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A B S T R A C T

Multi-agent systems (MAS), as a representative complex system, have become crucial for analyzing cluster and 
heterogeneous behaviors in various domains such as biology, social science, military weapon and manufacturing. 
The MAS exhibits adaptability to environmental changes and can dynamically reconfigure its structure to 
enhance resilience while reducing vulnerability. However, existing research primarily focuses on proposing 
reconfiguration strategies to enhance resilience but lacks in-depth exploration of reconfigurable design and 
capability constraints. The study proposes a reconfigurable operation-loop network (RON) model for resilience 
analysis and reconfigurable design of MAS based on the operation loop. Subsequently, the performance mea
surement and resilience metric are presented for RON considering mission load. Furthermore, the mathematical 
model and optimization framework of reconfiguration are established with the consideration of reconfigurable 
attributes and the resilience objective. Finally, the feasibility, effectiveness, and superiority of the proposed 
models and metrics are illustrated through extensive experiments on case based on an emergency response 
system. Numerical results demonstrate that the performance metric considering mission load contributes to a 
more accurate assessment of RON resilience than conventional network metrics. This work could yield valuable 
insights for the reconfigurable and resilient design of MAS, while providing guidance and serving as a reference 
for future research efforts.

1. Introduction

Multi-agent system (MAS) is a class of complex systems that exem
plify both natural and socio-technical systems, including colonies (You 
and Liu, 2024), unmanned aerial vehicle (UAV) swarms (Zhou et al., 
2024), equipment systems of systems (SoS) (Sun et al., 2022), decen
tralized autonomous manufacturing (Leng et al., 2023) among others. 
Each agent within the MAS represents an independent entity, equipped 
with distinct modular functionalities designed to fulfill specific mission 
requirements for perception, decision-making, and execution (Li et al., 
2021). With the development of network information technology and 
artificial intelligence (AI) technology, MAS has been empowered with 
the interconnection and autonomous capability. Heterogeneous agent 
swarms can not only autonomously perceive, make local decisions and 
execute rapidly, but also achieve a closed loop of collaborative operation 
from perception to decision-making and then to execution for the target 
through network communication. Especially in the manufacturing field, 
within the context of Industry 5.0, the decentralized and autonomous 

manufacturing paradigm based on blockchain technology provides a 
decentralized and distributed approach for the implementation of the 
autonomous and collaborative behaviors of MAS (Leng et al., 2023). The 
closed-loop work flow of heterogeneous MAS aiming at a target under 
network interconnection conditions is defined as the operation loop 
(Pan et al., 2019). It models and abstracts the distributed collaborative 
working process of heterogeneous agents. A target can potentially have 
multiple parallel loops, which leads to the complex interconnection 
structure within MAS.

Due to the increasing complexity and interconnection, MAS exhibit 
heightened vulnerability exposed to the risks from internal faults as well 
as external disruption and interference. Traditional anti-interference 
and reliability methods are difficult to adapt to dynamic risks and 
disturbance conditions, especially in fields such as intelligent trans
portation (Pan et al., 2022), unmanned equipment swarms (Hu et al., 
2025), and decentralized manufacturing (Leng et al., 2023), which 
emphasize the distributed and autonomous collaboration of agents. 
Passive resistance and redundancy measures alone are insufficient to 
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fulfill the requirements of flexibility and self-organization of MAS. 
Consequently, resilience-oriented methods are proposed to mitigate the 
disturbances and risks and enhance robustness and recoverability of 
MAS (Li et al., 2023). Resilience, defined as a system’s ability to absorb 
impacts and maintain the stable operation following exposure to 
disruptive events, is a critical concept in the study of sustainable sys
tems, such as ecological, social and engineering systems (Ouyang and 
Wang, 2015; Liu et al., 2022; Leng et al., 2025). Resilience of MAS un
derscores the measures that ensure reliable and continuous operation 
based on flexible configuration, dynamic behavior and interactions 
among entities (Hu et al., 2025).

Reconfiguration serves as a typical resilient recovery strategy and 
represents a key manifestation of resilience in MAS (Chen et al., 2023). 
Reconfiguration has received considerable attention in research on 
enhancing the resilience of MAS. For unmanned equipment swarms, 
reconfiguration is an adaptive control method that adjusts formation in 
response to the environment, which helps enhance the resilience of the 
swarms (Feng et al., 2022; Shao et al., 2023). For networks, reconfigu
ration refers to the reconnection of network nodes to search for the 
optimal topological structure under specific disturbances (Shan et al., 
2021). For decentralized manufacturing, reconfiguration is regarded as 
the real-time adjustment capability and approach of the manufacturing 
system in response to frequent disturbances (such as equipment failures 
and order changes), maintaining system stability by reallocating pro
duction tasks and optimizing resource paths (Leng et al., 2024).

However, recent research considers reconfiguration as a resilience- 
enhancement strategy rather than a designable attribute of MAS. 
Furthermore, mission load is seldom taken into account in the reconfi
guration of MAS, leading to inaccuracy in resilience evaluation. There
fore, the research questions can be summarized as follows: 

(i) Reconfigurable operation-loop network modeling of MAS.
(ii) Performance and resilience evaluation considering mission load 

of MAS.
(iii) Reconfiguration-based resilience optimization of MAS.

This work aims to address the above-mentioned questions and 
challenges of reconfigurable design and resilience evaluation for MAS. 
The main contributions of this study are summarized as follows: 

(i) Reconfigurable operation-loop network (RON) model is proposed 
and designed based on the operation loop composed of sensor, 
decider, actor in MAS. The model comprehensively considers the 
reconfigurable attributes, including entity redundancy, func
tional substitution, load affordability and resource accessibility, 
which provides support for resilience design of MAS.

(ii) A performance measurement and a multi-parameter resilience 
metric for RON are developed based on node-load centrality 
considering mission load during reconfiguration. This resilience 
metric can effectively describe the resilience of the MAS and 
provide resilience optimization targets for the reconfiguration 
model.

(iii) The proposed model and metric support the optimal mathemat
ical model of reconfiguration, and a framework for optimal 
reconfigurable scheme generation of RON is provided, mainly 
including resilience-oriented objective, constraints of reconfig
urable attributes, encoding and decoding for reconfiguration, and 
optimization algorithm.

The remainder of this paper is organized as follows. A comprehensive 
literature review on resilience measurement and reconfiguration is 
provided in Section 2. In Section 3, brief definitions, network model, and 
performance measurement of RON are introduced. The proposed resil
ience metric considering mission load and model framework of optimal 
reconfiguration are presented in Section 4. The case study is presented to 
verify the proposed model in Section 5. Section 6 answers research 

questions and discusses our findings. Finally, concluding remarks and 
future work are presented in Section 7.

2. Literature review

In this section, a comprehensive review of the current research is 
conducted from two aspects: resilience measurement and resilience 
enhancement. The contributions and limitations of the existing research 
are demonstrated to reinforce the purpose and motivation of this paper.

2.1. Resilience measurement

Resilience refers to the capacity of systems to absorb disturbances, 
and is measured by an indicator that quantifies the magnitude of per
turbations a system can withstand while maintaining a given steady 
state. Originally introduced by Holling in the field of ecology, this 
concept has since gained broad application across disciplines (Holling, 
1973).

