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Multi-agent systems (MAS), as a representative complex system, have become crucial for analyzing cluster and
heterogeneous behaviors in various domains such as biology, social science, military weapon and manufacturing.
The MAS exhibits adaptability to environmental changes and can dynamically reconfigure its structure to
enhance resilience while reducing vulnerability. However, existing research primarily focuses on proposing
reconfiguration strategies to enhance resilience but lacks in-depth exploration of reconfigurable design and
capability constraints. The study proposes a reconfigurable operation-loop network (RON) model for resilience
analysis and reconfigurable design of MAS based on the operation loop. Subsequently, the performance mea-
surement and resilience metric are presented for RON considering mission load. Furthermore, the mathematical
model and optimization framework of reconfiguration are established with the consideration of reconfigurable
attributes and the resilience objective. Finally, the feasibility, effectiveness, and superiority of the proposed
models and metrics are illustrated through extensive experiments on case based on an emergency response
system. Numerical results demonstrate that the performance metric considering mission load contributes to a
more accurate assessment of RON resilience than conventional network metrics. This work could yield valuable
insights for the reconfigurable and resilient design of MAS, while providing guidance and serving as a reference

for future research efforts.

1. Introduction

Multi-agent system (MAS) is a class of complex systems that exem-
plify both natural and socio-technical systems, including colonies (You
and Liu, 2024), unmanned aerial vehicle (UAV) swarms (Zhou et al.,
2024), equipment systems of systems (SoS) (Sun et al., 2022), decen-
tralized autonomous manufacturing (Leng et al., 2023) among others.
Each agent within the MAS represents an independent entity, equipped
with distinct modular functionalities designed to fulfill specific mission
requirements for perception, decision-making, and execution (Li et al.,
2021). With the development of network information technology and
artificial intelligence (AI) technology, MAS has been empowered with
the interconnection and autonomous capability. Heterogeneous agent
swarms can not only autonomously perceive, make local decisions and
execute rapidly, but also achieve a closed loop of collaborative operation
from perception to decision-making and then to execution for the target
through network communication. Especially in the manufacturing field,
within the context of Industry 5.0, the decentralized and autonomous

manufacturing paradigm based on blockchain technology provides a
decentralized and distributed approach for the implementation of the
autonomous and collaborative behaviors of MAS (Leng et al., 2023). The
closed-loop work flow of heterogeneous MAS aiming at a target under
network interconnection conditions is defined as the operation loop
(Pan et al., 2019). It models and abstracts the distributed collaborative
working process of heterogeneous agents. A target can potentially have
multiple parallel loops, which leads to the complex interconnection
structure within MAS.

Due to the increasing complexity and interconnection, MAS exhibit
heightened vulnerability exposed to the risks from internal faults as well
as external disruption and interference. Traditional anti-interference
and reliability methods are difficult to adapt to dynamic risks and
disturbance conditions, especially in fields such as intelligent trans-
portation (Pan et al., 2022), unmanned equipment swarms (Hu et al.,
2025), and decentralized manufacturing (Leng et al., 2023), which
emphasize the distributed and autonomous collaboration of agents.
Passive resistance and redundancy measures alone are insufficient to
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fulfill the requirements of flexibility and self-organization of MAS.
Consequently, resilience-oriented methods are proposed to mitigate the
disturbances and risks and enhance robustness and recoverability of
MAS (Li et al., 2023). Resilience, defined as a system’s ability to absorb
impacts and maintain the stable operation following exposure to
disruptive events, is a critical concept in the study of sustainable sys-
tems, such as ecological, social and engineering systems (Ouyang and
Wang, 2015; Liu et al., 2022; Leng et al., 2025). Resilience of MAS un-
derscores the measures that ensure reliable and continuous operation
based on flexible configuration, dynamic behavior and interactions
among entities (Hu et al., 2025).

Reconfiguration serves as a typical resilient recovery strategy and
represents a key manifestation of resilience in MAS (Chen et al., 2023).
Reconfiguration has received considerable attention in research on
enhancing the resilience of MAS. For unmanned equipment swarms,
reconfiguration is an adaptive control method that adjusts formation in
response to the environment, which helps enhance the resilience of the
swarms (Feng et al., 2022; Shao et al., 2023). For networks, reconfigu-
ration refers to the reconnection of network nodes to search for the
optimal topological structure under specific disturbances (Shan et al.,
2021). For decentralized manufacturing, reconfiguration is regarded as
the real-time adjustment capability and approach of the manufacturing
system in response to frequent disturbances (such as equipment failures
and order changes), maintaining system stability by reallocating pro-
duction tasks and optimizing resource paths (Leng et al., 2024).

However, recent research considers reconfiguration as a resilience-
enhancement strategy rather than a designable attribute of MAS.
Furthermore, mission load is seldom taken into account in the reconfi-
guration of MAS, leading to inaccuracy in resilience evaluation. There-
fore, the research questions can be summarized as follows:

(i) Reconfigurable operation-loop network modeling of MAS.
(ii) Performance and resilience evaluation considering mission load
of MAS.
(iii) Reconfiguration-based resilience optimization of MAS.

This work aims to address the above-mentioned questions and
challenges of reconfigurable design and resilience evaluation for MAS.
The main contributions of this study are summarized as follows:

(i) Reconfigurable operation-loop network (RON) model is proposed
and designed based on the operation loop composed of sensor,
decider, actor in MAS. The model comprehensively considers the
reconfigurable attributes, including entity redundancy, func-
tional substitution, load affordability and resource accessibility,
which provides support for resilience design of MAS.

(ii) A performance measurement and a multi-parameter resilience
metric for RON are developed based on node-load centrality
considering mission load during reconfiguration. This resilience
metric can effectively describe the resilience of the MAS and
provide resilience optimization targets for the reconfiguration
model.

(iii) The proposed model and metric support the optimal mathemat-
ical model of reconfiguration, and a framework for optimal
reconfigurable scheme generation of RON is provided, mainly
including resilience-oriented objective, constraints of reconfig-
urable attributes, encoding and decoding for reconfiguration, and
optimization algorithm.

The remainder of this paper is organized as follows. A comprehensive
literature review on resilience measurement and reconfiguration is
provided in Section 2. In Section 3, brief definitions, network model, and
performance measurement of RON are introduced. The proposed resil-
ience metric considering mission load and model framework of optimal
reconfiguration are presented in Section 4. The case study is presented to
verify the proposed model in Section 5. Section 6 answers research
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questions and discusses our findings. Finally, concluding remarks and
future work are presented in Section 7.

2. Literature review

In this section, a comprehensive review of the current research is
conducted from two aspects: resilience measurement and resilience
enhancement. The contributions and limitations of the existing research
are demonstrated to reinforce the purpose and motivation of this paper.

2.1. Resilience measurement

Resilience refers to the capacity of systems to absorb disturbances,
and is measured by an indicator that quantifies the magnitude of per-
turbations a system can withstand while maintaining a given steady
state. Originally introduced by Holling in the field of ecology, this
concept has since gained broad application across disciplines (Holling,
1973).

