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Abstract 

Traffic reliability is a crucial property of the transportation system, showing its ability to resist traffic 
jams or collapse. Traditional traffic reliability analysis only considers stochastic uncertainty but neglects 
epistemic uncertainty, which widely exists in the traffic network and leads to an underestimation of traffic 
failure. In this paper, we introduce uncertainty theory to model epistemic uncertainty, thereby developing 
a belief reliability analysis method for transportation systems based on the traffic performance margin. 
We established an uncertain percolation semi Markov (UPSM) model to describe the essential physical 
characteristics of the traffic accidents considering both stochastic and epistemic uncertainty. And the 
uncertain percolation model is utilized to describe the traffic performance degradation and the semi 
Markov process is developed to represent the influence of random emergency events. According to the 
traffic failure propagation process, a simulation method for calculating belief reliability is proposed. 
Finally, a case study was given to illustrate the proposed method. 
© 2021 Published by Elsevier Ltd on behalf of The Franklin Institute. 
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. Introduction 

Nowadays, The thorny traffic congestion has become a key factor restricting the rapid
evelopment of cities, prompting scholars to study the traffic problems. Then, traffic reliability
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heory has been gradually developed. The study of traffic reliability began in 1980, which was
riginally defined as the capacity of urban transport network. At present, traffic reliability has
ecome an important indicator to measure the service quality of traffic network and evaluate
he operation of urban transportation system. 

The traffic reliability has been analyzed from various perspectives. Mine and Kawai [1] first
roposed the node connection reliability as a measure of the probability of maintaining con-
ection between different nodes in transportation system. For travelers, the most direct in-
icator of road smoothness is travel time, because of which scholars have started focusing
n the research on reliability of travel time. Asakura and Kashiwadani [2] put forward the
oncept of travel time reliability for the first time. Then, Anthony Chen [3] proposed the
oncept of traffic network capacity reliability based on the connected reliability and travel
ime reliability. In addition, they also established a capacity reliability model and solved it
y the Monte-Carlo technique. It could be seen that almost all of the above research was
ased on Traffic Flow Theory. In recent years, Li [4] started began to study traffic reliability
ith statistical physics method. He proposed a reliability model of large-scale transportation
etwork based on the Percolation Theory, which regarded the propagation of traffic congestion
s a percolation process. Moreover, he also analyzed the state of the traffic network subgroup,
nd used the percolation threshold as the network failure criterion. 

Traditional traffic network reliability methods are mostly based on the probability method.
n the perspective of uncertainty, these methods only consider the stochastic uncertainty de-
cribing the internal randomness of the objective world. However, the traffic network shows
ypical nonlinear, strong coupling and pan-space-time characteristics. Considering these es-
ential characteristics are multidimensional, uncertain and dynamic, there must be epistemic
ncertainty in the transportation network. The so-called epistemic uncertainty is caused by
eople’s incomplete understanding of the real world. In a word, the stochastic uncertainty and
pistemic uncertainty affect the system at the same time. Ignoring the epistemic uncertainty in
raffic network reliability analysis may lead to inaccurate or underestimated traffic reliability.
herefore, in the reliability analysis of traffic networks, both of these uncertainties need to
e considered. 

A good choice to deal with this issue is to use belief reliability theory, which is a new
eliability theory considering both Stochastic and epistemic uncertainty [5 , 6] . Belief reliability
heory introduces two new mathematical theories, namely uncertainty theory and chance the-
ry into system reliability. Uncertainty theory is an axiomatic mathematical system founded
nd refined by Liu [7 , 8] , and has been widely used in various areas to model epistemic un-
ertainty, including uncertain finance [9 , 10] , decision making [11 , 12] , uncertain control [13] ,
aintenance optimization [14] , etc. Chance theory was put forward by Liu in 2013. It com-

ines probability theory with uncertainty theory, which makesthe belief reliability theory can
imulate the stochastic and epistemic uncertainty of systems. On the basis of the strong mathe-
atical theories, belief reliability has made great progress in recent years. Zeng et al. [15 , 16]
rst studied the belief reliability of uncertain systems under the framework of uncertainty