The resilience measurement is the cornerstone for resilience 
enhancing and design, which determine the choice of enhancement 
measures and design of structure (Kakadia and Ramirez-Marquez, 2020; 
Guo et al., 2020). Performance is normally the measurement of a MAS to 
efficiently operate in function, usually obtained from actual system 
operations and modeling and simulation. Quantitative assessment of 
resilience relies on the time function of performance, mainly divided 
into quotient and integral resilience models (Cheng et al., 2022). The 
quotient resilience model depicts the ratio of recovered performance to 
lost performance. Resilience triangle model is the well-known metric of 
integral resilience, where the performance of the disrupted system is 
compared to desired performance by integrating over time. With the 
consideration of comprehensive assessment for resilience, the multi- 
parameter model is proposed based on the factors of system perfor
mance, recovery, absorption, volatility, and recovery time. A variety of 
modified resilience metrics based on multi-parameter models are 
developed for diverse scenarios within MAS, such as UAV swarm and 
equipment SoS. Resilience is regarded as being independent of robust
ness in the manufacturing domain. The former refers to the ability of a 
system to maintain or quickly recover to a stable state during and after a 
major mishap under severe disruptions or in the presence of continuous 
significant stresses, while the latter refers to the system’s capacity to 
absorb frequent disturbances with minimal impact on system perfor
mance. Therefore, the quantitative assessment of resilience should focus 
on situations where there are significant fluctuations in manufacturing 
system performance. Table 1 summarizes the related general resilience 
measurements used in previous studies.

Since these resilience metrics significantly contribute to the resil
ience analysis and optimal design for reconfiguration of MAS, they 
inadequately consider reconfigurable attributes and resilience con
straints, especially insufficient recovered performance caused by 
mission-load during reconfiguration.

2.2. Resilience enhancement and reconfiguration

Research on resilience-enhancing measures has primarily focus the 
two prospective: pre-failure resistance and post-failure recovery. As for 
pre-failure resistance, allocating redundant entities and interconnection 
is the widely adopted approach to enhance resilience of MAS, as derived 
from traditional reliability theory (Li et al., 2020). Critical entities 
protection exerts a pivotal influence on robustness and resilience of MAS 
as well. Pre-failure resistance is a proactive resilience enhancement 
strategy that relies on predictive design and adaptive learning to build a 
defense line for the system before disturbances and damages occur. For 
instance, in the context of Industry 5.0, deep learning (DL) and neural 
networks are frequently employed to predict equipment deterioration, 
thus transforming equipment maintenance practices from reactive re
pairs to proactive interventions.
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Furthermore, dynamic models of MAS response to disruption and 
attack are commonly studied with a consideration of uncertain and 
unpredictable environment. Effective restoration strategies for MAS can 
enhance both the speed of recovery and post-restoration performance 
(Pan et al., 2022). Programming models serve as conventional meth
odologies for generating recovery strategies, primarily by formulating 
the mathematical model of resilience optimization objectives and con
straints based on actual disruption information and state of system. 
Additionally, the cost of resilience enhancement can not only be 
regarded as a fixed constraint but also as a trade-off factor in the design 
of system resilience (Zhang et al., 2021; Yousefi et al., 2019). In response 
to the emphasis on human-centricity and sustainability in the EU’s In
dustry 5.0 White Paper, the resilience optimization problem can be 
extended to a multi-objective optimization problem aiming to maximize 
resilience, minimize resource consumption, and minimize the decision- 
making burden on personnel (Leng et al., 2024).

Moreover, reinforcement learning (RL) is considered a promising 
approach for addressing sequential recovery decisions in MAS without 
prior knowledge or a predefined model. RL enables continuous inter
action with the disturbance environment and facilitates the self- 
recovery of MAS from a global perspective.

Reconfiguration is a kind of dynamic and spontaneous process aimed 
at post-failure recovery, which has garnered significant attention in the 
research on resilience enhancement of MAS (Zhao et al., 2023). 
Reconfiguration in MAS denotes its intrinsic capability to dynamically 
adapt its architecture in response to disruption. Such reconfiguration 
processes aim to re-instantiate a coordinated architecture that simulta
neously addresses emergent operational demands and preserves 

systemic efficiency under dynamic constraints (Zhao et al., 2019). The 
current research studies several practical reconfiguration strategies for 
resilience enhancement. The formation reconfiguration strategies are 
proposed for cluster system, such as UAV swarms, to achieve the resil
ience optimization in the face of stochastic disruptions. For MAS with 
abundant connection, the remaining entities can be reconnected to form 
a new topology structure through the strategy of network reconstruc
tion. Multiple MAS can share entities with same function to perform 
their respective missions, enabling distinct MAS ensembles to coalesce 
into an integrated MAS architecture. Furthermore, the decentralized 
reconfiguration strategy based on blockchain technology has been pro
posed. When an entity fails, adjacent entities can automatically nego
tiate the redistribution of tasks through predefined contract rules 
without the need for permission from the control center. The decen
tralized reconfiguration strategy incurs a certain performance cost but 
offers considerable resilience and data privacy (Leng et al., 2024). 
Table 2 summarizes the related resilience enhancing methods in previ
ous studies.

MAS represents a complex adaptive system wherein reconfiguration 
is an intrinsic and fundamental mechanism (Shan et al., 2021), rather 
than merely a strategic approach. Although previous studies have suc
cessfully enhanced resilience through reconfiguration strategies, they 
have not adequately illustrated the inherent reconfigurable character
istics that enable MAS to maintain stable and resilient operations under 
disturbances (Chen et al., 2023). Notably, there is a lack of a network 
model specifically designed to capture the reconfigurable characteris
tics, which would illuminate both its internal reconfiguration mecha
nisms and capability constraints. The reconfigurable attributes of MAS 
constitute the cornerstone of its resilience. To comprehensively and 

Table 1 
Related resilience measurements.

Reference Year Resilience measurement Applicablescenario

Luo (Luo and 
Yang, 2002)

2002 Duration of the hazard and 
recovery periods

Infrastructure 
resilience

Bruneau (
Bruneau et al., 
2003)

2003 Performance integrating over 
time

Infrastructure 
resilience

Lloret (Lloret 
et al., 2011)

2011 Ratio of performance at the 
time of maximum loss to 
initial performance

Ecological resilience

Henry (Henry 
and 
Emmanuel, 
2012)

2012 Ratio of recovered 
performance to degraded 
performance

Network resilience

Torabi (Torabi 
et al., 2015)

2015 Time-weighted sum of the lost 
capacity recovered by the 
resilience strategies

Manufacturing 
resilience

Tran (Tran et al., 
2017)

2017 Piecewise function including 
multiple parameters of system 
performance, recovery, 
absorption, volatility, and 
recovery time

Network resilience

Zou (Zou and 
Chen, 2019)

2019 Weighted sum of recovered 
performance and degraded 
performance

Infrastructure 
resilience

Dhulipal (
Dhulipala and 
Flint, 2020)

2020 Ratio of the performance 
integral over a time period 
and the length of the period

Infrastructure 
resilience

Bai (Bai et al., 
2020)

2020 Modified function based on 
multi-parameter models of 
Tran

Network resilience

Sun (Sun et al., 
2022)

2022 Multi-parameter function 
based on mission baseline

Network resilience

Chen (Chen 
et al., 2023)

2023 Weighted sum of resistance, 
adaptability, and recovery 
factors

Network resilience

Leng (Leng et al., 
2025)

2023 Resilience triangle model 
under large performance 
fluctuations

Manufacturing 
resilience

Our study 2025 Multi-parameter function 
considering mission load 
during reconfiguration

Network resilience

Table 2 
Related resilience enhancing methods.

Reference Year Resilience enhancing method Applicable 
scenario

Liu (Liu et al., 2024) 2024 Critical entities protection Pre-failure 
resistance

Li (Li et al., 2020) 2020 Dynamic response to disruption 
and attack in uncertain and 
unpredictable environment

Pre-failure 
resistance

Leng (Leng et al., 
2025)

2025 Reserve backup equipment, 
buffer inventory or dual supply 
chains in system design to ensure 
that local failures do not spread

Pre-failure 
resistance

Leng (Leng et al., 
2024)

2024 By training predictive models 
through federated learning, the 
risk of equipment failure can be 
identified in advance, 
preventative maintenance 
instructions can be triggered

Pre-failure 
resistance

Leng (Leng et al., 
2024)

2024 RL agent learns the optimal 
scheduling strategy, avoiding 
resource conflicts or bottlenecks 
in advance.

Pre-failure 
resistance

Almoghathawi (
Almoghathawi 
et al., 2019)

2019 Recovery strategies generation 
based on programming models

Post-failure 
recovery

Sun and Tan (Tan 
et al., 2024)

2024 Self-recovery strategy based on 
RL

Post-failure 
recovery

Feng (Feng et al., 
2022)

2022 Formation reconfiguration 
strategies to achieve the 
resilience optimization in the 
face of stochastic disruptions

Post-failure 
recovery

Tran (Tran et al., 
2015)

2015 Network reconstruction 
strategies to form a new 
topology structure

Post-failure 
recovery

Chen (Chen et al., 
2024)

2024 Entities share with same 
function enable the 
reconfiguration

Post-failure 
recovery

Our study 2025 Reconfigurable attributes 
modeling and reconfiguration- 
based resilience optimization

Post-failure 
recovery
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fundamentally elucidate the resilience, it is essential to augment the 
relevant reconfigurable attributes from a modeling perspective, thereby 
providing the theoretical support for resilience optimization and design 
of MAS.

