扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 杨懿

    的个人主页 http://shi.buaa.edu.cn/09739/zh_CN/index.htm

  •   博士生导师   硕士生导师
  • 主要任职:教授
  • 其他任职:国防重点实验室主任助理
论文 当前位置: 中文主页 >> 论文
ICFS Clustering With Multiple Representatives for Large Data
点击次数:
所属单位:School of Reliability and Systems Engineering, Beihang University, Beijing, China
发表刊物:IEEE Transactions on Neural Networks and Learning Systems
关键字:Clustering by fast search (CFS), clusters adjustment, incremental clustering, large data, multiplere
摘要:With the prevailing development of Cyber-physicalsocial systems and Internet of Things, large-scale data have been collected consistently. Mining large data effectively and efficiently becomes increasingly important to promote the development and improve the service quality of these applications. Clustering, a popular data mining technique, aims to identify underlying patterns hidden in the data. Most clustering methods assume the static data, thus they are unfavorable for analyzing large, unbalanced dynamic data. In this paper, to address this concern, we focus on incremental clustering by ext
合写作者:Z. Chen,Liang Zou,Z. Jane Wang
第一作者:L. Zhao
论文类型:开发研究
通讯作者:杨懿
一级学科:控制科学与工程
文献类型:期刊
页面范围:1-11
ISSN号:21622388 2162237X
是否译文:否
CN号:null
发表时间:2018-07-25
收录刊物:SCI
发布期刊链接:https://doi-org-443.e.buaa.edu.cn/10.1109/TNNLS.2018.2851979
版权所有 2014-2022 北京航空航天大学  京ICP备05004617-3  文保网安备案号1101080018
地址:北京市海淀区学院路37号  邮编:100191  电话:82317114