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a b s t r a c t 

A quantized fixed-time fault-tolerant attitude control problem for hypersonic reentry ve- 

hicles is considered from the perspective of practical engineering. Taking into account the 

limited time available for recovery from a fault scenario, fixed-time extended state ob- 

servers are used to simultaneously compensate for the negative effect of unknown time- 

varying actuator faults, uncertainties, and external disturbances. In contrast to the existing 

control schemes, which neglect the signal quantization transmission process and limited 

communication capacity, the hysteresis quantization mechanism is considered. Based on 

this, a fixed-time fault-tolerant control scheme is developed to ensure the fixed time con- 

vergence of all the tracking errors even in cases involving actuator faults. The stability and 

convergence are proven by performing a theoretical analysis. The simulation results vali- 

date the superiority and robustness of the proposed control scheme. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

In recent years, hypersonic reentry vehicles (HRVs), which exhibit unique advantages of fast flight capability and strong 

maneuverability, have attracted considerable attention in both civil and military fields [1] . However, to compensate for cer- 

tain inherent limitations, i.e., substantial uncertainties, tight coupling, and unknown external disturbances, the control sys- 

tem for HRVs must exhibit a fast response and anti-disturbance capability [2] . Hence, the design of the attitude controller

for HRVs is a key yet challenging issue. In this regard, active disturbance rejection control [3] , back-stepping control [4] ,

and sliding mode control [5 , 6] have been employed to ensure the attitude control performance of HRVs. Moreover, with the

development of intelligent technologies, intelligence-based control methods, such as adaptive-based control [7] , fuzzy-based 

control [8 , 9] , neural network-based control [10] , and deep neural network-based control [11–13] , have attracted significant

attention and been widely used to enhance the control performance. 

Moreover, in the practical flight process of HRVs, actuator faults may be encountered due to the severe environment, 

which may lead to unpredictable accidents [14 , 15] . Consequently, the research on the fault-tolerant control (FTC) for HRVs

has been prioritized to satisfy the increasingly stringent requirements regarding the safety and reliability of such safety- 

critical systems [16] . 
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In recent decades, many advanced FTC strategies with different f eatures have been employed to address the abovemen- 

tioned control issue. An et al. [16] proposed an FTC scheme for hypersonic vehicles, in which a disturbance observer was

used to compensate for the effect of actuator faults. Hu et al. [17] combined the classic dynamic surface control with an

adaptive method and a bound estimation approach to ensure the control performance under time-varying actuator faults. 

Furthermore, the fuzzy logic system and neural network were adopted as intelligent approaches to address the FTC prob- 

lem [18 , 19] . Nevertheless, although these approaches could exhibit an excellent control performance under actuator faults, 

only the asymptotic stability of the closed-loop system could be ensured. In other words, all the error variables converged 

within an infinite time. Notably, for a safety-critical and fast time-varying system as the control system of the HRV, if the

compensation for the negative effect of the actuator faults exceeds the allowable time, the system is likely to collapse [20] .

To enhance the fast convergence of control systems, a fixed-time observer-based finite-time FTC was established for hyper- 

sonic gliding vehicles (HGVs) [21] , and an integral terminal sliding-mode control integrated with adaptive techniques was 

developed for the HGV, which could drive the convergence of all the error variables within a finite-time [22] . 

Furthermore, in the existing methods, the convergence time depended strictly on the values of the initial conditions. In 

such a scenario, if the initial state is far from the origin, the convergence time likely tends to infinity. This defect severely

hinders the practical application of the finite-time method. Consequently, a fixed-time control method was proposed for 

quadrotors, based on the fixed-time theory and bi-limit homogeneity property, and all the error variables were demonstrated 

to be fixed-time convergent [23] . Moreover, a fixed-time accommodation strategy for actuator faults was presented for HGVs, 

although the convergence time of the sliding phase could not be obtained directly [20] . Overall, designing a fixed-time FTC

scheme with a predefined bounded convergence time for HRVs is significant yet challenging. 

Additionally, most of the existing control schemes assumed that the control signals could be transmitted to the actuator 

modules in real time without deviations, and the communication capability was sufficient. However, in the existing digital 

control systems, the practical signal quantization transmission process and limited communication capacity cannot be ig- 

nored, especially in the case of resource constrained systems. Wang et al. [15] proposed an event-triggered attitude control 

scheme for fractionated spacecraft with wireless communication to reduce the communication burden. A hysteresis quan- 

tizer (HQ) was synthesized into the controller design to reduce the actuator bandwidth for the micro-electro-mechanical sys- 

tem (MEMS) gyroscope [24] . Based on the event-triggered mechanism, intermittent-measurement-involved extended state 

observers and controllers were developed for flexible HFVs involving limited resources [25] . Furthermore, an adaptive con- 

trol with a logarithmic quantization mechanism was implemented to realize the tracking control of HFVs [26] ; however, the

logarithmic quantizer could lead to chattering, which may deteriorate the control performance and system stability. 

Furthermore, during HRV missions, which are characteristically long distance and long endurance, the energy of the HRVs 

cannot be replenished. For such systems with limited resources, the problem of signal quantization transmission and limited 

communication capacity must be considered when designing the controller, and this aspect requires additional research. 

Considering these aspects, this paper proposes a fixed-time fault-tolerant attitude control strategy for HRVs, which takes 

into account the quantization mechanism. The main contributions of this paper can be summarized as follows: 

(1) Different from the existing asymptotic convergence and finite-time convergence fault compensation techniques [16 , 19] , 

fixed-time extended state observers (FESOs) are employed to simultaneously estimate the lumped disturbances includ- 

ing unknown time-varying actuator faults, uncertainties, and external disturbances. Particularly, the adopted FESOs 

can not only estimate the negative effect of the lumped disturbances within a predefined time but also enhance the 

robustness of the closed-loop control system in fault scenarios. 

(2) In contrast to the previous studies [21 , 16–20 , 22] , the signal quantization transmission process and limited communi-

cation capacity are considered. A hysteresis quantization mechanism is implemented in the proposed control scheme 

to effectively reduce the communication load and save communication resources in the controller-to-actuator channel 

for limited resource systems. 

(3) A non-singular terminal sliding mode surface-based fixed-time control strategy is proposed to ensure that all the error 

variables can converge within a predetermined time. In contrast to the previous fixed-time control protocols [23 , 27] ,

in which the convergence time could not be obtained directly, the convergence time in the proposed control strategy 

can be directly estimated by considering the controller parameters, independent of the different initial states. 

The remainder of this paper is organized as follows. The modeling of the HRV and actuator and problem formulation are

described in Section 2 . The design of the quantized fixed-time fault-tolerant scheme and stability analysis are presented in 

Section 3 . The simulation results and corresponding discussion are described in Section 4 , and the concluding remarks are

presented in Section 5 . 

2. Problem formulation 

2.1. Mathematical model of the hrv 

The HRV model used in this paper is with reference to that reported in [28 , 29] . The HRV model adopts the winged-cone

geometry, and its configuration and structural parameters are shown in Fig. 1 and Table 1 , respectively. 
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Fig. 1. Three views of the HRV model. 

Table 1 

Geometric characteristics of the HRV model. 

Notation Unit Parameters 

Mass m kg 63,500 

Reference area S m 

2 334.73 

Span b m 

18.29 

Mean aerodynamic chord c m 

24.38 

Roll moment of inertia I x kg · m 

2 915,300 

Pitch moment of inertia I z kg · m 

2 903,600 

Yaw moment of inertia I y kg · m 

2 903,600 

 

 

Due to the limitation of the length of the paper, only the parameters that are used in the design of the control system

are listed in Table 1 . The remaining structural parameters and fitting polynomials of the aerodynamic coefficients, which are 

not listed herein, can be found in [28 , 29] . 