3. Network modeling and assessment

In this section, the RON model of MAS is proposed based on the 
conception of reconfigurable operation loop, and then the performance 
measurement with a consideration of mission load is presented for 
resilience evaluation and optimization.

3.1. Reconfigurable operation loop

Perception, decision-making, and execution constitute essential 
functions that are pervasive across biological and automated systems. 
MAS can be regarded as consisting of a multitude of entities equipped 
with perception, decision-making, and action capabilities (Pan et al., 
2019; Ling et al., 2005). To accomplish the specific mission, the entities 
responsible for perception, decision-making, and action constitute a 
closed operation loop aiming at the target entity of mission, as illus
trated in Eq. (1) (Li et al., 2021): 

T→S→D→A→T (1) 

where S, D, and A represents the sensor entities, decider entities, actor 
entities in MAS, respectively, while T denotes the target entities that 
MAS aims to achieve.

MAS is a complex adaptive system characterized by its resilience, 
which enables it to dynamically adjust its structure and functional re
lationships to adapt to varying tasks and environmental conditions (Guo 
et al., 2017; Mohd Subha and Mahyuddin, 2021). This dynamic 
adjustment, referred to as reconfiguration, is the process and capability 
by which an MAS maintain stable operation and accomplish mission, 
particularly it can replace damaged entities with either remaining or 
newly introduced entities to form a new closed loop that satisfies specific 
targets.

Reconfiguration of MAS can be regarded as the replacement of 
disabled entities (Sun et al., 2024). Consequently, the conception of 
reconfiguration entity can be established, representing the replacement 
entities with similar function of disabled entities. As shown in Fig. 1, 
reconfiguration entities are capable of substituting for the disabled en
tity to perform similar function, thereby establishing a new operation 
loop. The operation loop that possesses reconfiguration entities is 
defined as reconfigurable operation loop. Reconfiguration entities can 
be categorized into offline-reconfiguration entities and online- 
reconfiguration entities. Offline-reconfiguration entities refer to spare 
reconfiguration entities that provide similar functionality through either 
a dedicated backup or from a shared resource pool. The reconfiguration 

process for offline-reconfiguration entities necessitates additional 
attention to their startup time. In contrast, online-reconfiguration en
tities are in-service reconfiguration entities that possess redundant and 
analogous functions within the same loop or different operation loops. 
Replacing a faulty entity with an online-reconfiguration entity increases 
the workload on this reconfiguration entity.

Offline and online reconfiguration entities serve as the physical 
foundation for reconfiguration, while the functions and capabilities of 
these entities constitute the logical conditions for reconfiguration. From 
the perspectives of the physical basis and logical conditions, four types 
of reconfigurable attributes are systematically summarized as follows 
and Table 3 (Uday and Marais, 2013).

As the reconfiguration entity is the basic unit and essential resource 
of reconfiguration, ensuring entity redundancy is essential, as it is 
precondition of reconfigurability. In cases where inherent redundancy 
within an operation loop is inadequate, it is crucial to ensure a sufficient 
supply of accessible alternative resources available to support the 
reconfiguration process. Additionally, the logical condition for recon
figurable entities indicates that they exhibit equivalent functionality to 
disabled entities, while the capacity of these entities, particularly online 
reconfiguration entities, is sufficient to accommodate the load of the 
disabled entities. Therefore, four reconfigurable attributes can be illus
trated as follow: 

• Entity redundancy: the faulty entities have redundant entities that 
allow for the replacement of the faulty entity, which can be other 
entities with identical functions both within the same loop and 

Fig. 1. Reconfigurable operation loop.

Table 3 
Reconfiguration entities and corresponding reconfigurable attributes.

Types of the 
reconfiguration 
entities

Source of reconfiguration 
entities

Corresponding 
reconfigurable attributes

Offline- 
reconfiguration 
entities

Backup for the faulty entity Entity redundancy
Backup for other entities 
with same function within 
the same loop

Entity redundancy

Backup for entities with 
same function within other 
loops

Entity redundancy; 
Resource accessibility

Resource pool of entities Resource accessibility
Online- 

reconfiguration 
entities

Entity with redundant 
functions within the same 
loop

Load affordability; 
Functional substitutability

Entity with redundant 
functions within other loops

Load affordability; 
Functional substitutability; 
Resource accessibility

Entities with same functions 
within other loops

Load affordability; 
Resource accessibility
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different loops. This highlights the static configuration characteristic 
of the MAS.

• Resource accessibility: entities for the replacement from other 
loops or from a shared resource pool must be able to reach the 
destination of the disabled entity.

• Functional substitutability: entities equipped with multiple func
tions can assume multiple responsibilities. This represents the core 
dynamic reconfiguration capability, which hinges on functional 
redundancy and comprehensive coverage among different entities.

• Load affordability: reconfiguration, particularly through the 
replacement of online reconfiguration entities, requires these entities 
to handle multiple mission targets. Therefore, reconfiguration en
tities must possess the operational capability to function effectively 
under high load.

The reconfigurable attributes of MAS capture the core reconfigura
tion capabilities that support the design of MAS resilience. Attributes 
such as entity redundancy and functional substitutability fundamentally 
reflect the modular design, ensuring that disturbances within MAS can 
be confined to individual or a limited number of agents (Leng et al., 
2025). In such cases, operational entities can swiftly assume re
sponsibilities of disabled entities through predefined interfaces. 
Furthermore, load affordability must be carefully considered, particu
larly in post-reconfiguration scenarios where a single entity might be 
required to undertake multiple missions.

Furthermore, the mathematical model of reconfiguration can be can 
be established based on constraints derived from these above attributes.

3.2. Reconfigurable operation-loop network model

MAS can be modeled as an operation-loop network to reveal the 
characteristics of various entities and their functional interactions (Li 
et al., 2017). The RON model is proposed based on the coupling of 
multiple reconfigurable operation loops, as depicted in Fig. 2.

RON model G = (V,E,φ,ψ, δ) contains vertex set V, edge set E, vertex 
type mapping φ, edge type mapping ψ , and reconfiguration mapping δ. 

• V = VT ∪ VS ∪ VD ∪ VA ∪ VR denotes the set of five types of vertexes.
• E = ET→S ∪ ES→D ∪ ES→S ∪ ED→S ∪ ED→D ∪ ED→A ∪ EA→T denotes the 

edge set.

• φ = V→I represents that each vertex v ∈ V has φ(v) ∈ I, where I = {

S,D,A,T,R} is the node type set.
• ψ = E→L represents that each edge e ∈ E has ψ(e) ∈ L, where L = {

T→S, S→D, S→S,D→S,D→D,D→A,A→T} is the edge type set.
• δ = R→H represents that each vertex in reconfiguration type v ∈ VR 

has δ(v) ∈ H, where H = {S,D,A} is the set of node types that 
reconfiguration entities can transform to.

The reconfigurable operation loop is determined based on the defi
nition of meta path of operation-loop network.