heory and put forward a belief reliability analysis method based on cut sets. Wen and Kang
17] measured the belief reliability of Boolean uncertain random systems by chance theory,
nd gave several belief reliability formulas. Then, Zhang [18] et al. generalized the definition
f belief reliability more concretely as the chance that the system state is within the feasible
omain. They also discussed two conditions of belief reliability degradation, and showed the
onnotation of belief reliability from three aspects: failure time, performance margin and func-
ion level. Zeng et al. [19] developed an evaluation method for component belief reliability
2 
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sing performance margin model by representing epistemic uncertainty as adjustment factors
o the Stochastic uncertainty factors. In 2020, Kang [20] proposed the theoretical framework
f belief reliability and the basic method after summarizing the research results of his team,
hich made belief reliability a real science. 
However, in literature, there are few researches on the belief reliability analysis methods

f traffic network so far. To address the issue, this paper proposes a new method to measure
nd analyze the belief reliability of traffic network based on the concept of performance
argin, and propose an uncertain percolation semi-Markov (UPSM) model to describe the

ailure propagation process. In this model, the relative size of maximal connected clique
 is regarded as the critical performance parameter. Then, the performance margin can be
btained by considering the epistemic uncertainty in the percolation process and the Stochastic
ncertainty in emergency. Finally, the belief reliability can be calculated by using a simulation
ethod. 
The rest of the paper is organized as follows. Sect. 2 offers a brief overview of some basic

oncepts and properties about uncertainty theory and belief reliability theory. In Sect. 3,
e make an uncertain analysis of traffic network, based on the performance parameter

nd performance margin which have been obtained before. The uncertain percolation semi-
arkov(UPSM) model is constructed in Sect. 4. We analyzed the belief reliability by simu-

ation method in Sect. 5. In Sect. 6, a case study about the UPSM is performed to illustrate
he model. Finally, Sect. 7 draws the general conclusions. 

. Preliminaries 

In this section, some basic knowledge of uncertainty theory, belief reliability theory and
emi-Markov model will be introduced, preparing for the establishment of the belief reliability
odel of traffic network afterwards. 

.1. Uncertainty Theory 

Uncertainty theory is a new mathematical theory parallel to probability theory which
ounded by Liu [7] in 2007 and refined by Liu [8] in 2010. In uncertainty theory, belief
egrees of events are quantified by defining uncertain measures: 

DefinitionII.1 (Uncertain Measure [7] ). Let � be a nonempty set, and L be a σ -algebra
ver �. A set function M is called an uncertain measure if it satisfies the following four
xioms: 

xiom 1. (Normality Axiom). M{ �} = 1 for the universal set �. 

xiom 2. (Duality Axiom). M{ �} + M{ �C } = 1 for any event � ∈ L . 

xiom 3. (Subadditivity Axiom). For every countable sequence of events �1 , �2 ,…, we have

 

{∪ 

∞ 

i=1 �i 
} ≤

∞ ∑ 

i=1 

M 

{ �i } . (1)

xiom 4. (Product Axiom [21] ). Let ( �, L , M ) , k = 1 , 2, . . . be uncertainty space. The prod-
ct uncertain measure M is an uncertain measure satisfying 

M 

{ ∞ ∏ 

k=1 
�k 

}
= 

∞ 

min 

k=1 
M k { �k } . (2)
3 



Y. Yi, H. Siyu, C. Haoran et al. Journal of the Franklin Institute xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: FI [m1+; July 13, 2021;14:10 ] 

 

u  

B
 

t
 

w  

t
 

i  

i

T  

t  

d

 

 

t

 

2

 

t  

i
 

r  

d

 

 

m  

T

 

i  

b
 

m  

T

 

 

r
 

u

DefinitionII.2 (Uncertain Variable [7] ). An uncertain variable is a function ξ from an
ncertainty space ( �, L , M ) to the set of real numbers such that { ξ ∈ B } is an event for any
orel set B of real numbers. 

DefinitionII.3 (Uncertain Distribution [21] ). The uncertainty distribution � of an uncer-
ain variable ξ is defined by �(x) = M{ ξ ≤ x } for any real number x. 