Based on the assumption of a uniform gravitational field and a rigid vehicle structure, the nonlinear motion equations of 

the HRV can be described as ⎧ ⎨ 

⎩ 

˙ r e = V sin θ
˙ φ = 

V cos θ sin ψ s 

r e cos ϕ 

˙ ϕ = 

V cos θ cos ψ s 

r e 

(1) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

˙ V = 

−D −mg sin θ
m 

+ ω e 
2 r e cos ϕ ( sin θ cos ϕ − cos θ sin ϕ cos ψ s ) 

˙ ψ s = − L sin γs + Z cos γs 

mV cos θ
+ 

V 
r e 

cos θ sin ψ s tan ϕ − 2 ω e ( tan θ cos ϕ cos ψ s − sin ϕ ) 

+ 

ω e 2 r e 
V cos θ

sin ϕ cos ϕ sin ψ s 

˙ θ = 

L cos γs −mg cos θ
mV 

+ 

V 
r e 

cos θ + 2 ω e cos ϕ sin ψ s 

+ 

ω e 2 r e cos ϕ 
V ( cos θ cos ϕ + sin θ sin ϕ cos ψ s ) 

(2) 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ α = −w x cos α tan β + w y sin α tan β + w z + 

mg cos θ cos γs −L 
mV cos β

˙ β = w x sin α + w y cos α + 

mg cos θ sin γs −Z cos β
mV 

˙ γs = w x cos α sec β − w y sin α sec β − g cos θ cos γs tan β
V 

+ 

L ( tan θ sin γs + tan β) + Z tan θ cos γs 

mV 

(3) 

⎧ ⎨ 

⎩ 

˙ w x = 

I y −I z 
I x 

w y w z + 

M x 

I x 

˙ w y = 

I z −I x 
I y 

w z w x + 

M y 

I y 

˙ w z = 

I x −I y 
I z 

w y w z + 

M z 

I z 

(4) 

where r e is the radial distance from the Earth center to the vehicle, ϕ, φ are the longitude and latitude, respectively, ω e 

denote the Earth rotating rate, V , ψ s , θ denote the velocity, heading angle, and flight path angle, respectively, α, β , γ s 

denote the angles of attack, sideslip, and bank, respectively, w x ,w y ,w z denote the roll angular rate, yaw angular rate, and

pitch angular rate, respectively, and g is the gravitational acceleration. 

The aerodynamic forces L, D and Z can be defined as { 

L = QS C L 
D = QS C D 
Z = QS C Z 

(5) 
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where C L = C L,α + C L, δe 
+ C L, δa 

, C D = C D,α + C L, δe 
+ C L, δa 

+ C L, δr 
, and C Z = C Z,ββ + C Z, δe 

+ C Z, δa 
+ C Z, δr 

are the lift, drag, and side force

coefficients, respectively, and δe , δa , δr denote the left elevon, right elevon, and rudder, respectively. 

The aerodynamic moments M x ,M y and M z can be defined as { 

M x = QSb m x 

M y = QSb m y 

M z = QSc m z − x cg ( −D sin α − L cos α) 
(6) 

where m x = m 

β
x β + m 

δe 
x δe + m 

δa 
x δa + m 

δr 
x δr + m 

w x 
x 

w x b 
2 V + m 

w y 
x 

w y b 
2 V , m y = m 

β
y β + m 

δe 
y δe + m 

δa 
y δa + m 

δr 
y δr + m 

w x 
y 

w x b 
2 V + m 

w y 
y 

w y b 
2 V , and

m z = m z,α + m 

δe 
z δe + m 

δa 
z δa + m 

δr 
z δr + m 

w z 
z 

w z c 
2 V are the roll, yaw, and pitch moment coefficients, respectively. 

Furthermore, in ground wind tunnel experiments, it is difficult to simulate a high Mach flight environment, which may 

result in uncertainties in the aerodynamics parameters. Considering the uncertainties, the aerodynamic force and moment 

coefficients can be represented as: {
C i = ̄C i ( 1 + �F ) 
m j = ̄m j ( 1 + �M 

) 
(7) 

where i = L, D, Z, j = x, y, z , C̄ i and m̄ j denote the nominal values of the aerodynamic force and moment coefficients,

respectively. The fitting polynomial expressions of the aerodynamic force and moment coefficients can be found in [28 , 29] .

�F and �M 

represent the perturbation ranges of the aerodynamic force and moment coefficients, respectively. 

To facilitate the design of the attitude control system, the attitude angle state, angular rate state, and control input are

defined as � = [ α, β , γ s ] 
T , ω = [ w x ,w y ,w z ] 

T and u = [ δe , δa , δr ] 
T , respectively. And the aerodynamic force generated by

the deflection angles is negligible. The equations for the attitude kinematics and dynamics (3) - (4) can be rewritten in the

following affine nonlinear matrix form: {
˙ � = f � + g �ω + ��

˙ ω = f ω + g ω u + �ω 
(8) 

where �� and �ω represent the lumped disturbances in the attitude angle loop and angular rate loop, respectively, g � and 

g ω can be described as 

g � = 

[ − cos α tan β sin α tan β 1 

sin α cos α 0 

cos α sec β − sin α sec β 0 

] 

, g ω = 

⎡ 

⎣ 

QSbm 

δe 
x / I x QSbm 

δa 
x / I x QSbm 

δr 
x / I z 

QSbm 

δe 
y / I y QSbm 

δa 
y / I y QSbm 

δr 
y / I y 

QScm 

δe 
z / I z QScm 

δa 
z / I z QScm 

δr 
z / I z 

⎤ 

⎦ (9) 

f � = [ f α, f β, f γs ] 
T and f ω = [ f w x , f w y , f w z ] 

T can be described as ⎧ ⎪ ⎨ 

⎪ ⎩ 

f α = g cos θ cos γs / ( V cos β) − QS ̄C L,α/ ( mV cos β) 

f β = g cos θ sin γs /V − QS ̄C 
β
Z 
β cos β/ ( mV ) 

f γs 
= −g cos θ cos γs tan β/V + 

(
Q S ̄C 

β
Z 
β tan θ cos γs + Q S ̄C L,α( tan θ sin γs + tan β) 

)
/ ( mV ) ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

f w x 
= ( I y − I z ) w y w z / I x + QSb 

(
m 

β
x β + 

(
m 

w x 
x w x b + m 

w y 

x w y b 
)
/ ( 2 V ) 

)
/ I x 

f w y 
= ( I z − I x ) w z w x / I y + QSb 

(
m 

β
y β + 

(
m 

w x 
y w x b + m 

w y 

y w y b 
)
/ ( 2 V ) 

)
/ I y 

f w z 
= ( I x − I y ) w y w z / I z + QSc 

(
m z,α + m 

w z 
z w z c/ ( 2 V ) 

)
/ I z 

(10) 

�� = [ �α, �β, �γs ] 
T and �ω = [ �w x , �w y , �w z ] 

T can be described as ⎧ ⎨ 

⎩ 

�α = −QS �F C̄ L / ( mV cos β) + d α
�β = −QS �F C̄ Z cos β/ ( mV ) + d β
�γs 

= 

(
Q S �F C̄ Z tan θ cos γs + Q S �F C̄ L ( tan θ sin γs + tan β) 

)
/ ( mV ) + d γs { 

�w x 
= QSb �M 

m̄ x / I x + d w x 

�w y 
= QSb �M 

m̄ y / I y + d w y 

�w z 
= Q Sc �M 

m̄ z / I z − x cg 

(
−Q S �F C̄ D sin α − Q S �F C̄ L cos α

)
+ d w z 

(11) 

where d α , d β , d γs , d w x , d w y , and d w z denote the external disturbances. 

2.2. Mathematical model of the actuator 

This subsection describes the establishment of the mathematical model of the actuator faults and HQ. 

The effectiveness loss fault and bias fault commonly occur in the HRV, and thus, the general actuator fault model of the

HRV can be expressed as [20] 

u = λu c + ς (12) 
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Fig. 2. Mapping between q ( δm ) and δm when δm > 0. 

 

 

 

 

 

 

 

where u = [ δe , δa , δr ] 
T is the actual actuator deflection, u c = [ δec , δac , δrc ] 

T represents the desired control signal,

λ = diag { λe , λa , λr },(0 < λi ≤ 1, i = e, a, r ) denotes the effectiveness loss faults, and ς = diag { ς e , ς a , ς r } denotes the bias

faults. In this work, λi and ς i are represented by time-varying functions, which have a wider applicability. 

The HQ in the controller-to-actuator channel is defined as follows [30] : 

q ( δm 

) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δm,i sgn ( δm 

) , 
δm,i 

1+ τm 
< | δm 

| ≤ δm,i , 
˙ δm 

< 0 , or 

δm,i < | δm 

| ≤ δm,i 

1 −τm 
, ˙ δm 

> 0 

δm,i ( 1 + τm 

) sgn ( δm 

) , δmi < | δm 

| ≤ δm,i 

1 −τm 
, ˙ δm 

< 0 , or 
δm,i 

1 −τm 
< | δm 

| ≤ δm,i ( 1+ τm ) 
1 −τm 

, ˙ δm 

> 0 

0 , 0 ≤ | δm 

| < 

δm, min 

1+ τm 
, ˙ δm 

< 0 , or 
δm, min 

1+ τm 
≤ | δm 

| ≤ δm, min , 
˙ δm 

> 0 

q ( δm 

( t −) ) , ˙ δm 

= 0 

(13) 

where δm,i = ρ1 −i 
m 

δm, min with integer i = 1, 2, ���, m = e, a, r denotes the left elevon, right elevon, and rudder, respectively,

δm ,min > 0 denotes the size of the dead zone of q ( δm 

), 0 < ρm 

< 1 is a measure of the quantization density and used to

define τm 

= (1 − ρm 

)/(1 + ρm 

), δm 

( t −) denotes the actuator deflection at the last moment, and q ( δm 

) lies in the set {0,

±δm,i , ±δm,i (1 + τm 

)}. Fig. 2 shows the mapping relationship between q ( δm 

) and δm 

when δm 

> 0. 