Definition of meta-path (Li et al., 2017): A meta-path MP is a series 
of edges between vertex types: 

MP = v1 →
e1 v2 →

e2
...→eu vu+1,MP ∈ ΩM (2) 

where v1, v2, ..., vu+1 ∈ V and e1, e2, ..., eu+1 ∈ E. ΩM denotes the set of 
meta-paths.

Definition of operation loop: The operation loop OP (OP ∈ ΩO) is a 
path instance of MP, where φ(v1) = S, φ(vu− 1) = D, φ(vu) = A, φ(vu+1)

= T and φ(vuʹ) ∕= A, uʹ = 2, 3, ..., u − 2. ΩO denotes the set of operation 
loops, ΩO ⊆ ΩM.

Definition of reconfigurable operation loop: Reconfigurable 
operation loop RP is as special kind of operation loop (RP ∈ ΩO), which 
involves the vi ∈ R in path: 

∃vi ∈ R,RP = v1 →
e1 v2 →

e2
...̅̅̅ →

ei− 1 vi →
ei
...→eu vu+1 (3) 

3.3. Performance measurement of RON considering mission load

Performance measurement is the cornerstone of resilience analysis 
and evaluation, assessing the operational quality and mission capability 
of MAS. According to the aforementioned network model, the number of 
operation loops is a common and general indicator to evaluate the 
performance of MAS (Pan et al., 2019), which indicates the ability to 
accomplish the target of mission. However, this metric may not be 
suitable for post-reconfiguration performance assessment, particularly 
because reconfiguration can alter network topology, increase the num
ber of operation loops, and impose additional workload on reconfigu
ration entities. Owing to the entity’s constrained capacity for concurrent 
event and information processing, encountering an overload of simul
taneous events or information can negatively impact the efficiency of 

Fig. 2. The structure of RON model.
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mission accomplishment (Du et al., 2019; Belgacem et al., 2022). 
Therefore, it is essential to consider mission load while assessing the 
performance based on RON.

The operation loop represents the mission process to the specific 
target. The number of operational loops that an entity undergoes in
dicates the quantity of missions it is concurrently responsible for and the 
workload imposed. Drawing upon node betweenness centrality (Li et al., 
2019; Gao et al., 2011), which quantifies a node’s pivotability based on 
the frequency of shortest paths passing through it, we introduce the 
notion of node load factor, as illustrated in Eq. (4)

LFi =
∑

vt∈VT

f i
t

gt
(4) 

where gt =
⃒
⃒ΩO

t
⃒
⃒,ΩO

t ⊆ ΩO denotes the total number of operation loops 
that both start and end at the target node vt ∈ VT, f i

t =
⃒
⃒ΩO

ti

⃒
⃒ denotes the 

number of operation loops that pass through node vi ∈ VS ∪ VD ∪ VA and 
also start and end at vt.

Then the node load weight is illustrated as 

ωi =
LFi

CFi
(5) 

where CFi ∈ [0,∞) is the node capacity factor that quantifies maximum 
potential capability or efficiency of an entity to perform a specific task or 
process mission load under ideal conditions. CFi is static and determined 
a priori based on the entity’s inherent design specifications or historical 
operational data.

The node load weight represents the duration required for an entity 
to complete all assigned load. Entities on a single operation loop execute 
their mission load sequentially and independently following the 
connection order. Consequently, the running time factor of a certain 
loop is denoted as 

εi =
∑

vj∈OPi

ωj (6) 

where εi denotes the running time factors of the operation loop OPi.
A certain mission target is generally accomplished by multiple 

operation loops in parallel. The completion time should be determined 
by the loop with the longest operation duration. Therefore, the opera
tional efficiency of the target vertex vt can be expressed as 

ηt =
1

εt
max

(7) 

where ηt is the efficiency factor of vt , εt
max is the maximum running time 

factor of the operation loops targeting at vt.
The performance of RON is indicated by the number of operation 

loops weighted by efficiency, expressed as 

P =
1

NT

∑

vt∈VT

ηtgt (8) 

where NT =
⃒
⃒VT

⃒
⃒ denotes the number of target vertexes.

4. Reconfiguration-based resilience optimization

In this section, we formulate the resilience enhancement through 
reconfiguration as an optimal mathematical model that incorporates 
both resilience-oriented objective and reconfiguration constraints. 
Additionally, a solution framework for achieving resilience optimization 
is proposed.

The terms, sets, parameters and variables involved in the model are 
denoted and defined as illustrated in Table 4.

4.1. Mathematical model of reconfiguration

4.1.1. Problem description
The entities in MAS are inevitable to being disrupted due to complex 

operation environment. Reconfiguration is a critical approach that can 
dynamically adjust the network structure of MAS to adapt the disruption 
and enhance resilience. Based on the proposed RON model, the recon
figuration problem of MAS is conceptualized as the selection of appro
priate reconfiguration entities for replacement of disabled entities and 
reconnection of post-disruption topology within RON. For example, if a 
sensor entity and an actor entity in the MAS fail, causing the disruption 
of originally connected operation loops and degradation of MAS per
formance, the failed entities can be replaced by searching for appro
priate entities from the reconfiguration entities (e.g., a functioning 
sensor entity within other loop and an available actor entity in the 
resource pool), and the corresponding edges can be reconnected, 
thereby achieving the resilient recovery of the MAS, as illustrated in 
Fig. 3.

How to find the appropriate reconfiguration entities needs to be 
addressed through mathematical the programming model and optimi
zation algorithm. Furthermore, the proposed reconfigurable attributes, 
including entity redundancy, functional substitutability, load afford
ability, resource accessibility for resilience, serve as constraints of 
resilience optimization. Therefore, there are several key assumptions for 
these reconfigurable attributes as follows, which serve to abstract the 
model in a manner that ensures its universality and clarity. 

Assumption 1. Each disrupted entity of MAS has been known, and it is 
completely disabled with all of its connections severed.

Assumption 2. Each disrupted entity can be replaced by at most one 
reconfiguration entity. If both connecting entities exist, the previously 
removed links can be reconnected.

Assumption 3. Startup time of offline-reconfiguration entities has been 
known, while startup time of online-reconfiguration entities can be ignored.

Table 4 
Definition of terms, sets, parameters and variables involved in the model.

Notation Definition

Terms Я Resilience of MAS
P(t) Performance of MAS
τ Recovery time factor
δ(⋅) Reconfiguration mapping function
φ(⋅) Vertex type mapping function
NT Number of target vertexes
gt Total number of operation loops that both start and end at a 

target node
vt Target vertex
VT Set of target vertexes
OPi Operation loop
ωj Load weight of each entity

Sets VU Set of disrupted vertexes in RON,VU ⊆ (VS ∪ VD ∪ VA)

VR Set of reconfiguration vertexes in RON,VR ⊆ V
Parameters t0 Initial time when disruption occurs

te Start time of reconfiguration process
tc Startup time of reconfiguration entities
LFbefore

i
Mission load of vi before reconfiguration action,vi ∈ V

P0 Initial performance value at time t0
Pe Minimum performance before reconfiguration process at 

time te
Pb Desired performance according to load baseline

Variables Xij If vj is replaced by vi, Xij=1, otherwiseXij = 0, 
vi ∈ VR ,vj ∈ VU

rij Reachability ifXij = 1,rij ∈ {0,1}
tij Allocation time ifXij = 1 from vi to vj , vi ∈ VR,vj ∈ VU

tr Completion time of total reconfiguration process
LFafter

i
Mission load of vi after reconfiguration action,vi ∈ V

Pij IfXij = 1, Pij can be measured by Eq. (8), otherwisePij = 0
Pr Performance value at completion time tr of total 

reconfiguration process
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Assumption 4. The duration of allocation from reconfiguration entities to 
the disrupted entities has been known.

Assumption 5. The reconfiguration is implemented at a specified time, 
and the replacement for all disrupted entities are initiated simultaneously.