The calculation rule in the uncertainty theory is very different from probability theory, for
hich inverse distributions play a central role in uncertainty theory. Inverse distributions are

he fundamentals of calculating between uncertain variables. 
DefinitionII.4 (Inverse Uncertain Distribution). Let ξ be a uncertain variable with canon-

cal uncertainty distribution �(x) , the inverse distribution �−1 (x) of �(x) is defined as the
nverse uncertain distribution of . 

heorem 1. (Operational law [21] ). Assume that uncertain variable ξ have an inverse uncer-
ain distribution �−1 (α) . ξ1 , ξ2 , . . . , ξn is a series of uncertain variables with inverse uncertain
istributions �−1 

1 (α) , �−1 
2 (α) , . . . , �−1 

n (α) , and they satisfied 

ξ = f ( ξ1 , ξ2 , . . . , ξn ) . (3)

If ξ is monotonically increasing with respect to ξ1 , ξ2 , . . . , ξi , and decreasing with respect
o ξi+1 , ξi+2 , . . . , ξn , their inverse uncertain distributions satisfied 

�−1 ( α) = f 
(
�−1 

1 ( α) , �−1 
2 ( α) , . . . , �−1 

i ( α) , �−1 
i+1 ( 1 − α) , �−1 

i+2 ( 1 − α) , . . . , ( 1 − α) 
)
. (4)

.2. Belief Reliability Theory 

Belief reliability theory was founded by Kang [20] , to make up for the vulnerability of
raditional reliability analysis method that ignores the Epistemic uncertainty. The related def-
nitions are shown below. 

DefinitionII.5 (Belief reliability [20] ). Let the system state variable ξ be an uncertain
andom variable, and � be the feasible domain of the system state. Then belief reliability is
efined as the chance that system state is in the feasible domain, i.e., 

R B = Ch 

{ ξ ∈ �} . (5)

RemarkII.1. If the state variable ξ degenerate to a random variable, the belief reliability
etric will be a probability. Let R B (P ) denotes the belief reliability under probability theory.
hen 

R B = R B ( P ) = P r { ξ ∈ �} . (6)

s means that the system is mainly influenced by Stochastic uncertainty, and the belief relia-
ility degenerate to the probability theory-based reliability metric. 

RemarkII.2. If the state variable ξ degenerate to an uncertain variable, the belief reliability
etric will be a belief degree. Let R B 

(U ) denotes the belief reliability under uncertainty theory.
hen 

R B = R B 
( U ) = M 

{ ξ ∈ �} . (7)

This means that the system is mainly influenced by epistemic uncertainty, and the belief
eliability degenerate to the uncertainty theory-based reliability metric. 

DefinitionII.6 (Performance Parameter and Fault Criterion [20] ). The completion of prod-
ct functions can be characterized by the parameter p and its corresponding p th . When p
4 
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xceeds the limit range of p th the product will fail, the parameter p is defined as the perfor-
ance parameter and the parameter p th is defined as the fault criterion corresponding to the

erformance parameter p. 
RemarkII.3. According to the limited form of performance parameter p and fault criterion

p th , performance parameters can be divided into three categories: 

(1) Smaller-the-better(STB): when and only when p ≥ p th the product failure, the perfor-
mance parameter is defined as smaller-the-better. 

(2) Larger-the-better(LTB): when and only when p ≤ p th the product failure, the perfor-
mance parameter is defined as large-the-better. 

(3) Nominal-the-better(NTB): when and only when p ≤ p th,L or p ≥ p th,U 

the product fail-
ure, the performance parameter is defined as nominal -the-better. 

DefinitionII.7 (Performance Margin [20] ). Let p be the performance parameter of product,
p th be the fault criterion corresponding to the performance parameter p. It is defined that 

 = 

⎧ ⎨ 

⎩ 

p th − p i f p i s ST B 

p − p th i f p i s LT B 

min 

(
p th,U 

− p, p − p th,L 
)

i f p i s N T B 

, (8)

s the performance margin corresponding to p. 
RemarkII.4. Let the performance margin as the system state variable, the belief reliability

an be calculated by Ch{ m > 0 } . 

.3. Semi-Markov Model 

We use S(t ) to represent the state of the system. The system time points are denoted
s t 1 , t 2 , t 3 , . . . t m 

, . . . , t n which are easy to observe and record the state o the system. The
orresponding system state can be written as S ( t 1 ) , S ( t 2 ) , S ( t 3 ) , . . . S ( t n ) . Suppose that the
wo states of the system are the i state and the j state, and the one-step transition probability
etween any two system states is written as P i j , the residence time of the state is written
s T i j , the residence time distribution function is written as F i j (t ) whose probability density
unction is written as f i j (t ) , and the state transition process of a system is expressed as
ollows: 

P i j = Pr 
{
S ( t n ) = s j | S ( t n−1 ) = s i 

}
, i, j ∈ 

{ 1 , . . . , n 

} . (9)

F i j ( t ) = Pr 
{
T i j ≤ t 

} = 

∫ t 
−∞ 

f i j ( t ) du. (10)

If T i j can obey any distribution function, that is, F i j (t ) has any form, then the current
tate transition process can be called a semi-Markov process. If F i j (t ) only obeys exponential
istribution, then the current state process is Markov process. In this way, Markov process
elongs to a special form of semi-Markov process. 