Based on the quantization decomposition technique reported in [31] , the output q ( δm 

) of the HQ can be decomposed

into the following form: 

q ( δm 

) = H ( δm 

) δm 

+ L ( δm 

) (14) 

where 

H ( δm 

) = 

{
q ( δm 

) / δm 

, q ( δm 

) � = 0 

1 , q ( δm 

) = 0 

, L ( δm 

) = 

{
0 , q ( δm 

) � = 0 

−δm 

, q ( δm 

) = 0 

Lemma 1 [31] . In the decomposition specified in ( 14 ), the control coefficient H ( δm 

) and disturbance-like term L ( δm 

) satisfy the

following inequality: 

1 − τm 

≤ H ( δm 

) ≤ 1 + τm 

, | L ( δm 

) | ≤ δm, min (15) 

Considering the actuator faults and HQ and substituting (12) and (13) into (8) yields 

˙ ω = f ω + g ω 
(
λQ (u ) + ς 

)
+ �ω 

= f ω + g ω Q ( u ) + g ω 
((

λ − E 

)
Q ( u ) + ς 

)
+ �ω (16) 

where Q ( u ) = [ q ( δe ), q ( δa ), q ( δr )] 
T denotes the quantized input and E represents the identity matrix. 

Consequently, the control-oriented model can be represented as: {
˙ � = f � + g �ω + ��

˙ ω = f ω + g ω Q ( u ) + �ω f 

(17) 

where �ω f = g ω ( ( λ − E ) Q (u ) + ς ) + �ω = [ �w x f , �w y f , �w z f ] 
T denotes the lumped disturbances in the angular rate loop. 
147 



T. Wu, H. Wang, Y. Yu et al. Applied Mathematical Modelling 98 (2021) 143–160 

Fig. 3. Structure of the proposed controller. 

 

 

 

 

 

 

 

 

 

Assumption 1. [32] : The lumped disturbances �i ( i = �, ωf ) and their first-order derivatives are bounded, such that ‖ �i ‖ ≤
M i , ‖ ˙ �i ‖ ≤ L i . 

Control Objective: The control objective of this paper is to design a quantized fixed-time fault-tolerant scheme such 

that the system states can track the desired instructions �c and ω c within a fixed time in the presence of actuator faults,

uncertainties, and external disturbances and effectively reduce the communication load. 

3. Design of the quantized fixed-time FTC scheme 

This section describes the controller design process. The structure of the proposed controller is shown in Fig. 3 . According

to the time-scale separation and singular perturbation theory, the attitude system of an HRV can be divided into an attitude

angle control subsystem and angular rate control subsystem [32] . The attitude angle control subsystem tracks the attitude 

angle command and generates the virtual reference command for the angular rate control subsystem. The angular rate 

control subsystem tracks the virtual angular rate command generated by the former subsystem and generates the actuators’ 

deflection signal. Note that the actuator input signal is quantized by the HQ, and the actuator faults are considered in this

paper. Fig. 3 shows that the two control subsystems have similar control structures. Nonlinear first-order filters (NFFs) are 

employed to generate more realizable command signals and corresponding differential signals. Moreover, the "differential 

explosion" problem can be avoided in this manner. FESOs are introduced to estimate the lumped disturbances within a 

fixed time. Quantized fixed-time FTC laws (QFFCLs) are designed to ensure the closed-loop control performance. 

Notation 1. In this paper, for all x = [ x 1 , x 2 , ���, x n ] 
T ∈ R 

n × 1 , the symbol sig q (x ) denotes [ | x 1 | q · sgn ( x 1 ) , · · · , | x n | q · sgn ( x n ) ] T ,

where sgn (·) represents the sign function. 

3.1. Controller design for the attitude angle subsystem 

3.1.1. Design of the NFF 

Lemma 2 [ 33 ] . Consider the following nonlinear system: 

˙ σ = −k 1 sig 
q 1 (σ ) − k 2 sig 

q 2 (σ ) , σ (0) = σ0 (18) 

where q 1 > 1, 0 < q 2 < 1, k 1 , k 2 > 0. In this case, system (18) is fixed-time stable, and the settling time T ( σ 0 ) can be

bounded as follows: 

T ( σ0 ) ≤ T max = 

1 

k 1 (1 − q 1 ) 
+ 

1 

k 2 ( q 2 − 1) 
(19) 

To avoid the actuator saturation caused by drastic changes in the reference command ω̄ = [ ̄α, β̄, γ̄s ] 
T , the NFF is employed

to generate a more realizable command signal �c = [ αc , βc , γ sc ] 
T and corresponding differential signal ˙ �c , which are used

in the design of the QFFCL. 

τ�F 
˙ �c = − sig 

α�F ( �c − ω̄ ) − sig 
β�F ( �c − ω̄ ) (20) 

where τ�F is a small positive constant; α�F ∈ (0, 1), and β�F > 1. According to Lemma 2 , the NFF can ensure overall

fixed-time convergence [33] . The error of the NFF in the attitude angle subsystem can be defined as ε = �c − ω̄ . 
�
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3.1.2. Design of the FESO 

This subsection describes the design of the FESO used to estimate the lumped disturbances in the attitude angle subsys- 

tem within a fixed time. The FESO is formulated as follows [34] : ⎧ ⎪ ⎨ 

⎪ ⎩ 

˜ e � = 

ˆ � − �
·
ˆ � = f � + g �ω − μ�o1 sig 

α�o1 ( ̃  e �) − μ�o2 sig 
β�o1 ( ̃  e �) + 

ˆ ��·
ˆ �� = −μ�o3 sig 

α�o2 ( ̃  e �) − μ�o4 sig 
β�o2 ( ̃  e �) − χ�o sign ( ̃  e �) 

(21) 

where ˆ � and 

ˆ �� represent the estimates of the attitude angle � and lumped disturbances ��, respectively, ˜ e � denotes 

the estimation error, and α�o 1 ∈ (0, 1), β�o 1 > 1, α�o 2 = 2 α�o 1 − 1, β�o 2 = 2 β�o 1 − 1, χ�o > L �, and μ�oi > 0( i = 1, 2,

3, 4) are the observer parameters to be designed. 

Theorem 1. Suppose that the lumped disturbances �� satisfy Assumption 1 , and the FESO is designed as indicated in ( 21 ). The

lumped disturbances �� can be estimated within a fixed time by the FESO, and the upper bound on the convergence time T �o 

can be estimated as follows: 

T �o ≤
λmax ( ��1 ) 

( 1 −α�o1 ) 

λ�1 ( 1 − α�o1 ) 
+ 

1 

λ�2 ( β�o1 − 1 ) � �
( β�o1 −1 ) 

(22) 

where λ1 = λmin ( Q �1 )/ λmax ( ��1 ), λ2 = λmin ( Q �2 )/ λmax ( ��2 ), λmin ( ��2 ) ≥ � � > 0 , and Q �1 , ��1 , Q �2 , ��2 are positive

definite matrices that satisfy 

��1 P �1 + P �1 
T ��1 = −Q �1 , ��2 P �2 + P �2 

T ��2 = −Q �2 

P �1 = 

[
−μ�o1 1 

−μ�o3 0 

]
, P �2 = 

[
−μ�o2 1 

−μ�o4 0 

]
(23) 

Proof. First, we define the following error variables: {
˜ e � = 

ˆ � − �
˜ �� = 

ˆ �� − ��

(24) 

By obtaining the derivative of (21) , the error dynamic system can be defined as follows: ⎧ ⎨ 

⎩ 

·
˜ e 
�

= 

˜ �� − μ�o1 sig 
α�o1 ( ̃  e �) − μ�o2 sig 

β�o1 ( ̃  e �) 
. 

˜ �
�

= −μ�o3 sig 
α�o2 ( ̃  e �) − μ�o4 sig 

β�o2 ( ̃  e �) − χ�o sign ( ̃  e �) − ˙ ��

(25) 

According to the convergence analysis of the fixed-time non-recursive observer reported in [35] , the error vector e =
[ ̃  e �, ˜ ��] T is expected to converge to the origin in the fixed time. That is, the lumped disturbances �� can be estimated 

within the fixed time T �o . This completes the proof of Theorem 1 . 