4.1.2. Resilience-oriented objective
Resilience serves as an indicator of reconfiguration capability, which 

can be assessed by the resilience process of RON indicated by Fig. 4. The 
selection of an appropriate resilience metric for RON is crucial for 
defining the optimization objective in the mathematical modeling of 
reconfiguration. Multiple-parameter model is a common and 
integration-based approach to assess resilience from multiple perspec
tives including recovery time, recovery volatility and recovery scale 
(Tran et al., 2017). In addition, the mission baseline serves as the 
fundamental requirement for MAS to accomplish its mission and is 
incorporated into resilience measurement as the basis for recovery tar
gets (Sun et al., 2022). In light of the aforementioned research, we 
propose the resilience measurement Я based on the load baseline 
determined by load weight, as shown in Eq. (9). 

Я =

∑tr
t=t0 min(P(t),Pb)

Pb(tr − t0)
⋅min

(
Pr

Pb
,1
)

⋅

⎡

⎢
⎣

Pe

P0
+1 − τ

(
Pr
Pb

) ⎤

⎥
⎦ (9) 

where t0 ∈ [0,∞) is the initial time when disruption occurs, te ∈ [t0,∞) is 
the start time of reconfiguration process, tr ∈ (te,∞) is the completion 
time of total reconfiguration process, τ ∈ (0,1] is the recovery time 
factor, P(t) ∈ [0,∞) is the performance at time t, P0 ∈ (0,∞) is the initial 
performance value at time t0, Pe ∈ [0,P0] is the minimum performance 
before reconfiguration process at time te, Pb ∈ (0,P0] is the desired 

performance according to load baseline, Pr ∈ [0,∞) is the performance 
value at completion time tr of total reconfiguration process and Я∈ [0,2)
increases as τ decreases and Pr increases. The recovery time factor τ is 
indicated as 

τ =
tr − te
tr − t0

(10) 

where τ accounts for normalized temporal aspects of the MAS recovery 
and the closer τ is to 1, the lower the resilience.

The performance variables in the formula of Я can be obtained by 
sampling performance data from modeling and simulation for proposed 
performance measurement in Section 2.3. The performance of load 
baseline Pb is determined as indicated by Eq. (11). 

Pb =
1

NT

∑

vt∈VT

gt

max(
∑

vj∈OPi
(ωj = 1))

(11) 

where Pb is determined when load weight of each entity is assumed to be 
1, indicating that the entity’s load capacity precisely matches its mission 
load.

Therefore, Я is designed as the maximum objective for mathematical 
model of reconfiguration, and the objective function can be represented 
as 

maximum Я = Я({Pij|i ∈ VR, j ∈ VU}, tr) (12) 

The optimization objective Я incorporates the load growth of entities 
after reconfiguration, which serves as the performance penalty for 
resilience recovery. When optimizing resilience based on reconfigura
tion, performance is required to be restored to the load baseline at least, 
and the load after reconfiguration should not be concentrated on a few 

Fig. 3. The diagram of reconfiguration scenario in RON.

Fig. 4. Resilience process of RON expressed by performance fluctuation.
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central entities.

4.1.3. Constraints of reconfigurable attributes
Due to the proposed reconfigurable attributes: entity redundancy, 

functional substitutability, load affordability, resource accessibility, 
several sets of constraints are considered in the proposed optimization 
model. 

(i) Constraint of entity redundancy indicates that disabled entities 
can be replaced by reconfiguration entities if feasible, as repre
sented in Eq. (13).

∑

i∈VR

Xij ≤ 1,∀j ∈ VU (13) 

where 
∑

i∈VR Xij ≤ 1 enforces a one-to-one replacement policy where 
feasible as illustrated in Assumption 2. 

(ii) Constraint of functional substitutability indicates that only the 
faulty entity and reconfiguration entity of the same function can 
perform reconfiguration, as represented in Eq. (14).

Xij = 1{δ(vi) = φ(vj)}, ∃vi ∈ VR, vj ∈ VU (14) 

where δ(vi) = φ(vj) indicates type of a reconfiguration entity vi is iden
tical to type of the faulty entity vj, 1{⋅} is the indicator function, 1{
δ(vi) = φ(vj)} = 1 if δ(vi) = φ(vj), otherwise 1{δ(vi) = φ(vj)} = 0. 

(iii) Constraint of load affordability ensures that the mission load of 
the faulty entity transfer to the reconfiguration entity, as repre
sented in Eq. (15).

LFafter
i = LFbefore

i + LFbefore
j , ∃i ∈ VR, j ∈ VU,Xij = 1 (15) 

(iv) Constraints of resource accessibility indicate the reconfiguration 
entity from other loops or from a shared resource pool are able to 
reach the destination of the disabled entity in a certain time, as 
represented in Eq. (16)-(17). Eq. (16) ensures that the reconfi
guration entity can reach the destination of the disabled entity 
that can be further refined if the allocation path model is estab
lished. Eq. (17) ensures that the completion time of total recon
figuration process is equal to the maximum of the allocation time 
plus by the startup time of reconfiguration entities.

rij = 1,∃i ∈ VR, j ∈ VU,Xij = 1 (16) 

tr = max{tij + tc|rij = 1, i ∈ VR, j ∈ VU} ≥ tij + tc (17) 

4.2. Optimal reconfiguration scheme generation of RON

The proposed mathematical model for reconfiguration integrates 
both the reconfigurable attributes and resilience objective of RON, 
formulated as a nonlinear mixed-integer programming problem. The 
solution of this model essentially represents the generation process of an 
optimal reconfiguration scheme, which corresponds to a dynamic 
reconfiguration mechanism based on static reconfigurable design ac
cording to different disruption conditions. For solving the reconfigura
tion model, we proposed an algorithm framework suitable for optimal 
reconfiguration scheme generation and resilience enhancement of RON 
as illustrated in Fig. 5.

The encoding and decoding of solution are essential for optimization, 
as they determine the solving difficulty and efficiency of algorithm. The 
encoding and decoding for reconfiguration are proposed based on the 
natural numbers, as shown in Fig. 6.

Set of faulty entities VU and set of reconfiguration entities VR are 
ordered sets. If the decision variableXij = 1, code of entity vj ∈ VU is 
equal to index of vi in VR, otherwise code of vj is equal to 0. The initial 
solution encoded by this approach can be generated randomly or based 
on priori knowledge of reconfiguration, while ensuring compliance with 

Fig. 5. Algorithm framework for optimal reconfiguration scheme generation.
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the proposed constraints.
The process of decoding for reconfiguration mainly consists of 

reconfiguration scheme generation, operation loop adjustment, sam
pling, performance measurement. First of all, the reconfiguration 
scheme is generated according to code sequence of reconfiguration en
tities, which represents the reconfiguration entity corresponding to a 
certain faulty entity. Then, each faulty entity is replaced by the corre
sponding reconfiguration entity and its original predecessors and suc
cessors are reconnected to the reconfiguration entity. Finally, the 
structure of RON is sampled and performance Pij is evaluated based on 
performance measurement at reconfiguration time tij +tc mapped by the 
code. The time sequence of 

{
(Pij, tij + tc)|i ∈VR, j ∈ VU,Xij = 1

}
is ob

tained supporting to the resilience assessment.
The genetic algorithm is used to search the optimal solution. These 

generate feasible solutions by employing crossover and mutation steps, 
followed by a selection step to evaluate and filter these solutions (Li 
et al., 2019). Inferior solutions are eliminated in this process, while 
superior genetic traits are effectively propagated to subsequent gener
ations in next iteration. The stagnation condition can be set as the point 
at which the optimal resilience of the superior solution no longer in
creases with further iterations.