For quantifying various potential associations in deconstructing semi-Markov processes,
he engineering field usually uses kernel matrix, which is denoted as K i j (t ) representing the
ne-step transition probability of the system from state i to state j in time t , and 

K i j ( t ) = Pr 
{
S ( t n ) = s j , t n − t n−1 ≤ t | S ( t n−1 ) = s i 

}
, i, j ∈ 

{ 1 , . . . , n 

} . (11)
5 
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P i j = lim 

t→∞ 

K i j ( t ) . (12)

n ∑ 

j=1 
P i j = 1 (13)

DefinitionII.7 (kernel matrix [22] ). Every n × n matrix K of non-decreasing functions null
n R + satisfying properties Eq.(12) and Eq.(13) is called a Semi-Markov matrix or a Semi-
arkov kernel. 

P i j = lim 

t→∞ 

K i j ( t ) . (14)

F i j ( t ) = 

K i j ( t ) 
P i j 

. (15)

According to the above, it can be deduced that the residence time T i of the system, the
esidence time distribution function F i (t ) and the probability density function corresponding
o f i (t ) are as follows 

T i = 

n ∑ 

i=1 
P i j T i j . (16)

F i ( t ) = 

n ∑ 

i=1 
K i j ( t ) = 

n ∑ 

i=1 
P i j F i j ( t ) . (17)

f i ( t ) = 

n ∑ 

i=1 
P i j f i j ( t ) . (18)

It is assumed that the system is in state i at the time t n , and may be in state i, j or e at
he time t n+1 , then [23] 

K ii ( t ) = 

∫ t 

0 

(
1 − F i j ( u ) 

)
( 1 − F ie ( u ) ) d F ii ( u ) . (19)

K i j ( t ) = 

∫ t 

0 
( 1 − F ii ( u ) ) ( 1 − F ie ( u ) ) d F i j ( u ) . (20)

K ie ( t ) = 

∫ t 

0 
( 1 − F ii ( u ) ) 

(
1 − F i j ( u ) 

)
d F ie ( u ) . (21)

ernel matrix is the key solution point in the semi-Markov process. The residence time
istribution function of the system in each state can be calculated by constructing kernel
atrix. 

. Belief Reliability Analysis of The Traffic Network 

This section analyzes the uncertainty of the traffic network, based on which we present
he performance parameter and performance margin of the traffic network. Sect.3.1 makes un-
ertainty analysis of the traffic network. The performance parameter and performance margin
re given in Sect.3.2. 
6 
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.1. Uncertainty Analysis of The Traffic Network 

There is a great deal of uncertainty in the traffic network. The percolation process of traffic
etwork itself and the influence caused by traffic light emergency are the main focus of our
nalysis. 

Capacity variation is the most important factor to determine the percolation process. Factors
nfluencing intersection capacity are as follows. The main influencing factors can be divided
nto five categories [24] : road conditions, traffic conditions, traffic demand, individual selec-
ion behavior, and running state. Road conditions include road length and width, intersection
pacing and road grade, which are determined or a given traffic network at a given time.
o the road conditions can be described as random variable. The traffic conditions include

he road vehicle type constitution and the traffic mode. Even for a certain road, the type
f vehicle in it is currently undetectable and uncertain, therefore the traffic conditions are
escribed as uncertain variable. The matching degree of traffic demand and road network can
e calculated by matching algorithm which is described as random variable. The individual
hoice behavior of traffic network is related to the choice made by each traveler. The trav-
ler’s behavior pattern involves traffic human factors and is affected by the weather and the
river’s psychological pattern, which is described as uncertain variable. The running state of
he road includes unimpeded, congested or intermediate state. Now the definition of different
tates is determined by the relationship between the average speed and the speed threshold.
owever, the speed threshold should not be described as random variable because of the
ifferent traffic environment which is also a shortcoming of the current traffic percolation
heory. Taking the velocity threshold as a certain value makes the evaluation of the state of
ach road not accurate. Based on what has been discussed above, the uncertainty theory is
hosen to describe the performance degradation process affected by the capacity. 