The resilience measurement is the cornerstone for resilience
enhancing and design, which determine the choice of enhancement
measures and design of structure (Kakadia and Ramirez-Marquez, 2020;
Guo et al., 2020). Performance is normally the measurement of a MAS to
efficiently operate in function, usually obtained from actual system
operations and modeling and simulation. Quantitative assessment of
resilience relies on the time function of performance, mainly divided
into quotient and integral resilience models (Cheng et al., 2022). The
quotient resilience model depicts the ratio of recovered performance to
lost performance. Resilience triangle model is the well-known metric of
integral resilience, where the performance of the disrupted system is
compared to desired performance by integrating over time. With the
consideration of comprehensive assessment for resilience, the multi-
parameter model is proposed based on the factors of system perfor-
mance, recovery, absorption, volatility, and recovery time. A variety of
modified resilience metrics based on multi-parameter models are
developed for diverse scenarios within MAS, such as UAV swarm and
equipment SoS. Resilience is regarded as being independent of robust-
ness in the manufacturing domain. The former refers to the ability of a
system to maintain or quickly recover to a stable state during and after a
major mishap under severe disruptions or in the presence of continuous
significant stresses, while the latter refers to the system’s capacity to
absorb frequent disturbances with minimal impact on system perfor-
mance. Therefore, the quantitative assessment of resilience should focus
on situations where there are significant fluctuations in manufacturing
system performance. Table 1 summarizes the related general resilience
measurements used in previous studies.

Since these resilience metrics significantly contribute to the resil-
ience analysis and optimal design for reconfiguration of MAS, they
inadequately consider reconfigurable attributes and resilience con-
straints, especially insufficient recovered performance caused by
mission-load during reconfiguration.

2.2. Resilience enhancement and reconfiguration

Research on resilience-enhancing measures has primarily focus the
two prospective: pre-failure resistance and post-failure recovery. As for
pre-failure resistance, allocating redundant entities and interconnection
is the widely adopted approach to enhance resilience of MAS, as derived
from traditional reliability theory (Li et al., 2020). Critical entities
protection exerts a pivotal influence on robustness and resilience of MAS
as well. Pre-failure resistance is a proactive resilience enhancement
strategy that relies on predictive design and adaptive learning to build a
defense line for the system before disturbances and damages occur. For
instance, in the context of Industry 5.0, deep learning (DL) and neural
networks are frequently employed to predict equipment deterioration,
thus transforming equipment maintenance practices from reactive re-
pairs to proactive interventions.
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Table 1
Related resilience measurements.
Reference Year Resilience measurement Applicablescenario
Luo (Luo and 2002 Duration of the hazard and Infrastructure
Yang, 2002) recovery periods resilience
Bruneau ( 2003  Performance integrating over Infrastructure
Bruneau et al., time resilience
2003)
Lloret (Lloret 2011  Ratio of performance at the Ecological resilience
et al., 2011) time of maximum loss to
initial performance
Henry (Henry 2012  Ratio of recovered Network resilience
and performance to degraded
Emmanuel, performance
2012)
Torabi (Torabi 2015  Time-weighted sum of the lost =~ Manufacturing
et al., 2015) capacity recovered by the resilience
resilience strategies
Tran (Tran et al., 2017 Piecewise function including Network resilience

2017) multiple parameters of system
performance, recovery,
absorption, volatility, and
recovery time

Zou (Zou and 2019  Weighted sum of recovered Infrastructure
Chen, 2019) performance and degraded resilience
performance
Dhulipal ( 2020  Ratio of the performance Infrastructure
Dhulipala and integral over a time period resilience
Flint, 2020) and the length of the period
Bai (Bai et al., 2020 Modified function based on Network resilience
2020) multi-parameter models of
Tran
Sun (Sun et al., 2022 Multi-parameter function Network resilience
2022) based on mission baseline
Chen (Chen 2023  Weighted sum of resistance, Network resilience
et al., 2023) adaptability, and recovery
factors
Leng (Leng et al,, 2023  Resilience triangle model Manufacturing
2025) under large performance resilience
fluctuations

Our study 2025  Multi-parameter function Network resilience
considering mission load

during reconfiguration

Furthermore, dynamic models of MAS response to disruption and
attack are commonly studied with a consideration of uncertain and
unpredictable environment. Effective restoration strategies for MAS can
enhance both the speed of recovery and post-restoration performance
(Pan et al., 2022). Programming models serve as conventional meth-
odologies for generating recovery strategies, primarily by formulating
the mathematical model of resilience optimization objectives and con-
straints based on actual disruption information and state of system.
Additionally, the cost of resilience enhancement can not only be
regarded as a fixed constraint but also as a trade-off factor in the design
of system resilience (Zhang et al., 2021; Yousefi et al., 2019). In response
to the emphasis on human-centricity and sustainability in the EU’s In-
dustry 5.0 White Paper, the resilience optimization problem can be
extended to a multi-objective optimization problem aiming to maximize
resilience, minimize resource consumption, and minimize the decision-
making burden on personnel (Leng et al., 2024).

Moreover, reinforcement learning (RL) is considered a promising
approach for addressing sequential recovery decisions in MAS without
prior knowledge or a predefined model. RL enables continuous inter-
action with the disturbance environment and facilitates the self-
recovery of MAS from a global perspective.

Reconfiguration is a kind of dynamic and spontaneous process aimed
at post-failure recovery, which has garnered significant attention in the
research on resilience enhancement of MAS (Zhao et al., 2023).
Reconfiguration in MAS denotes its intrinsic capability to dynamically
adapt its architecture in response to disruption. Such reconfiguration
processes aim to re-instantiate a coordinated architecture that simulta-
neously addresses emergent operational demands and preserves
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systemic efficiency under dynamic constraints (Zhao et al., 2019). The
current research studies several practical reconfiguration strategies for
resilience enhancement. The formation reconfiguration strategies are
proposed for cluster system, such as UAV swarms, to achieve the resil-
ience optimization in the face of stochastic disruptions. For MAS with
abundant connection, the remaining entities can be reconnected to form
a new topology structure through the strategy of network reconstruc-
tion. Multiple MAS can share entities with same function to perform
their respective missions, enabling distinct MAS ensembles to coalesce
into an integrated MAS architecture. Furthermore, the decentralized
reconfiguration strategy based on blockchain technology has been pro-
posed. When an entity fails, adjacent entities can automatically nego-
tiate the redistribution of tasks through predefined contract rules
without the need for permission from the control center. The decen-
tralized reconfiguration strategy incurs a certain performance cost but
offers considerable resilience and data privacy (Leng et al., 2024).
Table 2 summarizes the related resilience enhancing methods in previ-
ous studies.

MAS represents a complex adaptive system wherein reconfiguration
is an intrinsic and fundamental mechanism (Shan et al., 2021), rather
than merely a strategic approach. Although previous studies have suc-
cessfully enhanced resilience through reconfiguration strategies, they
have not adequately illustrated the inherent reconfigurable character-
istics that enable MAS to maintain stable and resilient operations under
disturbances (Chen et al., 2023). Notably, there is a lack of a network
model specifically designed to capture the reconfigurable characteris-
tics, which would illuminate both its internal reconfiguration mecha-
nisms and capability constraints. The reconfigurable attributes of MAS
constitute the cornerstone of its resilience. To comprehensively and

Table 2
Related resilience enhancing methods.

Reference Year Resilience enhancing method Applicable

scenario

Liu (Liu et al., 2024) 2024 Critical entities protection Pre-failure

resistance
Li (Li et al., 2020) 2020  Dynamic response to disruption Pre-failure
and attack in uncertain and resistance
unpredictable environment

Leng (Leng et al., 2025  Reserve backup equipment, Pre-failure
2025) buffer inventory or dual supply resistance

chains in system design to ensure

that local failures do not spread
Leng (Leng et al., 2024 By training predictive models Pre-failure

2024) through federated learning, the resistance
risk of equipment failure can be

identified in advance,

preventative maintenance

instructions can be triggered

Leng (Leng et al., 2024 RL agent learns the optimal Pre-failure
2024) scheduling strategy, avoiding resistance
resource conflicts or bottlenecks
in advance.
Almoghathawi ( 2019  Recovery strategies generation Post-failure
Almoghathawi based on programming models recovery
et al., 2019)

Sun and Tan (Tan 2024  Self-recovery strategy based on Post-failure
et al., 2024) RL recovery
Feng (Feng et al., 2022  Formation reconfiguration Post-failure
2022) strategies to achieve the recovery

resilience optimization in the
face of stochastic disruptions
Tran (Tran et al., 2015  Network reconstruction Post-failure
2015) strategies to form a new recovery
topology structure
Chen (Chen et al., 2024  Entities share with same Post-failure
2024) function enable the recovery
reconfiguration
Our study 2025  Reconfigurable attributes Post-failure

modeling and reconfiguration-
based resilience optimization

recovery
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fundamentally elucidate the resilience, it is essential to augment the
relevant reconfigurable attributes from a modeling perspective, thereby
providing the theoretical support for resilience optimization and design
of MAS.