5. Case study

The case study based on an emergency response system is provided 

to verify the feasibility, effectiveness and superiority of the proposed 
model and indicators of RON. Owing to cyclic process of perception, 
decision-making, and action, the emergency response system can detect 
and deal with the emergencies like natural and man-made accidents 
promptly and efficiently (Yang et al., 2023; Huang, 2015). The emer
gency response system can be abstract as a MAS, in which the sensor 
entities comprise on-site personnel, sensors, and Closed-Circuit Televi
sion (CCTV), among others. The decider entities encompass the alarm 
response center, command center, and emergency management bureau, 
among others. The actor entities include departments such as fire ser
vices, public security, and medical enforcement. These entities establish 
multiple operation loop based on the disposal target and functional in
terconnections, thereby forming a operation-loop network as depicted in 
Fig. 7. When a natural disaster or man-made damage causes entities to 
fail in fulfilling the response function, the operation loop may not be 
able to close and respond to the disposal targets in time. This could 
impact performance and efficiency of the entire emergency response 
system. To address this issue, the emergency response system should 
leverage its inherent mechanisms of reconfiguration to improve 
resilience.

5.1. Network establishment and resilience analysis

Based on the emergency response system of a city, this study iden
tifies key entities according to the emergency targets and services such 

Fig. 6. Encoding and decoding for reconfiguration of RON.
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as fire services, public security, medical care, traffic management, and 
other. The model of RON is then constructed by these entities. As 
depicted in Fig. 8, the RON model for an emergency response system 
consists of 9 groups of entities, encompassing a total of 36 entities.

The fluctuation of different performance indicators is obtained 
through Monte Carlo simulation of the RON model under the conditions 
of random disruption and random selection of reconfiguration entities, 
including the proposed performance measurement considering mission 
load (PMML), index of operation loop (IOL), network global efficiency 
(NGE) and network operation loop efficiency (OLE). IOL represents the 
normalized value of the number of operation loops, which is the most 
common index for networks based on operation loops (Li et al., 2017). 
NGE is defined as the average of the reciprocal hops of the shortest path 
between all pairs of nodes, and serves as a classical evaluation index in 
complex network theory (Pan and Wang, 2018). OLE is defined as the 
average of the reciprocal number of hops passed by the operation loops 
(Zhong et al., 2024). PMML is validated against established performance 
metrics via qualitative and quantitative analysis.

Furthermore, the impact of two types of independent reconfiguration 
entities (online-reconfiguration entities and offline-reconfiguration en
tities, whose quantities are respectively regarded as known fixed con
straints in the resilience optimization model) on the performance 
recovery and resilience of the MAS is analyzed, thereby providing sup
port for the resilience optimization experiments in the case.

5.1.1. Resilience analysis with offline-reconfiguration entities
The quantities of each type of offline-reconfiguration entities (map to 

S/D/A) in the resource pool are set to 0, 5, 10, 15, 20, and 25 respec
tively. The configuration of parameters is set as shown in Table 5.

Repeated tests are conducted to obtain the average values of 

performance and resilience, thereby analyzing the variations in perfor
mance metrics and their resilience under different numbers of cold- 
reconfigurable entities, as illustrated in Figs. 9 and 10.

The results indicate that the metrics of PMML, IOL, and OLE exhibit a 
resilient trend characterized by an initial decrease followed by an in
crease, whereas NGE demonstrates a contrasting trend of first increasing 
and then decreasing. This is because NGE only reflects the network’s 
performance in term of connectivity and tightness, without considering 

Fig. 7. Schematic diagram of emergency response system.

Fig. 8. RON model for an emergency response system.

Table 5 
Configuration of parameters in resilience analysis with offline-reconfiguration 
entities.

Parameter Configuration

CFi CFi is set according to the initial LFi of 
the node, i.e.LFi = CFi

tc tc is set to 1 time step
tij tij is set to the number of time steps 

that equals the absolute value of the 
difference between the entities’ 
digital numbers

Disruption model Random disruption

Offline- 
reconfiguration 
entities

Number 0, 15, 30, 45, 60, 75, respectively
Resource pool 
structure

The quantities of each type of offline- 
reconfiguration entities (map to S/D/ 
A) in the resource pool are set to 0, 5, 
10, 15, 20, and 25 respectively

Online- 
reconfiguration 
entities

Number 0
Functional- 
substitution 
relations

do not have
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the topology based on the operation loop. When nodes in the network 
are damaged, network connectivity is not immediately affected due to 
redundancy. However, the reduction in the number of nodes results in a 
decrease in network communication hops, thereby enhancing efficiency. 
In conclusion, NGE proves to be insufficient for characterizing the 
resilience properties of networks based on operation loops.

To quantitatively validate PMML against the other three perfor
mance metrics, a correlation analysis is also conducted, and the resulting 
correlation heatmap is shown in Fig. 11. The result shows that PMML is 
significantly positively correlated with typical operation loop indicators 
(i.e., OLE and IOL), while negatively correlated with NGE, confirming its 
effectiveness in capturing the performance of the operation-loop 
network. Notably, the analysis reveals an extremely high correlation 
between IOL and OLE, suggesting potential information redundancy 
between these two established metrics. In contrast, PMML, by inte
grating the mission load, provides an independent and complementary 

assessment, explaining unique variance not captured by IOL/OLE alone.
The recovery effect of the reconfiguration on the IOL and OLE is 

greater than the impact of the damage, resulting in higher resilience. 
This is because these two indicators demonstrate that reconfiguration 
can be achieved without incurring additional costs, especially online- 
reconfiguration entities are selected to replace the faulty ones, the 
number of operation loops will exceed the number before the damage 
occurred. For instance, an emergency response system comprising two 
target entities, two sensor entities, two decider entities, and two actor 
entities establishes the RON model as illustrated in Fig. 12. This model 
has 1 and 2 operation loops for T1 and T2, respectively. If S2 fails, the 
reconfiguration entity selects the sensor entity S1 that has an identical 
function, as a substitute. Owing to the sensing effect of S1 on T2, two 
new loops, T2-S1-D1-A1-T2 and T1-S1-D2-A1-T1, have been introduced. 
Currently, the network consists of five operation loops, which is a result 
of the increased number of operational loops due to offline- 

Fig. 9. Performance fluctuation under different quantity of offline-reconfiguration.

Fig. 10. Resilience under different quantity of offline-reconfiguration.
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reconfiguration.
Theoretically, this effect becomes more pronounced when the 

network model is more complex and features a higher density of links 
between operation loops. If it is assumed that all failed entities opt for 
offline-reconfiguration entities for reconfiguration, the number of 
operational loops will remain unchanged, and both the IOL and OLE 
should be restored to their initial states. In terms of the number of 
operational loops, online-reconfiguration entities exert a more signifi
cant influence on network performance recovery compared to offline- 
reconfiguration entities. However, this is unfavorable for reconfigura
tion scheme generation and resilience design of the emergency response 
system, as it tends to create a more compact structure where fewer en
tities possess a higher number of connected edges, leading to a con
centration of mission load.

From the resilience results based on PMML in Fig. 10, it is evident 
that that adding offline-reconfiguration entities can enhance resilience 
to a certain extent. This is because the probability of a faulty entity 
randomly selecting an offline-reconfiguration entity for reconfiguration 
increases. Additionally, since the offline-reconfiguration entity does not 
participate in other operation loops, its initial mission load is zero. 
Consequently, a higher number of offline-reconfiguration entities can 
lead to greater performance improvements. However, given the random 
reconfiguration scheme employed in this experiment and the extended 
reconfiguration time required for offline-reconfiguration entities, the 
increase in the number of offline-reconfiguration entities does not 
significantly enhance resilience. Furthermore, the recovery process of 
the performance curve exhibits a downward convex trend due to the 
time needed for offline-reconfiguration entities to allocate resources and 
activate.

However, the resilience results using IOL and OLE as indicators fail to 

account for the influence of offline-reconfiguration entities on perfor
mance recovery, and even show an obvious trend of resilience decline 
with the increase of the number of offline-reconfiguration entities. This 
is because a higher participation of cold-reconfigured entities in the 
reconfiguration process implies that fewer existing entities are likely to 
undergo offline-reconfiguration, thereby resulting in a reduced number 
of reconnected operational loops.