Due to the traffic lights strictly comply with national standards, there is plenty of data
o describe their fault rate through a large number of reliability test. The traffic lights may
ransfer between different states. Generally speaking, the performance of traffic lights will
ecline with time, and the transition time of state will be affected by the use time of traffic
ights which makes the traffic lights not follow the Markov process. Therefore, the Semi-

arkov model is chosen to build the model of performance degradation process affected by
he traffic light emergency. 

.2. Performance Margin Modeling and Belief Reliability Model 

The relative size of maximal connected clique [25 , 26] G is chosen to delegate the global
onnectivity degree of the traffic network. Thus, the performance parameter of the traffic
etwork can be represented by the relative size of maximal connected clique G . G is evaluated
ith 

G = 

N ′ 
N , (22)

here the N ‘ is the number of nodes of maximal connected clique in the current network,
nd N is the number of nodes in the original network. 

We define the G th as the number of relative size of maximal connected clique threshold.
 is Greater-the-better (GTB) [21] because that when and only when G ≤ G th the product

ailure. Then, the performance margin m can be defined based on the performance parameter
7 
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nd the threshold G th , 

m = G − G th . (23)

Thus, the belief reliability can be defined according to belief reliability theory, 

R = Ch ( m ≥ 0 ) = Ch ( G ≥ G th ) . (24)

In order to facilitate calculation, Eq.(11) can written as: 

R = Ch ( m ≥ 0 ) = Ch ( G ≥ G th ) = Ch 

(
N‘ 
N ≥ N ‘ th 

N 

)
, (25)

. UPSM Model for Traffic Network Failure Propagation 

.1. Uncertain Percolation Model 

From the perspective of statistical physics, the overload model of traffic network based
n uncertainty theory and Semi-Markov model is used to represent the failure propagation of
raffic network based on percolation theory. 

Traffic network failure propagation model is based on the performance degradation process
f the nodes, which is dived into two parts in this paper: the performance degradation process
ffected by the capacity and performance degradation process affected by emergency. We take
he impact of capacity into consideration in the beginning. 

The traffic network failure propagation model and the solving process of G are shown as
elow. 

Firstly, the topology of the traffic network is represented. Assuming a traffic network
ith m roads and n intersections, the roads of which are represented as the lines, and the

ntersections are replaced by nodes. The traffic network is seen as an uncertain random system
hich is influenced by both Stochastic and epistemic uncertainty. 
Subsequently, we define x j (t ) as the state variable of line j( j ∈ [ 1 , m ] ) and it is an uncer-

ainty measure that average velocity of line j greater than velocity threshold. Hence, x j (t ) is
valuated with 

x j ( t ) = M 

(
v j ( t ) > θ

)
, (26)

here v j (t ) is the average velocity of the road j and θ i s the velocity threshold. 
v j (t ) is a constant for a certain traffic network at certain time point. According to the

ect.3.1, θ is influenced by all five categories. Therefore, θ is seen as an uncertain variable,
hose uncertainty distribution can be evaluated by the empirical distribution. 
We can define the state variables of the nodes after obtaining x j (t ) . This paper defines L i (t )

s the sate variable of intersection i. L i (t ) can be regarded as the load of the intersection i,
hich reflects the capacity of the intersection load. Assuming that all vehicles choose the

hortest path, and the capacity of load can be described as betweenness. x j (t ) is an uncertain
andom variable which ranges from 0 to 1 excluding 0 and 1, because the state variable of
ine is calculated by uncertainty theory. Thus, the new definition of the weight of line and
etweenness is given in an uncertain random system. 

DefinitionIII.1 (Existence Risk) : Let x j (t ) be the state variable of the j th line in an
ncertain random network, the existence risk of j th road is defined as 

W ( j ) = 1 − x j ( t ) . (27)
8 
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RemarkIII.1 . If a path contains multiple roads, the existence risk of the path is recalculated
s the sum of all the existence risk of roads, as shown in the Eq(15) : 

σst = 

∑ 

st 
W ( j ) . (28)

here σst means the number of least risk paths starting and ending with node s and node t . 
DefinitionIII.2 (Betweenness Centrality in Uncertain Random Network) : The between-

ess centrality of the node i in uncertain random network is defined as 

C B ( i ) = 

∑ 

s 
 = i 
 = t∈ V 
σst ( i ) 
σst 

, (29)

Where σst (i) means the number of least risk paths through node i starting and ending with
ode s and node t . 