3.1.3. Design of the QFFCL 

This subsection describes the design of a novel QFFCL for the attitude angle subsystem to ensure the control performance. 

First, based on the fixed-time theory, the non-singular fixed-time terminal sliding mode surface is intuitively designed 

as follows: 

σ� = κ� + 

∫ 
k �c1 sig 

α�c1 ( κ�) + k �c2 sig 
β�c1 ( κ�) d 

t (26) 

where κ� = � − �c = [ κα, κβ, κγs ] 
T ∈ R 

3 ×1 represents the tracking error vector in the attitude angle loop and k �c 1 , k �c 2 >

0, α�c 1 ∈ (0, 1), and β�c 1 > 1 are the controller parameters. 

Remark 1. According to (26) , when ˙ σ�= 0 , 

˙ κ� = −k �c1 sig 
α�c1 ( κ�) − k �c2 sig 

β�c1 ( κ�) (27) 

According to Lemma 2 , in the sliding phase, the tracking error κ� can converge within a fixed time, and the upper bound

on the convergence time can be calculated as follows: 

T �c1 ≤
1 

k �c2 ( β�c1 − 1 ) 
+ 

1 

k �c1 ( 1 − α�c1 ) 
(28) 

Combining (17) , (21) , and (26) , the QFFCL for the attitude angle subsystem can be designed as follows: 

ω̄ = −g −1 
�

⎡ 

⎣ 

f � + 

ˆ �� − ˙ �c 

+ 

(
k �c1 sig 

α�c1 ( κ�) + k �c2 sig 
β�c1 ( κ�) 

+ k �c3 sig 
α�c2 ( σ�) + k �c4 sig 

β�c2 ( σ�) 

)⎤ 

⎦ (29) 
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Remark 2. Focusing on the term g � in (8) , it can be noted that det ( g �) = − sec β , and g � is irreversible when β= ± 90 °.
However, β is restricted to a neighborhood of zero in the reentry phase of the hypersonic vehicle. In other words, g � is

reversible, and the control signal ω̄ is non-singular. 

3.2. Controller design for the angular rate subsystem 

3.2.1. Design of the NFF 

In the angular rate subsystem, the NFF is used to avoid the differential explosion problem. Similar to (20) , the NFF is

formulated as follows: 

τωF ˙ ω c = − sig 
αωF ( ω c − ω̄ ) − sig 

βωF ( ω c − ω̄ ) (30) 

where ω̄ denotes the virtual reference command generated by the attitude angle control subsystem, ω c represents the new 

virtual control input after filtering, ˙ ω c denotes the corresponding differential signal of ω c ; τωF is a small positive constant, 

αωF ∈ (0, 1), and βωF > 1. The error of the NFF in the angular rate subsystem can be defined as ε ω = ω c − ω̄ . 

Remark 3. In this paper, the NFFs (20) and (30) are utilized to generate more realizable commands, generate the corre-

sponding differential signals, and solve the differential explosion problem. The tuning rules for the parameters in the NFF 

are defined as follows: decreasing τ i , αi , and increasing β i ( i = �F , ωF ) accelerates the convergence and enhances the accu-

racy of the NFF. However, an excessively small τ i , αi and large β i may render the NFF more sensitive to measurement noises

and high-frequency dynamics, thereby affecting the stability of the system. Hence, the balance between the sensitivity and 

prompt responsiveness of the NFF should be considered in practical applications. 

3.2.2. Design of the FESO 

In the angular rate subsystem, the FESO is designed to estimate the lumped disturbances �ωf within a fixed time and is

formulated as follows: ⎧ ⎪ ⎨ 

⎪ ⎩ 

˜ e ω = ˆ ω − ω 

·
ˆ ω = f ω + g ω Q (u ) − μωo1 sig 

αωo1 ( ̃  e ω ) − μωo2 sig 
βωo1 ( ̃  e ω ) + 

ˆ �ω f ·
ˆ �ω f = −μωo3 sig 

αωo2 ( ̃  e ω ) − μωo4 sig 
βωo2 ( ̃  e ω ) − χωo sign ( ̃  e ω ) 

(31) 

where ˆ ω and 

ˆ �ω f represent the estimates of the angular rate ω and lumped disturbances �ωf respectively; e ω denotes the 

estimation error; and αωo 1 ∈ (0, 1), βωo 1 > 1, αωo 2 = 2 αωo 1 − 1, βωo 2 = 2 βωo 1 − 1, χωo > L ωf , and μωoi > 0( i = 1, ���, 4)

are parameters to be designed. 

According to Theorem 1 , the lumped disturbances �ωf can be estimated within a fixed time by using the FESO, and the

upper bound on the convergence time T ωo can be estimated as follows: 

T ωo ≤ λmax ( �ω1 ) 
( 1 −αωo1 ) 

λω1 ( 1 − αωo1 ) 
+ 

1 

λω2 ( βωo1 − 1 ) � ω 
( βωo1 −1 ) 

(32) 

where λω1 = λmin ( Q ω1 )/ λmax ( �ω1 ), λω2 = λmin ( Q ω2 )/ λmax ( �ω2 ), λmin ( �ω2 ) ≥ ϖω > 0, and Q ω1 , �ω1 , Q ω2 and �ω2 are posi-

tive definite matrices that satisfy 

�ω1 P ω1 + P ω1 
T �ω1 = −Q ω1 , �ω2 P ω2 + P ω2 

T �ω2 = −Q ω2 

P ω1 = 

[
−μωo1 1 

−μωo3 0 

]
, P ω2 = 

[
−μωo2 1 

−μωo4 0 

]
(33) 

Remark 4. The tuning rules for the FESO parameters defined in (21) and (31) can be described as follows: larger

μi 1 , μi 2 , μi 3 , μi 4 , β i 1 , β i 2 and smaller αi 1 , αi 2 ( i = �o , ωo ) accelerate the convergence. However, an excessively large

μi 1 , μi 2 , μi 3 , μi 4 , β i 1 , β i 2 and small αi 1 , αi 2 may lead to a large overshoot. Hence, the balance between the overshoot and prompt

responsiveness of the FESO should be considered in practical applications. 

3.2.3. Design of the QFFCL 

Similar to the attitude angle subsystem, the sliding mode surface of the angular rate subsystem can be designed as 

follows: 

σω = κω + 

∫ 
k ωc1 sig 

αωc1 ( κω ) + k ωc2 sig 
βωc1 ( κω ) d 

t (34) 

where κω = ω − ω c = [ κw x , κw y , κw z ] 
T ∈ R 

3 ×1 represents the tracking error vector in the angular rate loop and k ωc 1 , k ωc 2 >

0, αωc 1 ∈ (0, 1), βωc 1 > 1 are the controller parameters. 

According to Lemma 2 and Remark 1 , when ˙ σω = 0 , 

˙ κω = −k ωc1 sig 
αωc1 ( κω ) − k ωc2 sig 

βωc1 ( κω ) (35) 
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Algorithm 1 

Implementation Framework of the Proposed Control Scheme. 

1: Initialize NFFs ((20) and (30)), FESOs ((21) and (31)), QFFCLs ((29) and (37)), and HQ (13). 

2: At each sampling time t i ,i = 0, 1, ���

3: (1) Obtain the current desired command ω̄ and HRV states �, ω. 

4: (2) Acquire the filtered command �c and differential signal ˙ �c by using (20). 

5: (3) Obtain the estimation of the lumped disturbances ˆ �� by using (21). 

6: (4) Calculate the tracking error κ� and obtain the virtual angular rate command ω̄ by using (29). 

7: (5) Obtain the filtered command ω c and differential signal ˙ ω c by using (30). 

8: (6) Get the estimate of the lumped disturbances ˆ �ω f by using (31). 

9: (7) Calculate the tracking error κω and obtain the desired control instruction u c by using (37). 

10: (8) The HQ module determines whether the control inputs must be updated using (13) and returns to step (1). 