3. Network modeling and assessment

In this section, the RON model of MAS is proposed based on the
conception of reconfigurable operation loop, and then the performance
measurement with a consideration of mission load is presented for
resilience evaluation and optimization.

3.1. Reconfigurable operation loop

Perception, decision-making, and execution constitute essential
functions that are pervasive across biological and automated systems.
MAS can be regarded as consisting of a multitude of entities equipped
with perception, decision-making, and action capabilities (Pan et al.,
2019; Ling et al., 2005). To accomplish the specific mission, the entities
responsible for perception, decision-making, and action constitute a
closed operation loop aiming at the target entity of mission, as illus-
trated in Eq. (1) (Li et al., 2021):

T-S—>D—A—T (€3]

where S, D, and A represents the sensor entities, decider entities, actor
entities in MAS, respectively, while T denotes the target entities that
MAS aims to achieve.

MAS is a complex adaptive system characterized by its resilience,
which enables it to dynamically adjust its structure and functional re-
lationships to adapt to varying tasks and environmental conditions (Guo
et al, 2017; Mohd Subha and Mahyuddin, 2021). This dynamic
adjustment, referred to as reconfiguration, is the process and capability
by which an MAS maintain stable operation and accomplish mission,
particularly it can replace damaged entities with either remaining or
newly introduced entities to form a new closed loop that satisfies specific
targets.

Reconfiguration of MAS can be regarded as the replacement of
disabled entities (Sun et al., 2024). Consequently, the conception of
reconfiguration entity can be established, representing the replacement
entities with similar function of disabled entities. As shown in Fig. 1,
reconfiguration entities are capable of substituting for the disabled en-
tity to perform similar function, thereby establishing a new operation
loop. The operation loop that possesses reconfiguration entities is
defined as reconfigurable operation loop. Reconfiguration entities can
be categorized into offline-reconfiguration entities and online-
reconfiguration entities. Offline-reconfiguration entities refer to spare
reconfiguration entities that provide similar functionality through either
a dedicated backup or from a shared resource pool. The reconfiguration
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process for offline-reconfiguration entities necessitates additional
attention to their startup time. In contrast, online-reconfiguration en-
tities are in-service reconfiguration entities that possess redundant and
analogous functions within the same loop or different operation loops.
Replacing a faulty entity with an online-reconfiguration entity increases
the workload on this reconfiguration entity.

Offline and online reconfiguration entities serve as the physical
foundation for reconfiguration, while the functions and capabilities of
these entities constitute the logical conditions for reconfiguration. From
the perspectives of the physical basis and logical conditions, four types
of reconfigurable attributes are systematically summarized as follows
and Table 3 (Uday and Marais, 2013).

As the reconfiguration entity is the basic unit and essential resource
of reconfiguration, ensuring entity redundancy is essential, as it is
precondition of reconfigurability. In cases where inherent redundancy
within an operation loop is inadequate, it is crucial to ensure a sufficient
supply of accessible alternative resources available to support the
reconfiguration process. Additionally, the logical condition for recon-
figurable entities indicates that they exhibit equivalent functionality to
disabled entities, while the capacity of these entities, particularly online
reconfiguration entities, is sufficient to accommodate the load of the
disabled entities. Therefore, four reconfigurable attributes can be illus-
trated as follow:

e Entity redundancy: the faulty entities have redundant entities that
allow for the replacement of the faulty entity, which can be other
entities with identical functions both within the same loop and

Table 3
Reconfiguration entities and corresponding reconfigurable attributes.

Types of the Source of reconfiguration Corresponding

reconfiguration entities reconfigurable attributes
entities
Offline- Backup for the faulty entity Entity redundancy
reconfiguration Backup for other entities Entity redundancy
entities with same function within
the same loop
Backup for entities with Entity redundancy;
same function within other Resource accessibility
loops
Resource pool of entities Resource accessibility
Online- Entity with redundant Load affordability;
reconfiguration functions within the same Functional substitutability
entities loop

Entity with redundant
functions within other loops

Entities with same functions
within other loops

Load affordability;
Functional substitutability;
Resource accessibility
Load affordability;
Resource accessibility

Reconfigurable O peration Loop

Resource Pool
of Entities

Other O peration

Loops

-

N/

N

~

Reconfigur ation

Four sources of reconfiguration entities

@<

(s>
Aailure of

entity

U
® @

entity (1) (2)
Backup for the Entity with
Faulty Entity redund ant

OO

hl

Satisfied Entity

AN

—(5)—»

Entity within other

(4)

loops

)

functions
AN

Fig. 1. Reconfigurable operation loop.
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different loops. This highlights the static configuration characteristic
of the MAS.

Resource accessibility: entities for the replacement from other
loops or from a shared resource pool must be able to reach the
destination of the disabled entity.

Functional substitutability: entities equipped with multiple func-
tions can assume multiple responsibilities. This represents the core
dynamic reconfiguration capability, which hinges on functional
redundancy and comprehensive coverage among different entities.
Load affordability: reconfiguration, particularly through the
replacement of online reconfiguration entities, requires these entities
to handle multiple mission targets. Therefore, reconfiguration en-
tities must possess the operational capability to function effectively
under high load.

The reconfigurable attributes of MAS capture the core reconfigura-
tion capabilities that support the design of MAS resilience. Attributes
such as entity redundancy and functional substitutability fundamentally
reflect the modular design, ensuring that disturbances within MAS can
be confined to individual or a limited number of agents (Leng et al.,
2025). In such cases, operational entities can swiftly assume re-
sponsibilities of disabled entities through predefined interfaces.
Furthermore, load affordability must be carefully considered, particu-
larly in post-reconfiguration scenarios where a single entity might be
required to undertake multiple missions.

Furthermore, the mathematical model of reconfiguration can be can
be established based on constraints derived from these above attributes.

3.2. Reconfigurable operation-loop network model

MAS can be modeled as an operation-loop network to reveal the
characteristics of various entities and their functional interactions (Li
et al., 2017). The RON model is proposed based on the coupling of
multiple reconfigurable operation loops, as depicted in Fig. 2.

RON model G = (V, E, ¢, y, §) contains vertex set V, edge set E, vertex
type mapping ¢, edge type mapping y, and reconfiguration mapping 5.

e V=VTUVSUVPUVAU VR denotes the set of five types of vertexes.
e E=E™SyUES~PyES~SUEP>S UEP~P UEP~A UEA=T denotes the
edge set.

Fa

ilure of
entity
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e ¢ = V—Irepresents that each vertex v € V has ¢(v) € I, where I = {
S,D,A, T,R} is the node type set.

e y = E—L represents that each edge e € E has y/(e) € L, where L = {
T—-S,S-D,S—S,D—S,D—»D,D—A, A-T} is the edge type set.

e 5§ = R—H represents that each vertex in reconfiguration type v € VR
has 6(v) € H, where H= {S,D,A} is the set of node types that
reconfiguration entities can transform to.