In ordinary networks, the betweenness centrality of node usually indicates the importance
f a node as a connecting point, as well as the capacity characteristics of node. Here, we
lso use the betweenness centrality of the uncertain random network to represent the node
apacity in the uncertain random network. Therefore, the L i (t ) can be evaluated with 

L i ( t ) = C B ( i ) = 

∑ 

s 
 = j 
 = t∈ V 
σst ( i ) 
σst 

. (30)

We define the tolerance parameter α and initial load L 0 (t ) to measure the overload criterion.
 0 (t ) means the initial load condition of every node in traffic network on moment t . The α
eans the capacity of overload of node, which can fail if the real-time load is greater than

he load limit. Thus, the overload criterion is given with 

M{ L i ( t ) − L 0 ( t ) · α > 0} ≥ 0. 95 , (31)

here the α is affected by road conditions, traffic conditions and traffic demand. Thus, the α
hould be regarded as an uncertain variable. 

We can run the overload model based on the definitions after this series of tasks. For the
raffic network, the full overload model is demonstrated below. The topology of the traffic
etwork has been obtained, each node of which is then given its initial load L 0 (t ) . The velocity
hreshold is evaluated based on the analysis of the line to determine the state variable. Then we
alculate the betweenness of nodes according to the state variable of the lines. The tolerance
arameter is given by analyzing each node to acquire the overload criterion. Next, each node
s judged by overload criterion. If the node exceeds the overload criterion, it is considered to
e invalid and then the node will be removed. According to the percolation theory [27] , the
dge connected with the node is deleted when removing the node, changing the topology of
he network, as shown in the figure 1 . 

According to the new topology, the betweenness of nodes is recalculated, which means load
edistribution. The whole overload process doesn’t end until all nodes’ load meet the overload
riterion, and then traffic network reach the equilibrium state. The topology of equilibrium
tate determines the condition of maximal connected clique, and then the number of nodes
f maximal connected clique N ‘ is obtained. 

.2. Semi Markov Model for The Impact of Emergency 

In the real traffic network, there are some occasional failures of traffic light such as un-
esponsive light, wrong display and permanently flashed yellow light. These failure modes
9 
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Figure 1. Percolation process 
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ill affect vehicle operation rules of the previous route, and then lead to overload of network
odes, traffic congestion, and even lead to cascading failure of road network. This section
onsidered the process of road network performance degradation caused by sudden failures
f traffic lights. 

The failure process of the traffic light, that is, the transition from normal to failure is
ctually the process of system transition between different states. Therefore, the application of
arkov model to establish the state transition process is consistent with the current situation.

he transition time and the state transition probability of pure Markov process are not affected
y the past state. They are memoryless and only determined by the current state. Therefore, the
tate transition time of this process obeys an exponential distribution. For practical situations,
arkov processes have too many limitations, while semi-Markov process can obey more

istribution forms, such as Weibull distribution, due to its residence time. Therefore, using
emi-Markov model makes the system to be analyzed have more choices, and the analysis
esults are more realistic. Therefore, this section uses semi-Markov model to describe the
rocess. 

At this point, we can consider the impact of an emergency on performance degradation.
here are all sorts of emergencies in the traffic network, and here we choose the traffic light

ailure. 
Traffic light failure is a random process, the probability of which depends on the reliability

f traffic light products. The Semi-Markov model is chosen to describe the traffic light failure,
hich divides the traffic light status into three states: normal, failure A, failure B. The state

ets S = { S 1 = normal, S 2 = wari ni ng, S 3 = f ai lur e } . The definitions of the three states are
iven below. 

DefinationIII.3 : 
State ‘normal’: If the traffic light works normally, and the red, yellow and green flashing

lternately, S = S 1 . 
10 
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Figure 2. The schematic diagram of traffic light semi-Markov model 
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State ‘warning’: If the traffic light keeps yellow shining, S = S 2 . 
State ‘failure’: If the traffic light is out of order, including keeping black whole or part

nd physical damage, S = S 3 . 
Under the Semi-Markov model of traffic network, the characteristics of traffic light nodes

nder the three states and the relationship between the three states can be studied respectively.
igure 2 shows the schematic diagram of traffic light semi-Markov model. 