 

 

 

 

 

 

 

 

 

 

 

 

The tracking error κω can converge within a fixed time, and the upper bound of the convergence time can be calculated

as follows: 

T ωc1 ≤ 1 

k ωc2 ( βωc1 − 1 ) 
+ 

1 

k ωc1 ( 1 − αωc1 ) 
(36) 

Based on the quantization decomposition technique expressed in (14) and in combination with (17) , (31) , and (34) , the

QFFCL for the angular rate subsystem can be designed as follows: 

u c = −τω · g −1 
ω 

⎡ 

⎣ 

f ω + 

ˆ �ω f − ˙ ω c 

+ 

(
k ωc1 sig 

αωc1 ( κω ) + k ωc2 sig 
βωc1 ( κω ) 

+ k ωc3 sig 
αωc2 ( σω ) + k ωc4 sig 

βωc2 ( σω ) 

)⎤ 

⎦ (37) 

where τω = diag { 1 / ( 1 − τe ) , 1 / ( 1 − τa ) , 1 / ( 1 − τr ) } . 
Remark 5. In this paper, the QFFCLs (29) and (37) are adopted to ensure that the system converges within a fixed time. The

exponential coefficients β i 1 and β i 2 ( i = �c , ωc ) drive the system to converge rapidly when the state is far from the origin,

and the exponential coefficients αi 1 and αi 2 ( i = �c , ωc ) drive the system to converge rapidly when the state is close to the

origin. The tuning rules for the parameters in the QFFCL can be defined as follows: larger k i 1 , k i 2 , k i 3 , k i 4 , β i 1 , β i 2 and smaller

αi 1 , αi 2 accelerate the convergence and reduce the steady system error. However, an excessively large k i 1 , k i 2 , k i 3 , k i 4 , β i 1 , β i 2 and

small αi 1 , αi 2 may lead to a large control input, which may exceed the actual physical constraints of the HRV. Hence, the

tradeoff between the control effort and prompt responsiveness of the QFFCL must be considered in practical applications. 

The abovementioned sections described the design process of the proposed controller. For convenient expression, the 

detailed implementation procedure of the proposed control scheme is summarized as the pseudocode Algorithm 1 . 

3.3. Stability analysis 

Lemma 3. [ 36 ]: Considering the universal nonlinear system ˙ x = f (x (t)) , x (0) = x 0 , if there exists a continuous positive definite

and radially unbounded Lyapunov function V ( x ): R 

n × 1 → R and parameters m 1 , m 2 , p 1 , p 2 , and �V satisfying m 1 , m 2 > 0, p 1 
> 1 , 0 < p 2 < 1 , 0 < �V < ∞ , if ˙ V (x ) ≤ −m 1 V (x ) p 1 − m 2 V (x ) p 2 + �V , then the system is considered to be practical fixed-time

stable, and the residual set of the trajectory � and settling time T can be defined as 

�= 

{ 

lim 

t→ T 
x | V (x ) ≤ min 

[ (
�V 

m 1 (1 −θ ) 

) 1 
p 1 , 

(
�V 

m 2 (1 −θ ) 

) 1 
p 2 

] } 

T ≤ 1 
m 1 θ ( p 1 −1 ) 

+ 

1 
m 2 θ ( 1 −p 2 ) 

(38) 

where 0 < θ < 1. 

Lemma 4. [ 37 ]: For x i ∈ R, i = 1, 2, ���, N, q 1 > 1, 0 < q 2 < 1 , then (∑ N 
i =1 | x i | 

)q 1 ≤ N 

q 1 −1 
∑ N 

i =1 | x i | q 1 (∑ N 
i =1 | x i | 

)q 2 ≤ ∑ N 
i =1 | x i | q 2 

(39) 

Theorem 2. Suppose that Assumption 1 is valid. If the HRV attitude control system is described by ( 17 ), the HQ is described by

( 13 ), the FESOs are described by ( 21 ) and ( 31 ), and the QFFCLs are described by ( 29 ) and ( 37 ), the closed-loop system is practical

fixed-time stable, and the sliding mode σ i and tracking error κi ( i = �, ω) converge into the small regions in the fixed time . 

Proof. The Lyapunov function is selected as follows: 

V = 

1 

σ�
T σ� + 

1 

σω 
T σω + 

1 

ε �
T ε � + 

1 

ε ω 
T ε ω + 

1 ˜ �T 
�

˜ �� + 

1 ˜ �T 
ω f 

˜ �ω f (40) 

2 2 2 2 2 2 
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The time derivative of V is 

˙ V = σ�
T ˙ σ� + σω 

T ˙ σω + ε �
T ˙ ε � + ε ω 

T ˙ ε ω + 

˜ �T 
�

·
˜ �
�

+ 

˜ �T 
ω f 

·
˜ �

ω f 
(41) 

First, recalling Theorem 1 , when t > T o = max ( T �o , T ωo ), ˜ ��= 0 , ˜ �ω f = 0 . Then, based on the definitions of ε � and ε ω , one

can obtain that 

˙ ε �= − sig 
α�F ( ε �) 

τ�F 

− sig 
β�F ( ε �) 

τ�F 

−
·
ω̄ , ˙ ε ω = − sig 

αωF ( ε ω ) 

τωF 

− sig 
βωF ( ε ω ) 

τωF 

−
·
ω̄ (42) 

In practical engineering scenarios, the command signal ω̄ is given by the guidance algorithm in which the first-order 

derivative of ω̄ is bounded, such that ‖ ·ω̄ ‖ ≤ ς � with a positive constant ς �. According to (29) and Remark 2 , it turns out

that the first-order derivative of ω̄ is also bounded, such that ‖ ·ω̄ ‖ ≤ ς ω with a positive constant ς ω . Hence, we can get 

˙ ε � ≤ − sig 
α�F ( ε �) 

τ�F 

− sig 
β�F ( ε �) 

τ�F 

+ υ�, ˙ ε ω ≤ − sig 
αωF ( ε ω ) 

τωF 

− sig 
βωF ( ε ω ) 

τωF 

+ υω (43) 

where υ� = [ ς �ς �ς �] T , υω = [ ς ω ς ω ς ω ] 
T . 

Then, recalling Lemma 1 , substituting (29) , (37) , and (43) into (41) yields 

˙ V ≤ σ�
T 

[ 
−k �c3 sig 

α�c2 ( σ�) − k �c4 sig 
β�c2 ( σ�) 

] 
+ σω 

T 

[ 
−k ωc3 sig 

αωc2 ( σω ) − k ωc4 sig 
βωc2 ( σω ) 

] 
+ ε �

T 

(
− sig α�F ( ε �) 

τ�F 
− sig β�F ( ε �) 

τ�F 
+ υ�

)
+ ε ω 

T 

(
− sig αωF ( ε ω ) 

τωF 
− sig βωF ( ε ω ) 

τωF 
+ υω 

) (44) 

Using Young’s inequality, the following expression can be derived: 

ε �
T υ� ≤ ε �

T ε �

2 

+ 

υ�
T υ�

2 

, ε ω 
T υω ≤ ε ω 

T ε ω 

2 

+ 

υω 
T υω 

2 

(45) 

Setting αF = α�F = αωF , βF = β�F = βωF , and τ= τ�F = τωF , invoking (45) in (44) and merging the right side of (44) yields

˙ V ≤ −k �c3 

(
σ�

T σ�

) α�c2 +1 

2 − k �c4 

(
σ�

T σ�

) β�c2 +1 

2 − k ωc3 

(
σω 

T σω 

) αωc2 +1 

2 − k ωc4 

(
σω 

T σω 

) βωc2 +1 

2 

−
(

1 
τ − 1 

)(
ε �

T ε �

) αF +1 

2 −
(

1 
τ − 1 

)(
ε �

T ε �

) βF +1 

2 −
(

1 
τ − 1 

)(
ε ω 

T ε ω 

) αF +1 

2 −
(

1 
τ − 1 

)(
ε ω 

T ε ω 

) βF +1 

2 

+ 

υ�
T υ�

2 
+ 

υω 
T υω 
2 

(46) 

Setting αF = αic 2 = αc 2 and βF = β ic 2 = βc 2 ( i = �, ω) yields 

˙ V ≤ −A 1 

[(
σ�

T σ�

) αc2 +1 

2 + 

(
σω 

T σω 

) αc2 +1 

2 

]
− A 2 

[(
σ�

T σ�

) βc2 +1 

2 + 

(
σω 

T σω 

) βc2 +1 

2 

]

− A 3 

[(
ε �

T ε �

) αc2 +1 

2 + 

(
ε ω 

T ε ω 

) αc2 +1 

2 

]
− A 3 

[(
ε �

T ε �

) βc2 +1 

2 + 

(
ε ω 

T ε ω 

) βc2 +1 

2 

]
+ 

υ�
T υ�

2 
+ 

υω 
T υω 
2 

(47) 

where A 1 = min( k �c 3 , k ωc 3 ), A 2 = min ( k �c 4 , k ωc 4 ), and A 3 = 1/ τ − 1. 