The reconfigurable operation loop is determined based on the defi-
nition of meta path of operation-loop network.

Definition of meta-path (Li et al., 2017): A meta-path MP is a series
of edges between vertex types:

MP=v; 3v,3 . By,.,MPc QM @

where v1,V, ..., V1 € V and e1, €3, ..., ey € E. QM denotes the set of
meta-paths.

Definition of operation loop: The operation loop OP (OP € Q%) isa
path instance of MP, where ¢p(v1) =S, ¢(Vu—1) =D, o(Vu) = A, ¢(Vut1)
=Tand g(vy) #A, u =2,3,..,u—2. Q° denotes the set of operation
loops, Q° C QM.

Definition of reconfigurable operation loop: Reconfigurable
operation loop RP is as special kind of operation loop (RP € Q°), which
involves the v; € R in path:

e e ej_ €; (2
I eRRP=v; >V, > .2y S Sy 3)

3.3. Performance measurement of RON considering mission load

Performance measurement is the cornerstone of resilience analysis
and evaluation, assessing the operational quality and mission capability
of MAS. According to the aforementioned network model, the number of
operation loops is a common and general indicator to evaluate the
performance of MAS (Pan et al., 2019), which indicates the ability to
accomplish the target of mission. However, this metric may not be
suitable for post-reconfiguration performance assessment, particularly
because reconfiguration can alter network topology, increase the num-
ber of operation loops, and impose additional workload on reconfigu-
ration entities. Owing to the entity’s constrained capacity for concurrent
event and information processing, encountering an overload of simul-
taneous events or information can negatively impact the efficiency of

Operation loop

Fig. 2. The structure of RON model.
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mission accomplishment (Du et al., 2019; Belgacem et al., 2022).
Therefore, it is essential to consider mission load while assessing the
performance based on RON.

The operation loop represents the mission process to the specific
target. The number of operational loops that an entity undergoes in-
dicates the quantity of missions it is concurrently responsible for and the
workload imposed. Drawing upon node betweenness centrality (Li et al.,
2019; Gao et al., 2011), which quantifies a node’s pivotability based on
the frequency of shortest paths passing through it, we introduce the
notion of node load factor, as illustrated in Eq. (4)

- Yk “)

we VTgt

, QP C QO denotes the total number of operation loops

where g = |§2?
that both start and end at the target node v, € V7, fi = |Q?| denotes the

number of operation loops that pass through node v; € V¥ U VP U V4 and
also start and end at v;.
Then the node load weight is illustrated as

LF;

CF. (%)

w; =

where CF; € [0, o0) is the node capacity factor that quantifies maximum
potential capability or efficiency of an entity to perform a specific task or
process mission load under ideal conditions. CF; is static and determined
a priori based on the entity’s inherent design specifications or historical
operational data.

The node load weight represents the duration required for an entity
to complete all assigned load. Entities on a single operation loop execute
their mission load sequentially and independently following the
connection order. Consequently, the running time factor of a certain
loop is denoted as

g=y o ©)

v €0P;

where ¢; denotes the running time factors of the operation loop OP;.

A certain mission target is generally accomplished by multiple
operation loops in parallel. The completion time should be determined
by the loop with the longest operation duration. Therefore, the opera-
tional efficiency of the target vertex v, can be expressed as
= ! 7)

Tt
Emax

where 7, is the efficiency factor of v,, €, is the maximum running time
factor of the operation loops targeting at v;.
The performance of RON is indicated by the number of operation

loops weighted by efficiency, expressed as

1
P=q- D g (®)

vev?l
where Ny = |VT} denotes the number of target vertexes.
4. Reconfiguration-based resilience optimization

In this section, we formulate the resilience enhancement through
reconfiguration as an optimal mathematical model that incorporates
both resilience-oriented objective and reconfiguration constraints.
Additionally, a solution framework for achieving resilience optimization
is proposed.

The terms, sets, parameters and variables involved in the model are
denoted and defined as illustrated in Table 4.
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Table 4
Definition of terms, sets, parameters and variables involved in the model.
Notation Definition
Terms A Resilience of MAS
P(t) Performance of MAS
T Recovery time factor
5(-) Reconfiguration mapping function
() Vertex type mapping function
Nr Number of target vertexes
& Total number of operation loops that both start and end at a
target node
Ve Target vertex
vr Set of target vertexes
OP; Operation loop
o Load weight of each entity
Sets w Set of disrupted vertexes in RON,VY C (VS U VP U V4)
VR Set of reconfiguration vertexes in RON,VR C V
Parameters  ty Initial time when disruption occurs
te Start time of reconfiguration process
[ Startup time of reconfiguration entities
Lpfef"'e Mission load of v; before reconfiguration action,v; € V
Py Initial performance value at time t,
P, Minimum performance before reconfiguration process at
time t,
Py Desired performance according to load baseline

Variables X If v; is replaced by v;, X;;=1, otherwiseX;; = 0,

Vi € VR,Vj ew

rij Reachability ifX; = 1,r; € {0,1}

tj Allocation time ifX; = 1 from v; to vj, v; € VR,y; € VW

t Completion time of total reconfiguration process

Lpfﬂer Mission load of v; after reconfiguration action,v; € V

Py IfX;; = 1, P; can be measured by Eq. (8), otherwiseP; = 0
P, Performance value at completion time t, of total

reconfiguration process

4.1. Mathematical model of reconfiguration

4.1.1. Problem description

The entities in MAS are inevitable to being disrupted due to complex
operation environment. Reconfiguration is a critical approach that can
dynamically adjust the network structure of MAS to adapt the disruption
and enhance resilience. Based on the proposed RON model, the recon-
figuration problem of MAS is conceptualized as the selection of appro-
priate reconfiguration entities for replacement of disabled entities and
reconnection of post-disruption topology within RON. For example, if a
sensor entity and an actor entity in the MAS fail, causing the disruption
of originally connected operation loops and degradation of MAS per-
formance, the failed entities can be replaced by searching for appro-
priate entities from the reconfiguration entities (e.g., a functioning
sensor entity within other loop and an available actor entity in the
resource pool), and the corresponding edges can be reconnected,
thereby achieving the resilient recovery of the MAS, as illustrated in
Fig. 3.

How to find the appropriate reconfiguration entities needs to be
addressed through mathematical the programming model and optimi-
zation algorithm. Furthermore, the proposed reconfigurable attributes,
including entity redundancy, functional substitutability, load afford-
ability, resource accessibility for resilience, serve as constraints of
resilience optimization. Therefore, there are several key assumptions for
these reconfigurable attributes as follows, which serve to abstract the
model in a manner that ensures its universality and clarity.

Assumption 1. Each disrupted entity of MAS has been known, and it is
completely disabled with all of its connections severed.

Assumption 2. Each disrupted entity can be replaced by at most one
reconfiguration entity. If both connecting entities exist, the previously
removed links can be reconnected.

Assumption 3. Startup time of offline-reconfiguration entities has been
known, while startup time of online-reconfiguration entities can be ignored.
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Fig. 3. The diagram of reconfiguration scenario in RON.

Assumption 4. The duration of allocation from reconfiguration entities to
the disrupted entities has been known.

Assumption 5. The reconfiguration is implemented at a specified time,
and the replacement for all disrupted entities are initiated simultaneously.