P S i , S r (t ) represents the probability of going from state S i to state S r . When the current state
s S i and the next state is S r , the time distribution from S i to S r follows F i,r (t ) . Thus, the
resent state is not only related to the past state, but also related to how long the system
tayed in the past state and the present state under the semi-Markov model of traffic light
ailure. 

Different state of traffic lights have different effects on nodes and edges. If the traffic light
orresponding to node i is in state S 1 , the node i and the edges linking to node i will be only
nfluenced by capacity of node i. If the traffic light corresponding to node i is in state S 2 , it
ndicates that the traffic volume at this node is small, which only needs the attention of the
ehicle drivers instead of the traffic lights to help adjust the flow. Therefore, the performance
egradation caused by capacity and traffic lights on this node can be ignored. If the traffic
ight corresponding to node i is in state S 3 , it can be assumed that both the node and its
inked edges are invalid. The performance degradation caused by traffic lights is shown in the
gure 3 . 

.3. Belief Reliability Solving Process with Simulation Method 

R maintains the form of chance measure when N ‘ th is a constant for a certain traffic
etwork and it can be only obtained by simulation at present. If R degrades into uncertainty
easure, it can be obtained by the distribution of G and G th , which denote as ψ(t ) and ω(t )

espectively. 
By calculating the corresponding G values of different α and θ , we can get the function

xpression of G with respect to α and θ . 

G = g ( α, θ ) . (32)
11 
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Figure 3. The schematic diagram of performance degradation caused by traffic light 
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From what has been discussed above, the model flow chart about function form of G is
hown as figure 4 . 

ψ(t ) and ω(t ) have to be solved out firstly. The latter can be obtained by the statistical
ata of traffic network, but the former can only be obtained by the distribution of θ and α.
ssuming that φ1 (t ) is the distribution of q, and φ2 (t ) is the distribution of α. If the G is

trictly increasing with respect of q and α, the inverse distribution ψ 

−1 (a) of G is 

ψ 

−1 ( a ) = g 

(
φ1 

−1 ( a ) , φ2 
−1 ( a ) 

)
. (33)

If G is strictly decreasing with respect of θ and α, the inverse distribution ψ 

−1 (a) of G
s 

ψ 

−1 ( a ) = g 

(
φ1 

−1 ( 1 − a ) , φ2 
−1 ( 1 − a ) 

)
. (34)

If G is strictly increasing with respect of θ and strictly decreasing with respect of α, the
nverse distribution ψ 

−1 (a) of G is 

ψ 

−1 ( a ) = g 

(
φ1 

−1 ( a ) , φ2 
−1 ( 1 − a ) 

)
. (35)

If G is strictly increasing with respect of α and strictly decreasing with respect of θ , the
nverse distribution ψ 

−1 (a) of G is 

ψ 

−1 ( a ) = g 

(
φ1 

−1 ( 1 − a ) , φ2 
−1 ( a ) 

)
. (36)

Then, we get the inverse function of ψ 

−1 (a) , that is the distribution of G . Thus, we have

 = 

sup 

t ∈ R 

( 1 − ψ ( t ) ∧ ω ( t ) ) . (37)

G th is a constant under special circumstance, we have 

R = M ( G ≥ G th ) = 1 − M ( G ≤ G th ) . (38)

Here we introduce the theorem about uncertainty theory to help derive the result. 
TheoremIII.1 [28] . Let ξ be an uncertain variable with inverse uncertainty distribution

 

−1 (β) , and let β and c be constants with 0 < β < 1 . Then, 

M 

{ ξ ≤ c } ≥ β, (39)
12 
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Figure 4. The model flow chart about function form of G 

i

 

A

 

f

f and only if 

ψ 

−1 ( β) ≤ c. (40)

ccording to TheoremIII.1, we have 

G th ≥ ψ 

−1 ( 1 − R ) , (41)

rom which we can solve out the R. 
13 
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Figure 5. The abstract network and scatter gram of average velocity 

Table 1 
The table of cumulative distribution function of conditional sojourn time 

i r F i,r (t ) parameter choice 

1 2 1 − e −λ12 ·t λ12 = 8 × 10 −4 

1 3 1 − e −λ13 ·t λ13 = 6 × 10 −6 

2 1 �( 
t−μ21 

σ21 
) μ21 = 500h, σ21 = 64h

2 3 1 − e −λ23 ·t λ23 = 6 × 10 −6 

3 1 �( 
t−μ31 

σ31 
) μ31 = 1200h, σ31 = 150h

3 2 �( 
t−μ32 

σ32 
) μ32 = 1200h, σ32 = 150h

5

5
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fi
 

i
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p  

t

 

. Case Study 

.1. Background and Assumption 

In order to verify the validity of this model, we build a traffic network which owns 100
rossroads and 347 roads to analyze the reliability. We treat it as an abstract network with
00 nodes and 347 lines. The average velocity of each line at time t are recorded by the
djacency matrix. The abstract network and scatter gram of average velocity are shown as
gure 5 . 