Then, using Lemma 4 , we can obtain 

˙ V ≤ −A 1 

(
σ�

T σ� + σω 
T σω 

) αc2 +1 

2 − 2 

1 −βc2 
2 A 2 

(
σ�

T σ� + σω 
T σω 

) βc2 +1 

2 

− A 3 

(
ε �

T ε � + ε ω 
T ε ω 

) αc2 +1 

2 − 2 

1 −βc2 
2 A 3 

(
ε �

T ε � + ε ω 
T ε ω 

) βc2 +1 

2 + 

υ�
T υ�

2 
+ 

υω 
T υω 
2 

≤ −B 1 

(
σ�

T σ� + σω 
T σω + ε �

T ε � + ε ω 
T ε ω 

) αc2 +1 

2 − B 2 

(
σ�

T σ� + σω 
T σω + ε �

T ε � + ε ω 
T ε ω 

) βc2 +1 

2 

+ 

υ�
T υ�

2 
+ 

υω 
T υω 
2 

≤ −C 1 V 

αc2 +1 

2 − C 2 V 

βc2 +1 

2 + �V 

(48) 

where B 1 = min ( A 1 , A 3 ), B 2 = min ( 2 
1 −βc2 

2 A 2 , 2 
1 −βc2 

2 A 3 ) 2 
1 −βc2 

2 , C 1 = 2 
αc2 +1 

2 min ( k �c3 , k ωc3 ) , C 2 = 2 min ( 2 
βc2 −1 

2 A 2 , 2 
βc2 −1 

2 A 3 ) ,

and �V = ( υ�
T υ� + υω 

T υω ) / 2 . 

According to Lemma 3 , we can obtain that the system is fixed-time stable. Furthermore, the 

residual set of the trajectory �σ and settling time T σ can be given by �σ = { li m t→ T σ x | V (x ) ≤
min ( [ �V / ( C 1 ( 1 − θ ))] 2 / ( αc2 +1) , [ �V / ( C 2 (1 − θ ))] 2 / ( βc2 +1) ) } , T σ ≤ 1/( m 1 θ (( αc 2 − 1)/2)) + 1/( m 2 θ ((3 − βc 2 )/2)). Thus, the 

proof of Theorem 2 is complete. 

4. Simulation and discussion 

In this section, comparative simulation and Monte Carlo simulation are performed to verify the effectiveness, superiority, 

and robustness of the proposed control scheme. The geometrical configuration and parameters of the HRV are shown in 

Fig. 2 and listed in Table 1 , respectively. 
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Table 2 

Controller parameters. 

Module Parameters 

NFF Eqs. (20) and ( (30) ) τ i = 0.1, αi = 0.8, β i = 1.2( i = �F , ωF ) 

FESO Eqs. (21) and ( (31) ) 

αio1 = 0 . 8 , βio1 = 1 . 2(i = �, ω) 

μ�o1 = μ�o3 = 10 , μ�o2 = μ�o4 = 50 , χs = 50 

μωo1 = μωo3 = 10 , μωo2 = μωo4 = 20 , χω = 100 

HQ ( Eqs. (13) ) ρm = 0.95, δm ,min = 0.3( m = e, a, r ) 

QFFCL Eqs. (29) and (37) 

αc2 = 0 . 8 , βc2 = 1 . 2 

k �c1 = 0 . 6 , k �c2 = 0 . 9 , k �c3 = 0 . 5 , k �c4 = 0 . 5 

k ωc1 = 2 , k ωc2 = 4 , k ωc3 = 0 . 5 , k ωc4 = 0 . 9 

HOSMO-ADRC [38] 
C 11 = C 12 = C 13 = 0 . 05 , C 21 = C 22 = C 23 = 0 . 8 

k is = 0 . 56 , k ps = 1 . 5 , k i f = 2 . 25 , k p f = 3 

Finite-time SMC [21] 

l 1 = 0 . 5 , l 2 = 0 . 15 , l 3 = 0 . 1 , p = 1 . 5 

l 4 = 1 . 6 , l 5 = 0 . 15 , l 6 = 1 . 2 

k 1 = 1 . 2 , k 2 = 1 . 5 , r 1 = 0 . 4 , r 2 = 0 . 8 

ESO [32] w o 1 = 25 I 3 , w = 50 I 3 

 

 

 

 

 

 

 

 

4.1. Comparative simulation 

In this subsection, to reveal the effectiveness and superiority of the proposed controller, the high order sliding mode 

observer-based active disturbance rejection control (HOSMO-ADRC) fault-tolerant scheme [38] and finite-time sliding mode 

control (Finite-time SMC) fault-tolerant scheme [21] are considered to perform the comparative analysis. Moreover, the ESO 

[32] and the HOSMO [38] are adopted to demonstrate the efficacy of the FESO. 

The initial conditions of the HRV are as follows: H = 52 . 1 km , V = 3608 m 

/s , α = β = γ s = 0.1 °, and

w x = w y = w z = 0.1 °/ s . The controller parameters are given in Table 2 . The aerodynamic coefficients deviate from the

nominal value by + 20%, that is, �F = �M 

= 20%. The external disturbances are formulated as follows: 

d � = 

[ 

0 . 01 + 0 . 01 sin(0 . 2 t )cos(0 . 3 t ) − 0 . 01 sin(0 . 2t) exp (−0 . 02 t) 
0 . 01 − 0 . 01 sin(0 . 3 t )cos(0 . 2 t ) + 0 . 01 sin(0 . 2t) exp (−0 . 02 t) 
0 . 01 + 0 . 01 sin(0 . 2 t )cos(0 . 3 t ) − 0 . 01 sin(0 . 2t) exp (−0 . 02 t) 

] 

d ω = 2 d �

(49) 

where d �= [ d α, d β, d γs ] 
T , d ω = [ d w x , d w y , d w z ] 

T . 

The actuator faults are set as follows: 

λe = 

{ 

1 t ≤ 10 

1 − 0 . 1 · ( t − 10 ) 10 < t ≤ 14 

0 . 6 t > 14 

, ς e = 

{
0 

◦t ≤ 24 

1 

◦t > 24 

λa = 

{ 

1 t ≤ 14 

1 − 0 . 1 · ( t − 14 ) 14 < t ≤ 18 

0 . 6 t > 18 

, ς a = 

{
0 

◦t ≤ 24 

−1 

◦t > 24 

λr = 

{ 

1 t ≤ 18 

1 − 0 . 1 · ( t − 18 ) 18 < t ≤ 22 

0 . 6 t > 22 

, ς r = 

{
0 

◦t ≤ 24 

1 

◦t > 24 

(50) 

The comparison curves of the attitude angle tracking performance and tracking error are shown in Figs. 4 and 5 . It is

not difficult to find from Fig. 4 that the attitude angle subsystem exhibits a higher convergence speed and tracking accuracy

when using the proposed controller, compared to those when using the HOSMO-ADRC and Finite-time SMC scheme. Espe- 

cially, as can be seen from Fig. 5 , when the bias faults ς i ( i = e, a, r ) occur at t = 24 s , significant tracking error appears in

the attitude angle subsystem. The proposed FTC scheme can accomplish attitude tracking more effectively and rapidly than 

the two existing FTC schemes. 

Figs. 6 and 7 show the comparison curves of the angular rate tracking performance and tracking error. It is also inter-

esting to observe from Figs. 6 and 7 that the proposed controller demonstrates a superior control performance even in the

presence of uncertainties, external disturbances, and actuator faults compared with the two FTC schemes. 

The mean absolute error (Mean-AE) and max absolute error (Max-AE) indexes presented in Table 3 are considered to 

evaluate the control performances of the three control methods more clearly and quantitatively. The Mean-AE and Max-AE 

indexes of the proposed controller are smaller than those of the other two methods. Hence, the proposed controller exhibits 

a higher steady-state control performance and transient control performance than the other two methods. 

Figs. 8 and 9 show the comparison of the estimation performance of the ESO, HOSMO, and FESO in the attitude angle

subsystem and angular rate subsystem, respectively. It is evident that compared with the asymptotic-convergent ESO and 

finite-time-convergent HOSMO, the proposed FESO exhibits a higher estimation performance under the application of the 

fixed-time convergence theory. That is, the FESO can compensate for the negative effect of actuator faults, uncertainties, and 

external disturbances within the allowable time for recovery from a fault scenario. 
153 



T. Wu, H. Wang, Y. Yu et al. Applied Mathematical Modelling 98 (2021) 143–160 

Fig. 4. Comparison curves of the attitude angle tracking performance. 

Fig. 5. Comparison curves of attitude angle tracking error. 

Table 3 

Comparison of control performance indexes of three control methods. 

Index Channel QFFCL HOSMO-ADRC Finite-time SMC 

Mean- 

AE 

α 0.0324 0.1721 0.1672 

β 0.0080 0.0342 0.1002 

γ s 0.0149 0.2171 0.1073 

Total 0.0553 0.4234 0.3747 

Max- 

AE 

α 0.5002 2.1185 0.7424 

β 0.2476 0.3519 0.2986 

γ s 0.2603 0.4041 0.3161 

Total 1.0081 2.8745 1.3571 
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Fig. 6. Comparison curves of the angular rate tracking performance. 