4.1.2. Resilience-oriented objective

Resilience serves as an indicator of reconfiguration capability, which
can be assessed by the resilience process of RON indicated by Fig. 4. The
selection of an appropriate resilience metric for RON is crucial for
defining the optimization objective in the mathematical modeling of
reconfiguration. Multiple-parameter model is a common and
integration-based approach to assess resilience from multiple perspec-
tives including recovery time, recovery volatility and recovery scale
(Tran et al., 2017). In addition, the mission baseline serves as the
fundamental requirement for MAS to accomplish its mission and is
incorporated into resilience measurement as the basis for recovery tar-
gets (Sun et al., 2022). In light of the aforementioned research, we
propose the resilience measurement $I based on the load baseline
determined by load weight, as shown in Eq. (9).

.y ()
>. 1\ ©

>, min(P(t),Py) <P
= ——F min P
0

q= L1
Pb(tr — to) py

where t; € [0, o) is the initial time when disruption occurs, t, € [to, ) is
the start time of reconfiguration process, t, € (t., ) is the completion
time of total reconfiguration process, 7 € (0,1] is the recovery time
factor, P(t) € [0, c0) is the performance at time t, Py € (0, c0) is the initial
performance value at time t,, P, € [0,Py] is the minimum performance
before reconfiguration process at time t,, P, € (0,Pp] is the desired

P),

performance according to load baseline, P, € [0, «) is the performance
value at completion time ¢, of total reconfiguration process and sl€ [0, 2)
increases as 7 decreases and P, increases. The recovery time factor 7 is
indicated as

L—t

10
P— (10)

T =

where 7 accounts for normalized temporal aspects of the MAS recovery
and the closer 7 is to 1, the lower the resilience.

The performance variables in the formula of 5 can be obtained by
sampling performance data from modeling and simulation for proposed
performance measurement in Section 2.3. The performance of load
baseline Py, is determined as indicated by Eq. (11).

1 8
_1 11
P =y 2 ma (o (@ = 1) (a

VeVl

where Py, is determined when load weight of each entity is assumed to be
1, indicating that the entity’s load capacity precisely matches its mission
load.

Therefore, 4 is designed as the maximum objective for mathematical
model of reconfiguration, and the objective function can be represented
as

maximum S = A({P;li € VX j € V'},t) 12)

The optimization objective I incorporates the load growth of entities
after reconfiguration, which serves as the performance penalty for
resilience recovery. When optimizing resilience based on reconfigura-
tion, performance is required to be restored to the load baseline at least,
and the load after reconfiguration should not be concentrated on a few

2 Fitted curve
Py ——— Disruption occurs
iy F— N Load baseline
’ ViV, wi=1
Sampling point
] e Reconﬁguraﬁon st
) 1L ile tb it

Initial State Reconfiguration State

Disrupted State

Fig. 4. Resilience process of RON expressed by performance fluctuation.
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central entities.

4.1.3. Constraints of reconfigurable attributes

Due to the proposed reconfigurable attributes: entity redundancy,
functional substitutability, load affordability, resource accessibility,
several sets of constraints are considered in the proposed optimization
model.

(i) Constraint of entity redundancy indicates that disabled entities
can be replaced by reconfiguration entities if feasible, as repre-
sented in Eq. (13).

dxy<1,vjev

icVR

13

where ), »X;j <1 enforces a one-to-one replacement policy where

feasible as illustrated in Assumption 2.

(i) Constraint of functional substitutability indicates that only the
faulty entity and reconfiguration entity of the same function can
perform reconfiguration, as represented in Eq. (14).

Xi}‘ =1 {5(1’1)

= (p(V]‘)}7 E|Vi S VR7V]‘ € VU a4

where §(v;) = ¢(v;) indicates type of a reconfiguration entity v; is iden-
tical to type of the faulty entity v;, 1{-} is the indicator function, 1{
5(vi) = @(vj)} = 1if 6(v;) = (vj), otherwise 1{6(v;) = ¢(vj)} = 0.

(iii) Constraint of load affordability ensures that the mission load of
the faulty entity transfer to the reconfiguration entity, as repre-
sented in Eq. (15).

LFlgﬁer _ LF?efore +LPJ'I-)Ef0re7 Jic VR,j c VU7Xij =1 (15)
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(iv) Constraints of resource accessibility indicate the reconfiguration
entity from other loops or from a shared resource pool are able to
reach the destination of the disabled entity in a certain time, as
represented in Eq. (16)-(17). Eq. (16) ensures that the reconfi-
guration entity can reach the destination of the disabled entity
that can be further refined if the allocation path model is estab-
lished. Eq. (17) ensures that the completion time of total recon-
figuration process is equal to the maximum of the allocation time
plus by the startup time of reconfiguration entities.

r;=13ieVRjeV Xx;=1 16)

t=max{ty +tjry=1,ie VRjeV'} >+t a7

4.2. Optimal reconfiguration scheme generation of RON

The proposed mathematical model for reconfiguration integrates
both the reconfigurable attributes and resilience objective of RON,
formulated as a nonlinear mixed-integer programming problem. The
solution of this model essentially represents the generation process of an
optimal reconfiguration scheme, which corresponds to a dynamic
reconfiguration mechanism based on static reconfigurable design ac-
cording to different disruption conditions. For solving the reconfigura-
tion model, we proposed an algorithm framework suitable for optimal
reconfiguration scheme generation and resilience enhancement of RON
as illustrated in Fig. 5.

The encoding and decoding of solution are essential for optimization,
as they determine the solving difficulty and efficiency of algorithm. The
encoding and decoding for reconfiguration are proposed based on the
natural numbers, as shown in Fig. 6.

Set of faulty entities VU and set of reconfiguration entities VX are
ordered sets. If the decision variableX; = 1, code of entity v; € VY is
equal to index of v; in V&, otherwise code of v; is equal to 0. The initial
solution encoded by this approach can be generated randomly or based
on priori knowledge of reconfiguration, while ensuring compliance with

Encoding for

Reconfiguration
Reconfiguration 7 " -
ccontiguratio Initial solution
scheme .
generation
Sampling !
Decoding for
Operation loop reconfiguration
adjustment l
Performance Resilience assessment
measurement

Iteration
stagnation

Solution search

Yes

Optimal
reconfiguration scheme

End

Fig. 5. Algorithm framework for optimal reconfiguration scheme generation.
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Fig. 6. Encoding and decoding for reconfiguration of RON.

the proposed constraints.

The process of decoding for reconfiguration mainly consists of
reconfiguration scheme generation, operation loop adjustment, sam-
pling, performance measurement. First of all, the reconfiguration
scheme is generated according to code sequence of reconfiguration en-
tities, which represents the reconfiguration entity corresponding to a
certain faulty entity. Then, each faulty entity is replaced by the corre-
sponding reconfiguration entity and its original predecessors and suc-
cessors are reconnected to the reconfiguration entity. Finally, the
structure of RON is sampled and performance Pj is evaluated based on
performance measurement at reconfiguration time t; +t. mapped by the
code. The time sequence of {(Py,t; + )i €VR,j € VV,X; =1} is ob-
tained supporting to the resilience assessment.

The genetic algorithm is used to search the optimal solution. These
generate feasible solutions by employing crossover and mutation steps,
followed by a selection step to evaluate and filter these solutions (Li
et al., 2019). Inferior solutions are eliminated in this process, while
superior genetic traits are effectively propagated to subsequent gener-
ations in next iteration. The stagnation condition can be set as the point
at which the optimal resilience of the superior solution no longer in-
creases with further iterations.

