and the vertical axis, 
respectively; b is the distance from the longitudinal axis to the center of 
gravity at the connection point between the main landing gear and the 
fuselage of the aircraft; c is the distance from the horizontal axis to the 
center of gravity at the connection point between the main landing gear 
and the fuselage of the aircraft.

It can be seen that excessive ż will cause a hard landing of the main 
landing gear, that is, the vertical descent rate of the aircraft is too high, 
resulting in excessive ground forces on the main landing gear, and thus 
an excessive impact force on the fuselage. At the same time, during the 
three-point touchdown phase, if the rate of change in pitch angle is too 
large, the Fs n acting on the fuselage by the front landing gear will also 
be too large when the front landing gear touches down, causing a hard 
landing of the front landing gear. The pilot’s HCM is the direct cause of 
the change in pitch angle. Meanwhile, the uncertain changes in VW can 
also cause fluctuations in ż, such as wind shear. The changes in other 
parameters during the grounding phase are relatively small and will not 
be considered temporarily. 

(2) Parameters for Long Landing warning

Aircraft landing refers to the process of descending, touchdown, 
rolling, and ultimately coming to a stop on the runway, starting from a 
height of 50 ft above the threshold of the runway. The landing phase is 
typically divided into three stages: the descent and flare phase, the 
transition phase, and the deceleration and rollout phase, as depicted in 

Fig. 11.
Long landing refers to the situation where an aircraft utilizes a 

runway length that is excessive, which can lead to an runway overrun. 
The physical principles behind long landing can be illustrated using the 
descent and SA an example. Prior to formally entering the landing phase, 
the aircraft remains on the approach glide slope. The phase in which the 
aircraft transitions from the glide path to the flare is known as the 
descent and flare phase. During this phase, the aircraft’s throttle is set to 
idle, and it descends at a glide angle of 3◦ with VREF. This process can be 
further divided into a straight descent segment and a flare arc segment. 
In the straight descent segment, the aircraft can be approximated as 
undergoing a constant descent with a glide angle of 3◦ and a velocity of 
VREF. In the flare arc segment, the aircraft is assumed to maneuver along 
a circular arc with a radius of R, as depicted in Fig. 12.

The dynamic analysis of this process is as follows: 

SA =
HLK

θ
+R

θ
2

(10) 

where HLK is the vertical altitude at which the aircraft passes through the 
runway threshold; θ is the sliding angle, tanθ ≈ sinθ = D− P

W ; R is the 
radius of flare control, R = W

SW
2n

ρCʹ
L

1
g(n− 1); SA is the horizontal distance of 

the sliding and leveling section: 

SA =
HLK

( CD
CL

− P
W )

+

W
SW

( CD
CL

− P
W )

ρg(n − 1)CL
(11) 

The analysis of the various landing motion equations discussed 
above is based on the assumption of rigid body aircraft, neglecting the 
elastic deformation of the aircraft at the moment of landing. Through an 
analysis based on physical principles, it is evident that parameters such 
as landing weight, longitudinal acceleration, descent rate, pitch angle, 
roll angle, lateral acceleration, longitudinal wind speed, and their in
terrelationships truly reflect the actual conditions of aircraft landing, 
serving as the primary warning parameters for aircraft landing. Among 
them, the uncertainty of the pitch angle and roll angle is influenced by 
HCM. Additionally, the variability of wind speed introduces uncertainty, 
making it challenging to derive precise results for warning based on 
physical principles.

Therefore, this study takes a data science approach, quantifying the 
pilot’s HCM based on historical flight data and training machine 
learning models with strong time-series prediction capabilities to ach
ieve accurate warning of aircraft hard landings. Integrating the afore
mentioned equation analysis and the variables that can be recorded by 
the Quick Access Recorder (QAR) data of the B737-800 aircraft, aircraft 
risk warning parameters are selected from “Human-Machine-Environ
ment” perspective, with the current QAR sampling frequency set at 1 Hz. 

Fig. 10. Front view of aircraft landing.

Fig. 11. Schematic diagram of aircraft landing phase. Fig. 12. Schematic diagram of aircraft approach and leveling phase.
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The final selection of QAR parameters is presented in Table 1.