Fig. 7. Comparison curves of angular rate tracking error. 

 

 

 

 

 

The curves of the response and number of communication events of the actuators are shown in Figs. 10-12 . It can be

noted that the HQ reduces the communication load by changing the continuous control signals into discrete quantized 

signals. Considering the δr − time curve in Fig. 12 as an example, when the time t ranges from 19.7 to 20.1 s, as shown

by the red dotted line, the control signal without the HQ needs to be transmitted to the actuator module in real time

within each control cycle. However, as shown by the blue dotted line, under the effect of the HQ, the continuous control

signal is divided into a segmented control signal. In other words, the control signal needs to be transmitted to the actuator

module only when the segmented control signal changes, thereby effectively reducing the number of communication events, 

which makes the proposed approach more suitable for situations in which the communication bandwidth and resources are 

limited. Similarly, the HQ significantly reduces the communication times and load, as indicated by the curves of the number 

of communication events. 
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Fig. 8. Observer estimated curves of �� . 

Fig. 9. Observer estimated curves of �ωf . 

 

 

 

The comparison of the Mean-AE index and communication time of the QFFCL with and without the HQ is presented in

Table 4 . It can be quantitatively found that the number of communication events reduces by 35.93% under the effect of the

HQ; meanwhile, under the effect of the proposed QFFCL, the total Mean-AE index increases by not even 2.79%. Therefore, 

the existence of the HQ in the proposed control scheme can effectively reduce the communication load with a finite loss in

tracking accuracy. 

4.2. Monte Carlo simulation 

As described in this subsection, Monte Carlo simulations involving 300 iterations are performed to illustrate the robust- 

ness of the proposed QFFCL against aerodynamic coefficient perturbations, external disturbances, different initial conditions 

for the attitude angle, and angular rate, and actuator faults. 

The initial conditions for the height and velocity of the HRV are H = 52 . 1 km , V = 3608 m 

/s , respectively. 
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Fig. 10. Curves of the response and number of communication events of δe . 

Fig. 11. Curves of the response and number of communication events of δa . 

Table 4 

Comparison of Mean-AE and communication times of QFFCL with and without the HQ. 

Index Channel QFFCL (with HQ) QFFCL (without HQ) Increment (%) 

Mean-AE α 0.0324 0.0317 + 2.21 

β 0.0080 0.0077 + 2.60 

γ s 0.0149 0.0144 + 3.47 

Total 0.0553 0.0538 + 2.79 

Number of communication events δe 1049 1500 −30.07 

δa 1011 1500 −32.60 

δr 823 1500 −45.13 

Total 2883 4500 −35.93 
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Fig. 12. Curves of the response and number of communication events of δr . 

Fig. 13. Statistical charts of the Max-AE index for the Monte Carlo results. 

 

 

 

 

 

 

 

The initial value ranges for the attitude angle � and angular rate ω are set as [0 °, 0.3 °] and [0 °/ s , 0.3 °/ s ], respectively.

The range of aerodynamic coefficient perturbations �F and �M 

are set as [ − 20%, + 20%]. The external disturbances d � and

d ω are formulated as indicated in (41) . The ranges of λi and ς i ( i = e, a, r ) are set as [0.6, 1] and [ − 1 °, 1 °], respectively.

In the Monte Carlo simulation, the relevant state initial values, coefficient perturbations, and fault parameters are randomly 

selected in the abovementioned ranges. 

To more clearly illustrate the Monte Carlo results, the Mean-AE and Max-AE indexes of the attitude angle in 300 runs of

the Monte Carlo simulations are shown in Figs. 13 and 14 . It can be found that the attitude angle can track the command

signal with a high tracking performance when driven by the proposed controller. In Table 5 , by comparing the integer

average of the number of communication events in the controller-to-actuator channel of the results of 300 runs of Monte 

Carlo simulations, it can be observed that the number of communication events is reduced by 31.62% under the effect of
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Fig. 14. Statistical charts of the Mean-AE index for the Monte Carlo results. 

Table 5 

Comparison of the Monte Carlo results of the number of communication events of the QFFCL with and without the HQ. 

Index Channel QFFCL (with HQ) QFFCL (without HQ) Increment (%) 

Number of communication events (Integer 

average of 300 Monte Carlo results) 

δe 1043 1500 −30.47 

δa 1055 1500 −29.67 

δr 979 1500 −34.73 

Total 3077 4500 −31.62 

 

 

the HQ, which demonstrates the effectiveness of the HQ. In summary, the Monte Carlo simulation results demonstrate the 

robustness and effectiveness of the proposed control scheme. 

5. Conclusion 

To address the attitude tracking problem of hypersonic reentry vehicles (HRVs), a quantized fixed-time fault-tolerant at- 

titude control scheme is proposed. First, the model of the HRV is established in the presence of time-varying actuator faults,

uncertainties, external disturbances, signal quantization, and limited communication capacity. Then, fixed-time extended 

state observers are employed to estimate the lumped disturbances within a fixed time. Moreover, the quantized fixed-time 

fault-tolerant control laws are designed to guarantee the control performance. The simulation results illustrate the superior- 

ity and robustness of the proposed control strategy. More specifically, by comparing with the mean absolute error and max 

absolute error indexes of the comparison methods [21 , 38] , the performance of the proposed control scheme is improved

by more than 25.71%. Under the effect of the hysteresis quantization mechanism, the number of communication events is 

reduced by about 31.62%, which effectively reduces the communication load and saves communication resources. 

In addition, we intend to consider the following directions in the future: 

(1) To consider the real health statuses of the actuators, a real-time fault-diagnosis-based fault-tolerant control scheme 

for HRVs will be further studied. 

(2) Some issues in the actual control process, such as sensor noise and transmission delay, will be further considered. 

(3) A practical testing platform composed of a server, an industrial PC, and a high-value embedded controller will be 

established in the future, and related flight tests will be carried out to validate the performance of the proposed 

control strategy. 

Acknowledgements 

The authors especially like to thank the Editor-in-Chief, the Associate Editor, and the anonymous reviewers for their 

comments and suggestions that helped to improve the paper significantly. 
159 



T. Wu, H. Wang, Y. Yu et al. Applied Mathematical Modelling 98 (2021) 143–160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work is funded in part by the Aeronautical Science Foundation of China under Grant no. 2018ZC51031, in part by

the National Natural Science Foundation of China under Grant no. 61673042. This research is also supported by the high- 

performance computing (HPC) resources at Beihang University. 

References 

[1] Z. Guo , J. Zhou , J. Guo , J. Cieslak , J. Chang , Coupling-Characterization-Based Robust Attitude Control Scheme for Hypersonic Vehicles, IEEE Trans. Ind.
Electron. 64 (2017) 6350–6361 . 

[2] Y. Shi , X. Shao , W. Zhang , Quantized learning control for flexible air-breathing hypersonic vehicle with limited actuator bandwidth and prescribed

performance, Aerosp. Sci. Technol. 97 (2020) 105629 . 
[3] X. Shao , H. Wang , Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties, ISA

Trans 54 (2015) 27–38 . 
[4] X. Bu , X. Wu , R. Zhang , Z. Ma , J. Huang , Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle,

J. Frankl. Inst. 352 (2015) 1739–1765 . 
[5] H. Sun , S. Li , C. Sun , Finite time integral sliding mode control of hypersonic vehicles, Nonlinear Dyn 73 (2013) 229–244 . 

[6] M.V. Basin , P. Yu , Y.B. Shtessel , Hypersonic missile adaptive sliding mode control using finite- and fixed-time observers, IEEE Trans. Ind. Electron. 65

(2018) 930–941 . 
[7] L. Fiorentini , A. Serrani , M.A. Bolender , D.B. Doman , Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles, J. Guid. Control

Dyn. 32 (2009) 402–417 . 
[8] H.-.N. Wu , S. Feng , Z.-.Y. Liu , L. Guo , Disturbance observer based robust mixed H2/H ∞ fuzzy tracking control for hypersonic vehicles, Fuzzy Sets Syst

306 (2017) 118–136 . 
[9] Y. Wang , X. Yang , H. Yan , Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information, IEEE Trans. Ind.

Electron. 66 (2019) 9439–9447 . 

[10] B. Xu , D. Wang , Y. Zhang , Z. Shi , DOB-based neural control of flexible hypersonic flight vehicle considering wind effects, IEEE Trans. Ind. Electron. 64
(2017) 8676–8685 . 