5. Case study

The case study based on an emergency response system is provided

to verify the feasibility, effectiveness and superiority of the proposed
model and indicators of RON. Owing to cyclic process of perception,
decision-making, and action, the emergency response system can detect
and deal with the emergencies like natural and man-made accidents
promptly and efficiently (Yang et al., 2023; Huang, 2015). The emer-
gency response system can be abstract as a MAS, in which the sensor
entities comprise on-site personnel, sensors, and Closed-Circuit Televi-
sion (CCTV), among others. The decider entities encompass the alarm
response center, command center, and emergency management bureau,
among others. The actor entities include departments such as fire ser-
vices, public security, and medical enforcement. These entities establish
multiple operation loop based on the disposal target and functional in-
terconnections, thereby forming a operation-loop network as depicted in
Fig. 7. When a natural disaster or man-made damage causes entities to
fail in fulfilling the response function, the operation loop may not be
able to close and respond to the disposal targets in time. This could
impact performance and efficiency of the entire emergency response
system. To address this issue, the emergency response system should
leverage its inherent mechanisms of reconfiguration to improve
resilience.

5.1. Network establishment and resilience analysis

Based on the emergency response system of a city, this study iden-
tifies key entities according to the emergency targets and services such
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Fig. 7. Schematic diagram of emergency response system.

as fire services, public security, medical care, traffic management, and
other. The model of RON is then constructed by these entities. As
depicted in Fig. 8, the RON model for an emergency response system
consists of 9 groups of entities, encompassing a total of 36 entities.

The fluctuation of different performance indicators is obtained
through Monte Carlo simulation of the RON model under the conditions
of random disruption and random selection of reconfiguration entities,
including the proposed performance measurement considering mission
load (PMML), index of operation loop (IOL), network global efficiency
(NGE) and network operation loop efficiency (OLE). IOL represents the
normalized value of the number of operation loops, which is the most
common index for networks based on operation loops (Li et al., 2017).
NGE is defined as the average of the reciprocal hops of the shortest path
between all pairs of nodes, and serves as a classical evaluation index in
complex network theory (Pan and Wang, 2018). OLE is defined as the
average of the reciprocal number of hops passed by the operation loops
(Zhong et al., 2024). PMML is validated against established performance
metrics via qualitative and quantitative analysis.

Furthermore, the impact of two types of independent reconfiguration
entities (online-reconfiguration entities and offline-reconfiguration en-
tities, whose quantities are respectively regarded as known fixed con-
straints in the resilience optimization model) on the performance
recovery and resilience of the MAS is analyzed, thereby providing sup-
port for the resilience optimization experiments in the case.

5.1.1. Resilience analysis with offline-reconfiguration entities
The quantities of each type of offline-reconfiguration entities (map to
S/D/A) in the resource pool are set to 0, 5, 10, 15, 20, and 25 respec-
tively. The configuration of parameters is set as shown in Table 5.
Repeated tests are conducted to obtain the average values of

Table 5
Configuration of parameters in resilience analysis with offline-reconfiguration
entities.

Parameter Configuration

CF; CF; is set according to the initial LF; of
the node, i.e.LF; = CF;

t, t. is set to 1 time step

t t; is set to the number of time steps

that equals the absolute value of the
difference between the entities’
digital numbers

Disruption model Random disruption

Offline- Number 0, 15, 30, 45, 60, 75, respectively
reconfiguration Resource pool The quantities of each type of offline-
entities structure reconfiguration entities (map to S/D/

A) in the resource pool are set to 0, 5,
10, 15, 20, and 25 respectively

Online- Number 0
reconfiguration Functional- do not have
entities substitution

relations

performance and resilience, thereby analyzing the variations in perfor-
mance metrics and their resilience under different numbers of cold-
reconfigurable entities, as illustrated in Figs. 9 and 10.

The results indicate that the metrics of PMML, IOL, and OLE exhibit a
resilient trend characterized by an initial decrease followed by an in-
crease, whereas NGE demonstrates a contrasting trend of first increasing
and then decreasing. This is because NGE only reflects the network’s
performance in term of connectivity and tightness, without considering

Fig. 8. RON model for an emergency response system.
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Fig. 10. Resilience under different quantity of offline-reconfiguration.

the topology based on the operation loop. When nodes in the network
are damaged, network connectivity is not immediately affected due to
redundancy. However, the reduction in the number of nodes results in a
decrease in network communication hops, thereby enhancing efficiency.
In conclusion, NGE proves to be insufficient for characterizing the
resilience properties of networks based on operation loops.

To quantitatively validate PMML against the other three perfor-
mance metrics, a correlation analysis is also conducted, and the resulting
correlation heatmap is shown in Fig. 11. The result shows that PMML is
significantly positively correlated with typical operation loop indicators
(i.e., OLE and IOL), while negatively correlated with NGE, confirming its
effectiveness in capturing the performance of the operation-loop
network. Notably, the analysis reveals an extremely high correlation
between IOL and OLE, suggesting potential information redundancy
between these two established metrics. In contrast, PMML, by inte-
grating the mission load, provides an independent and complementary

11

assessment, explaining unique variance not captured by IOL/OLE alone.

The recovery effect of the reconfiguration on the IOL and OLE is
greater than the impact of the damage, resulting in higher resilience.
This is because these two indicators demonstrate that reconfiguration
can be achieved without incurring additional costs, especially online-
reconfiguration entities are selected to replace the faulty ones, the
number of operation loops will exceed the number before the damage
occurred. For instance, an emergency response system comprising two
target entities, two sensor entities, two decider entities, and two actor
entities establishes the RON model as illustrated in Fig. 12. This model
has 1 and 2 operation loops for T1 and T2, respectively. If S2 fails, the
reconfiguration entity selects the sensor entity S1 that has an identical
function, as a substitute. Owing to the sensing effect of S1 on T2, two
new loops, T2-S1-D1-A1-T2 and T1-S1-D2-A1-T1, have been introduced.
Currently, the network consists of five operation loops, which is a result
of the increased number of operational loops due to offline-
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Fig. 11. Correlation analysis of performance measurements.

reconfiguration.

Theoretically, this effect becomes more pronounced when the
network model is more complex and features a higher density of links
between operation loops. If it is assumed that all failed entities opt for
offline-reconfiguration entities for reconfiguration, the number of
operational loops will remain unchanged, and both the IOL and OLE
should be restored to their initial states. In terms of the number of
operational loops, online-reconfiguration entities exert a more signifi-
cant influence on network performance recovery compared to offline-
reconfiguration entities. However, this is unfavorable for reconfigura-
tion scheme generation and resilience design of the emergency response
system, as it tends to create a more compact structure where fewer en-
tities possess a higher number of connected edges, leading to a con-
centration of mission load.

From the resilience results based on PMML in Fig. 10, it is evident
that that adding offline-reconfiguration entities can enhance resilience
to a certain extent. This is because the probability of a faulty entity
randomly selecting an offline-reconfiguration entity for reconfiguration
increases. Additionally, since the offline-reconfiguration entity does not
participate in other operation loops, its initial mission load is zero.
Consequently, a higher number of offline-reconfiguration entities can
lead to greater performance improvements. However, given the random
reconfiguration scheme employed in this experiment and the extended
reconfiguration time required for offline-reconfiguration entities, the
increase in the number of offline-reconfiguration entities does not
significantly enhance resilience. Furthermore, the recovery process of
the performance curve exhibits a downward convex trend due to the
time needed for offline-reconfiguration entities to allocate resources and
activate.

However, the resilience results using IOL and OLE as indicators fail to

1 operation loop for T1

2 operation loops For T2
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account for the influence of offline-reconfiguration entities on perfor-
mance recovery, and even show an obvious trend of resilience decline
with the increase of the number of offline-reconfiguration entities. This
is because a higher participation of cold-reconfigured entities in the
reconfiguration process implies that fewer existing entities are likely to
undergo offline-reconfiguration, thereby resulting in a reduced number
of reconnected operational loops.