5.1.2. Resilience analysis with online-reconfiguration entities
To analyze the impact of the number of hot-reconfigurable entities 

on recovered performance and resilience, various functional redun
dancy relationships are established. For instance, the relationship be
tween the sensor entity and the decider entity indicates that the sensor 
entity possesses a certain level of decision-making capability and can 
functionally substitute for the decider entity when necessary. This type 
of relationship is prevalent in emergency response systems. For example, 
some networked CCTV cameras are equipped with edge computing ca
pabilities and can perform basic information processing, enabling them 
to make timely decisions based on perceived data. The number of online- 
reconfiguration entities with functional substitution in the model is set 
to 0, 9, 18, 27, 36, and 45, respectively. The configuration of parameters 
is set as shown in Table 6.

The average values of performance and resilience are obtained by 
Monte-Carlo simulation, and the performance fluctuation and resilience 
under different numbers of online-reconfiguration entities are analyzed, 
as shown in Figs. 13 and 14. The result of correlation analysis among 
each indicator is shown in Fig. 15.

From the results of network resilience, the resilience expressed by 
IOL and OLE shows a trend of increasing with the increase of the number 
of online-reconfiguration entities, which is exactly the opposite of the 

Fig. 11. Correlation analysis of performance measurements.

Fig. 12. An example of an offline-reconfiguration process for RON.

Table 6 
Configuration of parameters in resilience analysis with online-reconfiguration 
entities.

Parameter Configuration

CFi CFi is set according to the initial LFi of 
the node, i.e.LFi = CFi

tc tc is set to 1 time step
tij tij is set to the number of time steps 

that equals the absolute value of the 
difference between the entities’ 
digital numbers

Disruption model Random disruption

Offline- 
reconfiguration 
entities

Number 0
Resource pool 
structure

do not have

Online- 
reconfiguration 
entities

Number The number of online-reconfiguration 
entities with functional substitution in 
the model is set to 0, 9, 18, 27, 36, and 
45, respectively

Functional- 
substitution 
relations

The S-D, D-A, and S-A entities can 
functionally replace each other.
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results shown in the previous experiment, and also due to the effect of 
the increase of the operation loops caused by the offline-reconfiguration 
operation. However, the resilience trend of PMML does not change 
significantly with the increase of the number of online-reconfiguration 
entities. This further highlights the rationality of PMML, as the “curse” 
of load significantly undermines the effectiveness of recovery resulting 
from the offline-reconfiguration operation. If indicators such as the 
number of operation loops are employed as criteria for evaluating 
resilience, the positive resilience design of MASs, such as emergency 
response systems, will likely favor a tight structure. This, in turn, may 
result in the emergence of central entities responsible for encompassing 
all missions. If these entities are attacked or interfered with, the MAS is 
likely to lose its fundamental capabilities, making such a system inevi
tably vulnerable (Ma et al., 2022).

5.1.3. Sensitivity analysis
To further verify the rationality of PMML, a sensitivity analysis of 

configuration has also been conducted in this experiment, as shown in 
Fig. 16.

The results indicate that the influence of both the number of offline- 
reconfiguration entities and the number of online-reconfiguration en
tities on resilience based on PMML does not exhibit significant bias. 

Specifically, the sensitivity of the number of offline-reconfiguration 
entities is approximately zero, while an increase in the number of 
online-reconfiguration entities has a minor impact on resilience. How
ever, the sensitivity analysis for both IOL and OLE demonstrated a clear 
trend: the sensitivity of the number of online-reconfiguration entities is 
positive and greater than that of the number of offline-reconfiguration 
entities, which is negative. The reason lies in the fact that the IOL and 
OLE indexes fail to account for the load increase resulting from offline- 
reconfiguration. In contrast, the PMML index achieve an evaluation 
balance between workload distribution and the number of operation 
loops, ensuring that the resilience of the random reconfiguration scheme 
remains relatively stable regardless of the number of reconfiguration 
entities configured within the emergency response system. This is 
consistent with the practical utility of various reconfiguration entities, 
which indicates that reconfiguration is subject to constraints and entails 

Fig. 13. Performance fluctuation under different quantity of online-reconfiguration.

Fig. 14. Resilience under different quantity of online-reconfiguration.

Fig. 15. Correlation analysis of performance measurements.
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associated costs. On the one hand, this highlights the advantages of 
PMML in assessing the performance of heterogeneous MASs based on 
operational loops, such as emergency response systems. On the other 
hand, it reveals the limitations of the random reconfiguration. There
fore, it is essential to investigate more optimal reconfiguration schemes, 
as well as advanced methods for generating such schemes.

5.2. Reconfiguration scheme generation and resilience optimization

In the aforementioned experiments, the random reconfiguration 
scheme demonstrated inadequate recovery effect on the emergency 
response system. Consequently, a more effective reconfiguration scheme 
is required to enhance and optimize the resilience of the emergency 
response system. This study validates the feasibility and effectiveness of 
the proposed method by comparing common reconfiguration schemes 
with the optimized reconfiguration scheme generated through the 
optimal reconfiguration scheme generation method, thereby providing 
guidance for the reconfiguration of the emergency response system. The 
settings of optimal reconfiguration scheme generation method are 
shown in Table 7.

5.2.1. Reconfiguration scheme generated by different methods
In this experiment, we compare the performance fluctuation of RON 

under common reconfiguration schemes against the optimized reconfi
guration scheme based the proposed method, as depicted in Fig. 17. 
Common reconfiguration schemes include random reconfiguration 
scheme, online-prior reconfiguration scheme, offline-prior reconfigura
tion scheme and greedy-based reconfiguration scheme. Online-prior 
reconfiguration scheme represents that the faulty entities prefer the 
nearest online-reconfiguration entities for reconfiguration (Chen et al., 
2023). On the contrary, faulty entities preferentially select offline- 
reconfiguration entities to replace in the offline-prior reconfiguration 
scheme. Moreover, the greedy algorithm operates on the principle of 

selecting, for each faulty node, an alternative node that minimizes 
reconfiguration time while maximizing the potential improvement in 
current performance of RON.

It is evident that the RON model reconfigured according to the 
optimal reconfiguration demonstrates superior performance recovery, 
with its resilience surpassing that of other schemes. Among the common 
reconfiguration schemes, the RON under the online-prior reconfigura
tion scheme exhibits the fastest performance recovery. This is because 
online-reconfiguration does not take into account allocation time and 
activation time. Therefore, the RON has higher resilience at the begin
ning of reconfiguration, but owing to the online-reconfiguration en
tities’ increasing workload, the recovered performance is lower at the 
end of reconfiguration. In contrast, performance of RON under the 
offline-prior reconfiguration scheme initially recovered slowly but 
eventually reached a higher level.

Generally, a GA exhibits polynomial-time complexity, primarily 
determined by population size, chromosome length, the number of it
erations, and the costs of selection, crossover, and mutation operations. 
In the proposed framework, however, the complexity is significantly 
higher due to the scale of the network reconfiguration problem, espe
cially in large-scale settings. The expanded decision space for reconfi
guration necessitates longer chromosomes, and the fitness evaluation 
involves computationally intensive steps such as performance and 
resilience assessment considering mission load. Consequently, the 
overall computational complexity of the proposed framework is higher 
compared to a GA applied to simpler problems, and the actual runtime is 
also longer.

Furthermore, the greedy algorithm can produce a relatively high- 
quality solution within a short computational time. However, owing to 
its short-sighted nature, it makes locally optimal decisions at each step 
without taking global optimality into account. Consequently, the 
reconfiguration scheme generated based on the greedy algorithm is 
generally inferior to that based on GA, although GA typically requires 
longer computation times.

5.2.2. Resilience optimization based on different performance measure
This case also carried out a comparative experiment on the genera

tion of optimal reconfiguration schemes with different resilience- 
oriented objectives, utilizing IOL, OLE, and PMML as performance pa
rameters, respectively. This experiment demonstrates the superiority of 
PMML in reconfiguration optimization and resilience enhancement for 
the emergency response system, as shown in Fig. 18. It is clear that the 
optimal reconfiguration scheme based on PMML achieves the most 
effective performance recovery and exhibits the highest level of 
resilience.