4.2. Pilot HCM mining

The case study considers the pilot’s column control as the main 
control (MC) and the throttle control as the auxiliary control (AC), 
calculates the timeliness, stability and coordination using MCS and ACS, 
and identifies typical pilot HCM based on clustering. Since aviation 
mostly use altitude as the reference variable, the Fig. 13 and Fig. 14
shows the changes of MCS and ACS within the current QAR data during 
the landing phase (50 ft-0 ft), and the subsequent risk warnings will use 
altitude as the reference variable for the warning point as well.

Referring to the B737-800 SOP (Academia, 2024)for landing oper
ation, the pilot enters the landing operation after reaching VREF at 50ft, 
and pulls the stick smoothly and continuously by throttling down in 
order to ground the aircraft. The SOP suggests that the pilot adopts a 
timely and smooth landing operation, and suggests that pulling the 
control column and throttle column down should be started at the same 
time, which means HC CSOP = 0 in formula (3). Thus, according to SOP, 
the C_T, HC_S and HC_C of MCS and ACS may directly affect the evo
lution of the flight risk and the outcome of the risk warning.

However, as shown in Fig. 13 and Fig. 14, it can be seen that there are 
situations where the operations taken by the pilots do not fully comply 
with the SOP, i.e., there are problems such as untimely operation, poor 
stability, or lack of co-ordination that may become potential factors for 
inducing risks. From the physical equations in 4.1, it can be seen that the 
pilot’s control directly affects the change of the aircraft’s motion in the 
horizontal and vertical directions. Therefore, the altitude in flare is 
chosen to characterize HC_T, the control column fluctuation after flare is 
chosen to characterize HC_S, and the gap between the stick pull opera
tion and the throttle retract operation is chosen to characterize HC_C, 
which were calculated based on Eqs. (1)–(3). The Fig. 15 show the 
statistical distribution of the above three parameters in the landing 
phase, respectively.

Further the data were analyzed by k-Means with HC_T, HC_S and 
HC_C as the three-dimensional spatial coordinates, and the results are 
shown in Fig. 16.

The k-Means clustering results indicate that there are three types of 
HCM for the pilots represented by control data, which are defined based 
on practical experience in civil aviation safety, such as Flight Crew 

Operation Manual (Skybrary, 2024), in order to make them easier to 
understand for safety managers. The individual HCM labels were 
defined as SOP, Conservative and Adventurous from the clustering 
centers and their corresponding coordinates, as shown in Table 2.

From Table 2, it can be seen that the three types of control modes 
represented by HCM differ in HC_T, HC_S and HC_C, reflecting the three 
types of different control strategies of different pilots in the past landing 
control process, and whether these three types of HCM affect the risk 
evolution needs to be analyzed in the context of a specific risk warning 
model.

4.3. Machine learning based real-time warning of risks

After mining the pilot HCM in the historical flight data, they are 
applied in the real-time warning of aircraft landing risk. Firstly, it is 
necessary to judge the HCM adopted by the current pilot based on the 
real-time data, and then to warn the landing risk of the current HCM 
based on the real-time data. 

(1) Pilot HCM analysis and prediction

Pilot switches off autopilot and starts manual control at about 
1300ft, so analysis of pilot HCM is based on the data between 1300ft- 
50ft. The general aircraft descent rate is about 3 m/s, that is, the pilot 
takes over the aircraft at 1300f and starts landing at 50 ft after about 2 
min. Therefore, we assuming that the pilot HCM selected by the pilot 
during the period of 1300 ft-50 ft remains unchanged from 50 ft-0 ft 
during the landing phase (which lasts for about 5 s or so). Then, as 
shown in Fig. 17, the historical high-dimensional sequence data can be 
sliced based on altitude according to the altitude to obtain sample data 
for constructing the pilot HCM prediction model.

During the landing process, the pilot uses various parameters to 
judge the control mode adopted. For the control process of the landing 
process, based on the results of the analysis of the human factors in 3.3 
and the results of the analysis of the equations in 4.1, the QAR param
eters selected for the prediction of the pilot HCM are shown in Fig. 18.

Based on the samples constructed from the sliced data and the HCM 
warning features, the machine learning-based HCM analysis model is 
constructed, and the performance results of its performance on the test 
dataset are as in Table 3:

As can be seen from Table 3, DT has the best overall performance for 
HCM, and all performance indicators are higher than 90 %, so DT is 
chosen as the HCM analysis model for real-time warning of aircraft 
landing risk, which is used to subsequently make more accurate warning 
of the risk of landing accidents brought about by different HCM. 