5.1.2. Resilience analysis with online-reconfiguration entities

To analyze the impact of the number of hot-reconfigurable entities
on recovered performance and resilience, various functional redun-
dancy relationships are established. For instance, the relationship be-
tween the sensor entity and the decider entity indicates that the sensor
entity possesses a certain level of decision-making capability and can
functionally substitute for the decider entity when necessary. This type
of relationship is prevalent in emergency response systems. For example,
some networked CCTV cameras are equipped with edge computing ca-
pabilities and can perform basic information processing, enabling them
to make timely decisions based on perceived data. The number of online-
reconfiguration entities with functional substitution in the model is set
to 0,9, 18, 27, 36, and 45, respectively. The configuration of parameters
is set as shown in Table 6.

The average values of performance and resilience are obtained by
Monte-Carlo simulation, and the performance fluctuation and resilience
under different numbers of online-reconfiguration entities are analyzed,
as shown in Figs. 13 and 14. The result of correlation analysis among
each indicator is shown in Fig. 15.

From the results of network resilience, the resilience expressed by
IOL and OLE shows a trend of increasing with the increase of the number
of online-reconfiguration entities, which is exactly the opposite of the

Table 6
Configuration of parameters in resilience analysis with online-reconfiguration
entities.

Parameter Configuration

CF; CF; is set according to the initial LF; of
the node, i.e.LF; = CF;

t, t. is set to 1 time step

t t; is set to the number of time steps

that equals the absolute value of the
difference between the entities’
digital numbers

Disruption model Random disruption

Offline- Number 0
reconfiguration Resource pool do not have
entities structure

Online- Number The number of online-reconfiguration
reconfiguration entities with functional substitution in

entities the model is setto 0, 9, 18, 27, 36, and

45, respectively

Functional- The S-D, D-A, and S-A entities can
substitution functionally replace each other.
relations

Reconfiguration

2 operation loops for T1 3 operation loops For T2

Fig. 12. An example of an offline-reconfiguration process for RON.
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Fig. 14. Resilience under different quantity of online-reconfiguration.

results shown in the previous experiment, and also due to the effect of
the increase of the operation loops caused by the offline-reconfiguration
operation. However, the resilience trend of PMML does not change
significantly with the increase of the number of online-reconfiguration
entities. This further highlights the rationality of PMML, as the “curse”
of load significantly undermines the effectiveness of recovery resulting
from the offline-reconfiguration operation. If indicators such as the
number of operation loops are employed as criteria for evaluating
resilience, the positive resilience design of MASs, such as emergency
response systems, will likely favor a tight structure. This, in turn, may
result in the emergence of central entities responsible for encompassing
all missions. If these entities are attacked or interfered with, the MAS is
likely to lose its fundamental capabilities, making such a system inevi-
tably vulnerable (Ma et al., 2022).

5.1.3. Sensitivity analysis

To further verify the rationality of PMML, a sensitivity analysis of
configuration has also been conducted in this experiment, as shown in
Fig. 16.

The results indicate that the influence of both the number of offline-
reconfiguration entities and the number of online-reconfiguration en-
tities on resilience based on PMML does not exhibit significant bias.

13
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NGE

PMML 1oL

Fig. 15. Correlation analysis of performance measurements.

Specifically, the sensitivity of the number of offline-reconfiguration
entities is approximately zero, while an increase in the number of
online-reconfiguration entities has a minor impact on resilience. How-
ever, the sensitivity analysis for both IOL and OLE demonstrated a clear
trend: the sensitivity of the number of online-reconfiguration entities is
positive and greater than that of the number of offline-reconfiguration
entities, which is negative. The reason lies in the fact that the IOL and
OLE indexes fail to account for the load increase resulting from offline-
reconfiguration. In contrast, the PMML index achieve an evaluation
balance between workload distribution and the number of operation
loops, ensuring that the resilience of the random reconfiguration scheme
remains relatively stable regardless of the number of reconfiguration
entities configured within the emergency response system. This is
consistent with the practical utility of various reconfiguration entities,
which indicates that reconfiguration is subject to constraints and entails
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Fig. 16. Sensitivity analysis.
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associated costs. On the one hand, this highlights the advantages of
PMML in assessing the performance of heterogeneous MASs based on
operational loops, such as emergency response systems. On the other
hand, it reveals the limitations of the random reconfiguration. There-
fore, it is essential to investigate more optimal reconfiguration schemes,
as well as advanced methods for generating such schemes.

5.2. Reconfiguration scheme generation and resilience optimization

In the aforementioned experiments, the random reconfiguration
scheme demonstrated inadequate recovery effect on the emergency
response system. Consequently, a more effective reconfiguration scheme
is required to enhance and optimize the resilience of the emergency
response system. This study validates the feasibility and effectiveness of
the proposed method by comparing common reconfiguration schemes
with the optimized reconfiguration scheme generated through the
optimal reconfiguration scheme generation method, thereby providing
guidance for the reconfiguration of the emergency response system. The
settings of optimal reconfiguration scheme generation method are
shown in Table 7.

5.2.1. Reconfiguration scheme generated by different methods

In this experiment, we compare the performance fluctuation of RON
under common reconfiguration schemes against the optimized reconfi-
guration scheme based the proposed method, as depicted in Fig. 17.
Common reconfiguration schemes include random reconfiguration
scheme, online-prior reconfiguration scheme, offline-prior reconfigura-
tion scheme and greedy-based reconfiguration scheme. Online-prior
reconfiguration scheme represents that the faulty entities prefer the
nearest online-reconfiguration entities for reconfiguration (Chen et al.,
2023). On the contrary, faulty entities preferentially select offline-
reconfiguration entities to replace in the offline-prior reconfiguration
scheme. Moreover, the greedy algorithm operates on the principle of

Table 7
Settings of optimal reconfiguration scheme generation method.

Component of GA Setting

Encoding The proposed encoding for reconfiguration based on the
natural numbers
Initialization Random initialization

Selection operator Combination of the binary tournament method and the
retention of the elite strategy

Partially Matched Crossover

Adaptive mutation operator

200

Fitness stagnation of the optimal solution

Crossover operator
Mutation operator
Population size
Termination
condition

14

selecting, for each faulty node, an alternative node that minimizes
reconfiguration time while maximizing the potential improvement in
current performance of RON.

It is evident that the RON model reconfigured according to the
optimal reconfiguration demonstrates superior performance recovery,
with its resilience surpassing that of other schemes. Among the common
reconfiguration schemes, the RON under the online-prior reconfigura-
tion scheme exhibits the fastest performance recovery. This is because
online-reconfiguration does not take into account allocation time and
activation time. Therefore, the RON has higher resilience at the begin-
ning of reconfiguration, but owing to the online-reconfiguration en-
tities” increasing workload, the recovered performance is lower at the
end of reconfiguration. In contrast, performance of RON under the
offline-prior reconfiguration scheme initially recovered slowly but
eventually reached a higher level.

Generally, a GA exhibits polynomial-time complexity, primarily
determined by population size, chromosome length, the number of it-
erations, and the costs of selection, crossover, and mutation operations.
In the proposed framework, however, the complexity is significantly
higher due to the scale of the network reconfiguration problem, espe-
cially in large-scale settings. The expanded decision space for reconfi-
guration necessitates longer chromosomes, and the fitness evaluation
involves computationally intensive steps such as performance and
resilience assessment considering mission load. Consequently, the
overall computational complexity of the proposed framework is higher
compared to a GA applied to simpler problems, and the actual runtime is
also longer.

Furthermore, the greedy algorithm can produce a relatively high-
quality solution within a short computational time. However, owing to
its short-sighted nature, it makes locally optimal decisions at each step
without taking global optimality into account. Consequently, the
reconfiguration scheme generated based on the greedy algorithm is
generally inferior to that based on GA, although GA typically requires
longer computation times.