Based on this experiment, the network topology of RON after 
reconfiguration guided by different schemes is also analyzed. It is 

Fig. 16. Sensitivity analysis.

Table 7 
Settings of optimal reconfiguration scheme generation method.

Component of GA Setting

Encoding The proposed encoding for reconfiguration based on the 
natural numbers

Initialization Random initialization
Selection operator Combination of the binary tournament method and the 

retention of the elite strategy
Crossover operator Partially Matched Crossover
Mutation operator Adaptive mutation operator
Population size 200
Termination 

condition
Fitness stagnation of the optimal solution
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observed that the reconfiguration scheme based on IOL tends to form a 
network topology containing central nodes (i.e., nodes with greater 
centrality, such as nodes D4 and A2, as shown in Fig. 19 and Table 8. The 
finding aligns with the experimental analysis and assumption proposed 
in Section 4.1.1.

Strong connectivity serves as a critical metric for evaluating the 
connectivity of a directed graph. It denotes the presence of bidirectional 
paths between any two nodes within the graph. The robustness of a 
digraph can be assessed by analyzing changes in strong connectivity 
upon the removal of specific nodes or edges (Artime et al., 2024). We 
carried out high-degree node removal on the reconfigured network 
based on IOL, OLE and PMML respectively. Our analysis revealed that 
the maximum sizes of the strongly connected components for the three 
networks were initially 28, 27, and 28, respectively, indicating relatively 
similar disparities. However, following the removal of the high-degree 
nodes, the sizes of the largest strongly connected components changed 
to 19, 20, and 23 respectively, as presented in Table 9. This indicates 
that the network structure reconfigured according to the PMML-based 
resilience objective exhibits greater robustness, thereby further 

validating the superiority of the PMML measurement.

6. Findings and discussion

In this section, we have explicitly answered each of our research 
questions and elaborated on its managerial implications in sequence, 
providing clear and actionable insights for practitioners regarding.

Firstly, we developed the RON model based on the operation loop 
composed of sensors, deciders, and actors in MAS. This model encom
passes four reconfigurable attributes: entity redundancy, functional 
substitutability, load affordability, and resource accessibility. For man
agers, these attributes serve as a practical checklist for resilience- 
oriented design. In practice, it is recommended to proactively plan 
these attributes during the system design phase. For instance, as 
demonstrated in the Case Study, well-planned reconfigurable attributes 
can significantly improve the resilience of an emergency response sys
tem. The RON model provides a foundation for both evaluating and 
optimizing MAS resilience, thereby assisting managers in formulating 
effective enhancement plans. Furthermore, it enables a modular design 

Fig. 17. Comparison of different reconfiguration schemes.

Fig. 18. Comparison of optimal reconfiguration schemes based on different performance metrics.

Y. Dang et al.                                                                                                                                                                                                                                    Computers & Industrial Engineering 214 (2026) 111836 

15 



approach for MAS. Managers can also integrate this model with pre
dictive technologies (e.g., multi-agent simulation, deep reinforcement 
learning) to proactively allocate resources or implement reconfiguration 
measures against potential risks, shifting from reactive recovery to 
preventive resilience enhancement.

Subsequently, we proposed a performance measurement and a multi- 
parameter resilience metric based on node-load centrality, which con
siders mission load during reconfiguration. Compared to conventional 
metrics (e.g., number of operation loops, global efficiency) that neglect 
load variations and may inadvertently encourage centralized, load- 
imbalanced structures, our measurement balances workload distribu
tion and operational capacity. This provides managers with a more ac
curate tool for decision-making. Specifically, managers can use this 

metric to: (1) objectively compare the resilience of different system 
configurations or design proposals, and (2) make informed trade-offs 
between the level of resilience achieved and the associated costs of 
resource consumption and agent workload. Prioritizing this balance is 
crucial for sustainable and efficient resilient design.

Furthermore, we presented a framework for generating optimal 
reconfiguration schemes. Its feasibility and effectiveness are verified in 
the Case Study, where it produced schemes with superior resilience and 
post-reconfiguration robustness. For implementation, managers should 
consider the choice of optimization paradigm. The centralized optimi
zation framework ensures global optimality and is suitable for scenarios 
requiring efficient, pre-planned decisions. However, managers must be 
aware of its risk: a single point of failure at the decision center. In 
contrast, for systems operating in highly complex and uncertain envi
ronments where decision robustness is paramount, a distributed or 
decentralized framework leveraging swarm intelligence is advisable, as 
it eliminates the central point of failure. The choice depends on the 
specific trade-off between optimality and robustness that the opera
tional context demands.

7. Conclusion

With the increasing complexity and interconnection, the MAS is 
susceptible to collapse, which leads to the decline of the operation 
performance and the loss of personnel and social property. In order to 
ensure the continuous and stable operation of MAS and rapid recovery 
after damage, reconfiguration-based resilience enhancement has 
become a widely adopted practice. Aiming to address the challenge of 
reconfigurable design and resilience enhancement for MAS, the main 
conclusions of our work can be summarized as follows: (i) the RON 
model is developed based on the operation loop composed of sensors, 
deciders, and actors, which incorporates reconfigurable attributes and 
constraints of MAS; (ii) a performance measurement and a multi- 
parameter resilience metric are proposed based on node-load central
ity considering mission load during reconfiguration; (iii) the framework 
for generating the optimal reconfigurable scheme of RON is presented, 

Fig. 19. Topology of RON under different optimal reconfiguration schemes.

Table 8 
Network centrality of central nodes under different optimal reconfiguration 
schemes.

IOL-optimal 
reconfiguration

OLE-optimal 
reconfiguration

PMML-optimal 
reconfiguration

No. Node Centrality Node Centrality Node Centrality

1 D4 0.113 D5 0.087 S4 0.087
2 A2 0.0956 A2 0.087 A7 0.087
3 S2 0.087 A4 0.0696 S1 0.0696
4 A7 0.0782 S1 0.0696 A2 0.0696
5 S4 0.0609 D4 0.0609 D4 0.0696

Table 9 
Robustness of reconfiguration optimization scheme based on different perfor
mance metrics.

Reconfiguration scheme Maximum strongly connected component size

Before node removal After node removal

IOL-optimal reconfiguration 28 19
OLE- optimal reconfiguration 27 20
PMML- optimal reconfiguration 28 23
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mainly including the resilience-oriented objective, the constraints of 
reconfigurable attributes, the encoding and decoding for reconfigura
tion, and the optimization algorithm.

The RON model and reconfigurable attributes can facilitate the 
resilient design of MAS in practical. offers a framework for resilience 
research on MAS, which supports resilience evaluation and optimization 
and assists decision-makers and managers in formulating a resilience 
enhancement plan for MAS. Additionally, the proposed performance 
measurement and resilience metric achieve an evaluation balance be
tween mission load distribution and the number of operation loops, 
ensuring the accuracy of resilience assessment for MAS. This can assist 
managers in comparing the resilience and making decisions regarding 
the resilient design of MAS. Moreover, the optimal reconfiguration 
scheme generated by the proposed optimization framework enables 
MAS to attain greater resilience and robustness compared to other 
schemes in practical scenarios.

However, our study still has deficiencies in the objectives, con
straints, and algorithms of reconfiguration-based resilience optimiza
tion. Additionally, the RON model is a deterministic model that does not 
take uncertainty into account, weakening the model’s applicability to a 
certain extent. Future research will systematically incorporate economic 
cost, energy, and personnel load into the multi-objective optimization of 
resilience to conduct a reconfigurable design of MAS. In addition, the 
application of intelligent learning algorithms such as RL and DL can 
better solve the problems of decentralized reconfiguration and proactive 
preventive reconfiguration in complex and uncertain environments. 
Furthermore, given the continuous and unpredictable nature of 
disruption, resilience enhancement based on reconfiguration is no 
longer achieved in a single effort but rather through a series of consec
utive and iterative processes along with disruption. Thus, there is a need 
to explore more complex and precise reconfigurable design.
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