(2) HCM-based risk warning for flight landing accidents

Further predictions of typical aircraft landing risks were made based 
on the acquisition of HCM. The flight landing risk warning risk labels 
used for the case study include: Safety (S), hard landing (H), long 
landing (L), hard landing and long landing (H&L). Based on the 
parameter selection in 4.1 and the current airline judgement criteria for 
hard landing and long landing, the landing risk prediction characteris
tics and risk labels used are given as shown in Table 4.

Selecting an appropriate machine learning model for risk prediction 
is the core of flight landing risk warning, and the performance of the 
machine learning model is limited by the number of samples in each risk 
category, which is affected by the combined effect of data collection 
frequency and WP. The current landing radio altitude warning interval 
for civil airliners is 100ft, and the data between 100ft and 200ft, i.e., 
ΔWP = 100ft, is used as an example to train the risk warning machine 
learning models for different HCM, and the results are shown in Fig. 19.

Preliminarily, from the Fig. 19, at ΔWP = 100ft: 

Table 1 
Parameters affecting HCM and risk in aircraft landing safety.

Classification Symbol Description

Human Control (HC) MC The angle of control column deviated from 
original point

AC The angle of thrust column deviated from 
original point

Aircraft Performance 
(AP)

m Gross weight of aircraft
ALT The altitude of an aircraft relative to the ground
VA The speed of aircraft indicated by instrument
VREF The reference speed of aircraft in Landing
FLAP The setting position of flap handle
LG The position of landing gear
IVV The aircraft descent rate
VRTG The vertical acceleration of aircraft
PITCH The pitch of aircraft
ROLL The roll of aircraft
GD The glide slope deviation of the aircraft

Environment (EN) VW The wind speed along the longitudinal axis of 
the aircraft

PS The static pressure of air
TS The static temperature of air
ρ The density of air, calculated by ρ =

PS

RTS
,where 

R = 287.15 J/(kg⋅k)
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1) the mean recall for H, L and H&L is higher in the HCM group than in 
the no HCM group;

2) the recall rates for the H, S, and L risk categories within each HCM 
group are greater than 60 %, providing risk warning significance.

3) H&L within each HCM group could not achieve a satisfactory recall 
rate.

4) There are differences in the prediction performance of different 
machine learning for risks other than category S.

As can be seen, before considering which machine learning model to 
use, the ΔWP needs to be selected reasonably so that the warning model 
can have a high recall for all types of risks. Therefore, the recall of the 
model at different warning heights needs to be further explored, espe
cially for risk categories such as H&L, where the sample proportion is 
small. Based on the processing in Fig. 20 to obtain data slices corre
sponding to the radio altitude, the average recall of the machine learning 
model under different ΔWP is explored for the H&L class, which is 

currently the worst classified class.
As shown in Fig. 21, different ΔWPs are selected to set the warning 

points in the range of 1300ft-50ft to further explore the recall of the 
model for H&L under different warning point configurations and find 
the optimal warning points.

As can be seen from Fig. 21: 

1) As ΔWP increases, it makes the machine learning model’s recall for 
H&L increase due to the increase in the number of samples;

2) After the warning interval is higher than 200ft, the recall of the 
machine learning model for the H&L class starts to be higher than 50 
%;

3) The warning point after ΔWP is higher than 400ft meets the actual 
warning needs, i.e., 2–3 warnings are performed.

Comprehensive H&L recall rate and to achieve effective warning to 
pilots, the selected warning altitude interval is 400ft, i.e., three landing 

Fig. 13. MC in aircraft landing stage.

Fig. 14. AC in aircraft landing stage.
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risk warnings are conducted at 100ft, 500ft and 900ft, and the machine 
learning models selected for each warning location and HCM and the 
comprehensive performance (average recall rate of each risk category) 
are shown in Table 5.

As can be seen from Table 5: 

1) the machine learning models in the HCM group have high prediction 
accuracy for landing risk;

2) The average recall rate of machine learning models can be generally 
lower than that of the HCM group when HCM is not considered;

3) Different HCM of different WPs correspond to different machine 
learning models.

In the actual prediction process, it is necessary to judge the HCM 
before risk prediction. Therefore, the prediction model of HCM and the 
corresponding risk prediction model together determine the perfor
mance of the HCM-based risk warning model. Based on the recall of the 
HCM analysis model using DT in Section 4.2, the performance of the 
final HCM − based risk warning model is calculated as shown in Fig. 22.