5.2.2. Resilience optimization based on different performance measure

This case also carried out a comparative experiment on the genera-
tion of optimal reconfiguration schemes with different resilience-
oriented objectives, utilizing IOL, OLE, and PMML as performance pa-
rameters, respectively. This experiment demonstrates the superiority of
PMML in reconfiguration optimization and resilience enhancement for
the emergency response system, as shown in Fig. 18. It is clear that the
optimal reconfiguration scheme based on PMML achieves the most
effective performance recovery and exhibits the highest level of
resilience.

Based on this experiment, the network topology of RON after
reconfiguration guided by different schemes is also analyzed. It is
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Fig. 18. Comparison of optimal reconfiguration schemes based on different performance metrics.

observed that the reconfiguration scheme based on IOL tends to form a
network topology containing central nodes (i.e., nodes with greater
centrality, such as nodes D4 and A2, as shown in Fig. 19 and Table 8. The
finding aligns with the experimental analysis and assumption proposed
in Section 4.1.1.

Strong connectivity serves as a critical metric for evaluating the
connectivity of a directed graph. It denotes the presence of bidirectional
paths between any two nodes within the graph. The robustness of a
digraph can be assessed by analyzing changes in strong connectivity
upon the removal of specific nodes or edges (Artime et al., 2024). We
carried out high-degree node removal on the reconfigured network
based on IOL, OLE and PMML respectively. Our analysis revealed that
the maximum sizes of the strongly connected components for the three
networks were initially 28, 27, and 28, respectively, indicating relatively
similar disparities. However, following the removal of the high-degree
nodes, the sizes of the largest strongly connected components changed
to 19, 20, and 23 respectively, as presented in Table 9. This indicates
that the network structure reconfigured according to the PMML-based
resilience objective exhibits greater robustness, thereby further
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validating the superiority of the PMML measurement.

6. Findings and discussion

In this section, we have explicitly answered each of our research
questions and elaborated on its managerial implications in sequence,
providing clear and actionable insights for practitioners regarding.

Firstly, we developed the RON model based on the operation loop
composed of sensors, deciders, and actors in MAS. This model encom-
passes four reconfigurable attributes: entity redundancy, functional
substitutability, load affordability, and resource accessibility. For man-
agers, these attributes serve as a practical checklist for resilience-
oriented design. In practice, it is recommended to proactively plan
these attributes during the system design phase. For instance, as
demonstrated in the Case Study, well-planned reconfigurable attributes
can significantly improve the resilience of an emergency response sys-
tem. The RON model provides a foundation for both evaluating and
optimizing MAS resilience, thereby assisting managers in formulating
effective enhancement plans. Furthermore, it enables a modular design
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Table 8
Network centrality of central nodes under different optimal reconfiguration
schemes.

IOL-optimal OLE-optimal PMML-optimal

reconfiguration reconfiguration reconfiguration
No. Node Centrality Node  Centrality Node  Centrality
1 D4 0.113 D5 0.087 S4 0.087
2 A2 0.0956 A2 0.087 A7 0.087
3 S2 0.087 A4 0.0696 S1 0.0696
4 A7 0.0782 S1 0.0696 A2 0.0696
5 S4 0.0609 D4 0.0609 D4 0.0696

Table 9

Robustness of reconfiguration optimization scheme based on different perfor-
mance metrics.

Reconfiguration scheme Maximum strongly connected component size

Before node removal After node removal

I0L-optimal reconfiguration 28 19
OLE- optimal reconfiguration 27 20
PMML- optimal reconfiguration 28 23

approach for MAS. Managers can also integrate this model with pre-
dictive technologies (e.g., multi-agent simulation, deep reinforcement
learning) to proactively allocate resources or implement reconfiguration
measures against potential risks, shifting from reactive recovery to
preventive resilience enhancement.

Subsequently, we proposed a performance measurement and a multi-
parameter resilience metric based on node-load centrality, which con-
siders mission load during reconfiguration. Compared to conventional
metrics (e.g., number of operation loops, global efficiency) that neglect
load variations and may inadvertently encourage centralized, load-
imbalanced structures, our measurement balances workload distribu-
tion and operational capacity. This provides managers with a more ac-
curate tool for decision-making. Specifically, managers can use this
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metric to: (1) objectively compare the resilience of different system
configurations or design proposals, and (2) make informed trade-offs
between the level of resilience achieved and the associated costs of
resource consumption and agent workload. Prioritizing this balance is
crucial for sustainable and efficient resilient design.

Furthermore, we presented a framework for generating optimal
reconfiguration schemes. Its feasibility and effectiveness are verified in
the Case Study, where it produced schemes with superior resilience and
post-reconfiguration robustness. For implementation, managers should
consider the choice of optimization paradigm. The centralized optimi-
zation framework ensures global optimality and is suitable for scenarios
requiring efficient, pre-planned decisions. However, managers must be
aware of its risk: a single point of failure at the decision center. In
contrast, for systems operating in highly complex and uncertain envi-
ronments where decision robustness is paramount, a distributed or
decentralized framework leveraging swarm intelligence is advisable, as
it eliminates the central point of failure. The choice depends on the
specific trade-off between optimality and robustness that the opera-
tional context demands.

7. Conclusion

With the increasing complexity and interconnection, the MAS is
susceptible to collapse, which leads to the decline of the operation
performance and the loss of personnel and social property. In order to
ensure the continuous and stable operation of MAS and rapid recovery
after damage, reconfiguration-based resilience enhancement has
become a widely adopted practice. Aiming to address the challenge of
reconfigurable design and resilience enhancement for MAS, the main
conclusions of our work can be summarized as follows: (i) the RON
model is developed based on the operation loop composed of sensors,
deciders, and actors, which incorporates reconfigurable attributes and
constraints of MAS; (ii) a performance measurement and a multi-
parameter resilience metric are proposed based on node-load central-
ity considering mission load during reconfiguration; (iii) the framework
for generating the optimal reconfigurable scheme of RON is presented,
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mainly including the resilience-oriented objective, the constraints of
reconfigurable attributes, the encoding and decoding for reconfigura-
tion, and the optimization algorithm.

The RON model and reconfigurable attributes can facilitate the
resilient design of MAS in practical. offers a framework for resilience
research on MAS, which supports resilience evaluation and optimization
and assists decision-makers and managers in formulating a resilience
enhancement plan for MAS. Additionally, the proposed performance
measurement and resilience metric achieve an evaluation balance be-
tween mission load distribution and the number of operation loops,
ensuring the accuracy of resilience assessment for MAS. This can assist
managers in comparing the resilience and making decisions regarding
the resilient design of MAS. Moreover, the optimal reconfiguration
scheme generated by the proposed optimization framework enables
MAS to attain greater resilience and robustness compared to other
schemes in practical scenarios.

However, our study still has deficiencies in the objectives, con-
straints, and algorithms of reconfiguration-based resilience optimiza-
tion. Additionally, the RON model is a deterministic model that does not
take uncertainty into account, weakening the model’s applicability to a
certain extent. Future research will systematically incorporate economic
cost, energy, and personnel load into the multi-objective optimization of
resilience to conduct a reconfigurable design of MAS. In addition, the
application of intelligent learning algorithms such as RL and DL can
better solve the problems of decentralized reconfiguration and proactive
preventive reconfiguration in complex and uncertain environments.
Furthermore, given the continuous and unpredictable nature of
disruption, resilience enhancement based on reconfiguration is no
longer achieved in a single effort but rather through a series of consec-
utive and iterative processes along with disruption. Thus, there is a need
to explore more complex and precise reconfigurable design.
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