For traffic light, the table of conditional distribution probability functions for transition
ntervals is shown as table 1 . 

.2. Belief Reliability Calculation 

We calculate G under different θ and α and the result is shown as figure 6 , 
At a certain interval of θ value, G will produce a drastic mutation, and the whole surface

resents a geometric form of S mixed slope. According to the least nearest neighbor method,
he function that fits the scatter graph best is: 

G = −0. 05 + 

1 
1+ e −2α+0. 1 θ . (42)
14 
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Figure 6. The figure of G value about different θ and α
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The probability distribution of G can be obtained by counting the value of its function,
hich is 

ϕ ( a ) = 0. 11 · tan ( 2. 67 a − 1 . 05 ) + 0. 12. (43)

Then, the uncertainty distribution of G can be obtained by the uncertainty distribution φ1

f q and φ2 of α. We set up expert questionnaires and use expert experience data to determine
heir uncertainty distribution. 

φ1 ( a ) = 

(
1 + exp 

(
π( 22. 5 −a ) √ 

3 ×7 . 5 

))−1 
. (44)

φ2 ( a ) = 

(
1 + exp 

(
π( 1 −ln ( a ) ) √ 

3 ×0. 3 

))−1 
. (45)

From the surface diagram, it can be seen that G monotonically rises with respect to α, and
onotonically falls with respect to θ . Thus, the inverse distribution of G can be written as
q.(33) : 

 

−1 ( a ) = f 
(
φ2 

−1 ( a ) , φ1 
−1 ( 1 − a ) 

) = −0. 05 + 

1 

1 + e −2 φ2 
−1 ( a ) +0. 1 φ1 

−1 ( 1 −a ) 

= −0. 05 + 

1 

1 + e 
−2·e 1 −

3 
√ 

3 ·ln ( 1 a −1 ) 
10·π +0. 1 ·

(
22. 5 − 15 

√ 
3 ·ln ( 1 

1 −a −1 ) 
2·π

) . (46)

Hence one can see that the condition from disconnected to connected of the traffic network
s abrupt, and the value of G th is a fixed constant for a specific traffic network. G th of the
raffic network in this case is 0.92. Thus, we can press the R as: 

R = 1 − a = 0. 6338 . (47)

hich is the value of belief reliability of traffic network at moment t . 
15 
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. Conclusion 

In this paper, we have proposed a newly emerging traffic network belief reliability eval-
ating model based on belief reliability theory and semi-Markov model. From the view of
heoretical completeness and engineering practicality, this paper has developed a new cal-
ulation method taking both Stochastic and epistemic uncertainty into consideration. Based
n uncertainty analysis of traffic network, the relative size of maximal connected clique G
s selected as the performance parameter and the relevant performance margin is obtained.

e divide the performance degradation process of traffic network into two parts for analysis,
amely, the performance degradation of the node itself due to the influence of the percola-
ion process and there duction of the traffic light incidence. Combining them into the solution
f the traffic network performance parameters, the uncertain percolation semi-Markov(UPSM)
odel is constructed, and the traffic network is constructed to describe the failure propagation

rocess from the beginning to the steady state. This provides a wonderful idea for consid-
ring the influence of multiple factors in the model, and has significance reference value. In
ddition, this paper managed to propose a traffic network belief reliability calculation method.
n this case, based on the UPSM model, the equilibrium state of the traffic network is de-
ermined and the performance parameters are obtained, so that a belief reliability analysis
an be carried out at any time. As a pioneering research on the reliability of transportation
etwork, this paper put forward a reliability measurement method considering both epistemic
ncertainty and Stochastic uncertainty, and establishes a theoretical foundation for improving
he reliability of traffic network. 

The future work may focus on the different traffic network performance parameters such
s traffic network travel time, capacity, etc. Then, we can contrast them with others to find
ut the most suitable performance parameter. 
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