扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 杨懿

    的个人主页 http://shi.buaa.edu.cn/09739/zh_CN/index.htm

  •   博士生导师   硕士生导师
  • 主要任职:教授
  • 其他任职:国防重点实验室主任助理
论文 当前位置: 中文主页 >> 论文
Co-Learning Non-Negative Correlated and Uncorrelated Features for Multi-View Data
点击次数:
发表刊物:IEEE Transactions on Neural Networks and Learning Systems
关键字:optimization; encoding; learning systems; correlation; tansforms; data models; semantics
摘要:Multi-view data can represent objects from different perspectives and thus provide complementary information for data analysis. A topic of great importance in multi-view learning is to locate a low-dimensional latent subspace, where common semantic features are shared by multiple data sets. However, most existing methods ignore uncorrelated items (i.e., view-specific features) and may cause semantic bias during the process of common feature learning. In this article, we propose a non-negative correlated and uncorrelated feature co-learning (CoUFC) method to address this concern. More specifica
合写作者:Tao Yang,Jie Zhang,Zhikui Chen,Z. Jane Wang
第一作者:赵亮
论文类型:开发研究
通讯作者:杨懿
论文编号:000637534200007
一级学科:控制科学与工程
文献类型:期刊
卷号:32
期号:4
页面范围:1486-1496
ISSN号:2162237X
是否译文:否
CN号:null
发表时间:2020-04-29
收录刊物:SCI
发布期刊链接:https://ieeexplore-ieee-org-s.vpn.buaa.edu.cn:8118/document/9082119
版权所有 2014-2022 北京航空航天大学  京ICP备05004617-3  文保网安备案号1101080018
地址:北京市海淀区学院路37号  邮编:100191  电话:82317114