[11] R. Chai , A. Tsourdos , A. Savvaris , Y. Xia , S. Chai , Real-time reentry trajectory planning of hypersonic vehicles: a two-step strategy incorporating fuzzy
multiobjective transcription and deep neural network, IEEE Trans. Ind. Electron. 67 (2020) 6904–6915 . 

[12] R. Chai , A. Tsourdos , A. Savvaris , S. Chai , Y. Xia , C.L.P. Chen , Six-DOF spacecraft optimal trajectory planning and real-time attitude control: a deep
neural network-based approach, IEEE Trans. Neural Netw. Learn. Syst. 31 (2020) 5005–5013 . 

[13] R. Chai , A. Tsourdos , A. Savvaris , S. Chai , Y. Xia , C.L.P. Chen , Design and implementation of deep neural network-based control for automatic parking

maneuver process, IEEE Trans. Neural Netw. Learn. Syst. (2020) 1–14 . 
[14] X. Yu , Z. Liu , Y. Zhang , Fault-tolerant flight control design with finite-time adaptation under actuator stuck failures, IEEE Trans. Control Syst. Technol.

25 (2017) 1431–1440 . 
[15] C. Wang , L. Guo , C. Wen , Q. Hu , J. Qiao , Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults, IEEE Trans. Ind.

Electron. 67 (2020) 2241–2250 . 
[16] H. An , J. Liu , C. Wang , L. Wu , Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle, IEEE-ASME Trans.

Mechatron. 21 (2016) 1680–1691 . 

[17] Q. Hu , C. Wang , Y. Li , J. Huang , Adaptive control for hypersonic vehicles with time-varying faults, IEEE Trans. Aerosp. Electron. Syst. 54 (2018)
1442–1455 . 

[18] B. Xu , Z. Shi , F. Sun , W. He , Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults, IEEE
T. Cybern. 49 (2019) 1047–1057 . 

[19] H. Xu , M.D. Mirmirani , P.A. Ioannou , Adaptive sliding mode control design for a hypersonic flight vehicle, J. Guid. Control Dyn. 27 (2004) 829–838 . 
[20] X. Yu , P. Li , Y. Zhang , Fixed-time actuator fault accommodation applied to hypersonic gliding vehicles, IEEE Trans. Autom. Sci. Eng. (2020) 1–12 . 

[21] X. Yu , P. Li , Y. Zhang , The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicle, IEEE Trans. Ind. Electron.
65 (2018) 4135–4144 . 

[22] P. Li , X. Yu , Y. Zhang , X. Peng , Adaptive multivariable integral TSMC of a hypersonic gliding vehicle with actuator faults and model uncertainties,

IEEE-ASME Trans. Mechatron. 22 (2017) 2723–2735 . 
[23] X. Shao , B. Tian , W. Yang , Fixed-time trajectory following for quadrotors via output feedback, ISA Trans. (2020) . 

[24] X. Shao , H. Si , W. Zhang , Fuzzy wavelet neural control with improved prescribed performance for MEMS gyroscope subject to input quantization,
Fuzzy Sets Syst. (2020) . 

[25] X. Shao , Y. Shi , W. Zhang , Input-and-measurement event-triggered control for flexible air-breathing hypersonic vehicles with asymmetric partial-state
constraints, Nonlinear Dyn. 102 (2020) 163–183 . 

[26] Y. Gao , J. Liu , Z. Wang , L. Wu , Interval Type-2 FNN-based quantized tracking control for hypersonic flight vehicles with prescribed performance, IEEE

Trans. Syst. Man Cybern. -Syst. (2019) 1–13 . 
[27] B. Tian , H. Lu , Z. Zuo , W. Yang , in: Fixed-Time Leader–Follower Output Feedback Consensus For Second-Order Multiagent Systems, 49, IEEE T. Cybern,

2019, pp. 1545–1550 . 
[28] S. Keshmiri , R. Colgren , M. Mirmirani , Development of an aerodynamic database for a generic hypersonic air vehicle, in: AIAA Guidance, Navigation,

and Control Conference and Exhibit, 2005, p. 6257 . 
[29] S. Keshmiri , M. Mirmirani , R. Colgren , Six-DOF modeling and simulation of a generic hypersonic vehicle for conceptual design studies, in: AIAA Mod-

eling and Simulation Technologies Conference and Exhibit, 2004, p. 4805 . 

[30] J. Zhou , C. Wen , W. Wang , Adaptive control of uncertain nonlinear systems with quantized input signal, Automatica 95 (2018) 152–162 . 
[31] F. Wang , B. Chen , C. Lin , J. Zhang , X. Meng , Adaptive neural network finite-time output feedback control of quantized nonlinear systems, IEEE Trans.

Cybern. 48 (2018) 1839–1848 . 
[32] Y. Yu , H. Wang , N. Li , H. Zhang , Z. Su , X. Shao , Finite-time model-assisted active disturbance rejection control with a novel parameters optimizer for

hypersonic reentry vehicle subject to multiple disturbances, Aerosp. Sci. Technol. 79 (2018) 588–600 . 
[33] X. Wang , J. Guo , S. Tang , S. Qi , Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing hypersonic vehicle, ISA

Trans 88 (2019) 233–245 . 

[34] J. Zhang , S. Yu , Y. Yan , Fixed-time output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and
uncertainties, ISA Trans. 93 (2019) 145–155 . 

[35] M. Basin , P. Yu , Y. Shtessel , Finite- and fixed-time differentiators utilising HOSM techniques, IET Contr. Theory Appl. (2017) 1144–1152 . 
[36] B. Jiang , Q. Hu , M.I. Friswell , Fixed-time attitude control for rigid spacecraft with actuator saturation and faults, IEEE Trans. Control Syst. Technol. 24

(2016) 1892–1898 . 
[37] Z. Zuo , Nonsingular fixed-time consensus tracking for second-order multi-agent networks, Automatica 54 (2015) 305–309 . 

[38] Y. Yu , H. Wang , N. Li , Fault-tolerant control for over-actuated hypersonic reentry vehicle subject to multiple disturbances and actuator faults, Aerosp.

Sci. Technol. 87 (2019) 230–243 . 
160 

http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0001
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0001
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0001
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0001
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0001
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0001
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0002
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0002
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0002
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0002
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0003
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0003
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0003
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0004
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0004
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0004
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0004
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0004
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0004
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0005
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0005
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0005
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0005
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0006
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0006
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0006
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0006
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0007
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0007
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0007
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0007
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0007
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0008
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0008
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0008
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0008
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0008
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0009
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0009
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0009
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0009
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0010
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0010
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0010
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0010
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0010
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0011
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0011
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0011
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0011
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0011
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0011
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0012
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0012
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0012
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0012
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0012
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0012
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0012
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0013
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0013
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0013
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0013
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0013
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0013
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0013
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0014
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0014
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0014
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0014
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0015
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0015
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0015
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0015
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0015
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0015
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0016
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0016
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0016
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0016
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0016
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0017
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0017
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0017
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0017
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0017
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0018
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0018
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0018
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0018
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0018
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0019
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0019
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0019
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0019
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0020
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0020
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0020
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0020
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0021
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0021
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0021
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0021
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0022
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0022
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0022
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0022
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0022
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0023
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0023
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0023
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0023
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0024
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0024
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0024
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0024
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0025
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0025
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0025
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0025
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0026
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0026
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0026
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0026
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0026
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0027
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0027
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0027
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0027
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0027
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0028
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0028
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0028
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0028
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0029
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0029
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0029
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0029
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0030
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0030
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0030
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0030
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0031
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0031
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0031
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0031
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0031
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0031
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0032
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0032
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0032
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0032
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0032
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0032
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0032
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0033
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0033
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0033
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0033
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0033
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0034
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0034
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0034
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0034
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0035
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0035
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0035
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0035
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0036
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0036
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0036
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0036
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0037
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0037
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0038
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0038
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0038
http://refhub.elsevier.com/S0307-904X(21)00236-5/sbref0038

	Quantized fixed-time fault-tolerant attitude control for hypersonic reentry vehicles
	1 Introduction
	2 Problem formulation
	2.1 Mathematical model of the hrv
	2.2 Mathematical model of the actuator

	3 Design of the quantized fixed-time FTC scheme
	3.1 Controller design for the attitude angle subsystem
	3.1.1 Design of the NFF
	3.1.2 Design of the FESO
	3.1.3 Design of the QFFCL

	3.2 Controller design for the angular rate subsystem
	3.2.1 Design of the NFF
	3.2.2 Design of the FESO
	3.2.3 Design of the QFFCL

	3.3 Stability analysis

	4 Simulation and discussion
	4.1 Comparative simulation
	4.2 Monte Carlo simulation

	5 Conclusion
	Acknowledgements
	References