From the table, it can be seen that the early warning model can recall 
more risk samples after considering HCM, and for risk warning, a dif
ference of 1 % may mean serious accident consequences. Therefore, risk 
prediction based on HCM has important practical significance. Eventu
ally, the recall rate of each HCM for various types of risk labels at 
different warning positions is shown in Fig. 23.

As can be seen from Fig. 23: 

1) the recall of each HCM model for safe samples is close to each other, 
while there is a difference in the recall for risky samples, with the 
lowest recall for H&L;

2) For the same warning location, the SOP and ADV models have higher 
recalls, and the CON has a slightly lower recall;

3) for different warning positions, 500ft has the highest recall across 
HCM models.

5. Discussion and future work

In order to improve the accuracy of real-time risk warning methods, 

Fig. 15. Frequency histograms of HC-T, HC-S, and HC-C.

Fig. 16. Results of HCM by k-Means.

Table 2 
HCM label illustration.

HCM 
Label

Cluster 
center

HCM explain HCM

SOP [19.29, 
0.17, 
12.95]

The flare height is moderate, the 
control is stable, and the control 
coordination is moderate

Timely, stable, and 
coordinated control

CON [31.82, 
0.14, 
25.52]

The flare height is high, the 
control is very stable, and the 
coordination of control is weak

Control early, very 
stable, and 
uncoordinated

ADV [10.53, 
0.17, 4.06]

The flare height is low, the 
control is stable, and the control 
coordination is great

Late control, stable, 
and well-coordinated

Fig. 17. Altitude-based data slicing for HCM analysis.
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human control is considered as a key mechanism influencing the real- 
time risk evolution of human–machine systems. The research is dis
cussed as follows: 

(1) HCM mining

The “timeliness”, “stability” and “coordination” in the HCM mining 
method are directly derived from human control sequences, including 
main control and auxiliary control, to achieve the objective features of 
human–machine interaction. In the flight safety scenario, three types of 
typical pilots were identified based on “timeliness”, “stability” and 
“coordination” through k-Means, which were named as SOP, CON and 
ADV. Among them, CON tends to control early and smoothly, but with 

poor coordination; ADV tends to control late and coordinately, but with 
poor stability; SOP is more in line with the recommendation of flight 
control, i.e., timely control with stability and coordination. The results 
of the performance evaluation of HCM-based risk real-time warning 
model further indicate that HCM has an impact on the warning results of 
the risk, suggesting that mining the HCM has research and application 
value at human–machine systems risk management. However, the 
interpretability of HCM labels needs to be further studied through 
human factors experiments or questionnaires. 

(2) “Human-Machine-Environment” orientated HCM analysis

In order to obtain an accurate HCM in the risk real-time warning 
process, the features affecting the HCM are analyzed based on the 
human information processing model, and concludes that the HCM is the 
result of human information processing and is affected by human situ
ational awareness, decision-making performance, task difficulty, and a 
combination of machine state and environmental conditions. However, 
this deterministic approach may overlook emergent cognitive dynamics 
(Flach, 1995). Future iterations may integrate Ecological Interface 
Design principles to better support situated decision-making 
(Rasmussen, 1999). In the flight safety scenario, a pilot HCM analysis 
model with an accuracy of up to 95 % is obtained based on the decision 
tree algorithm to support the realization of accurate real-time risk 
warning. After the risk warning model integrates the accuracy of HCM 
analysis, it finally achieves a risk recall rate as high as 85 %, which is 
higher than the risk warning model without considering HCM, and thus 
has great practical significance at the human–machine systems risk 
prevention. 

(3) HCM-based risk warning

The study concludes that the selection of warning points affects the 
accuracy of the HCM-based risk warning model, and proposes a method 
for selecting warning points based on warning demand and data trans
mission frequency. In the flight landing risk warning scenario, three 
warning points are finally selected at the altitudes of 100ft, 500ft and 
900ft. Meanwhile, the machine learning models selected for different 
HCM risk warning models at different warning points are different. The 
final result shows that the recall rates of the risk warning model at the 
three altitudes of 100ft, 500ft and 900ft meet the requirements for use, 
in which the scheme has the highest risk recall rate at 500ft, and the 
CON group and SOP group have higher risk recall rates at the three 
warning points. The above results show the importance of the reason
able selection of warning points and the effectiveness of building HCM- 
based risk warning model. 

Fig. 18. HCM prediction features and machine learning model selection.

Table 3 
Comparison of HCM prediction model performance.

ML-Model HCM Precision Recall F1-score Accuracy

DT SOP 0.95 0.97 0.95 0.95
CON 0.95 0.93 0.94
ADV 0.96 0.96 0.96

RM SOP 0.93 0.98 0.96 0.93
CON 0.99 0.89 0.93
ADV 0.93 0.98 0.96

XGBOOST SOP 0.95 0.99 0.97 0.95
CON 0.95 0.86 0.90
ADV 0.92 0.96 0.94

LightGBM SOP 0.88 0.89 0.88 0.88
CON 0.96 0.74 0.84
ADV 0.86 0.94 0.90

Table 4 
Features of Aircraft Landing Risk warning and Explanation of Risk Labels.

Risk warning 
features X

Labels 
Y

Label 
content

Determination 
parameters

Label 
determination 
rules

VA, VW, ρ, IVV, 
VRTG, 
PITCH, ROLL, 
SD

S No risk \ \
H Hard 

landing
VRTG VRTG > 1.6 g

L Long 
landing

SA SA > 800 m

H&L Hard and 
long 
landing

VRTG &SA VRTG > 1.6 g 
&SA
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(4) Future study

In future research, HCM can be considered to be extracted from 
richer data, such as video data and audio data, or more clustering 
methods, such as density-based clustering, probability-based clustering, 
and sequence-based clustering, can be used to mine richer HCM ex
pressions. Meanwhile, further research on the interpretable model of 
HCM is needed to identify the human cognitive factors and structures 
affecting HCM, such as attention, situational awareness, fatigue, and 
stress, etc., and to find the accurate representations of the above human 
factors on control data through physiological-psychological 
experiments.

For the research of real-time risk warning, firstly, it is necessary to 

Fig. 19. Comparison of recall rates for various risks using machine learning models with ΔWP = 100ft.

Fig. 20. Height based data slicing for risk warning based on HCM.

Fig. 21. Risk H&L recall rates for different warning altitude intervals.

Table 5 
Recall rates and selected machine learning models for various heights under the 
Δ400 warning standard.

WP HCM ML-Model Mean Recall

900ft SOP LGB 0.84
CON LGB 0.83
ADV DT 0.85
No HC DT 0.77

500ft SOP XGB 0.90
CON LGB 0.87
ADV XGB 0.92
No HC XGB 0.80

100ft SOP XGB 0.88
CON LGB 0.85
ADV LGB 0.88
No HC LGB 0.79
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explore the influence mechanism of HCM on specific risk types based on 
the consideration of HCM, for example, pay more attention to the 
change of SA in the process of real-time dynamic interaction between 
human and machine, so as to prompt the effectiveness of early warning 
(Wen et al., 2023); secondly, it is necessary to further strengthen the 
data coverage and transmission rate from the perspective of sub-risk 
management, in which the data coverage solves the problem of 
covering various types of uncertain risks and reduces the data imbal
ance; The transmission rate solves the real-time problem of warning, 
especially the collection of various human control data is used to achieve 
real-time analyses of human control status, however, such analyses need 
to pay attention to the ethical and privacy issues in the application 
process.

While case study focuses on aviation, the methods developed can be 
extended to other industries relying on Human-Machine Interfaces and 
Supervisory Control and Data Acquisition (SCADA) systems. By inte
grating human behavior and machine state data, the approach can 
enhance real-time monitoring and predictive analytics in sectors like 
manufacturing. This could help prevent equipment failures and opera
tional anomalies, improving safety and efficiency. Future work will 
explore these applications, demonstrating the broad potential of human- 
centric risk warnings across various domains.

6. Conclusion

Human control is regarded as an essential driver in the dynamic 
progression of real-time risk within human–machine systems. In order to 
solve the problem of the influence of human control on risk warning, this 
study proposes a real-time risk warning method based on HCM. The 
method takes human control sequences as the core, calculates the fea
tures of sequences from three dimensions of “timeliness”, “stability” and 
“coordination”, and uses clustering method to derive typical HCM. On 
the basis of precise HCM prediction based on human information pro
cessing model, the HCM is used to achieve more accurate risk warning. 
The proposed methodology is applicable to typical flight landing risk 
warning scenarios, and is useful for improving data-driven flight safety 
management and reducing risks in other similar areas. Meanwhile, in 
the context of the current lack of research on human factor mechanisms, 
HCM-based risk warning at the data-driven level has a wide range of 
industry applications, which emphasizes risk control in human–machine 
systems.
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