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A B S T R A C T

Video object segmentation (VOS) has been a research hot-spot these years. However, evaluating the per-
formance of different VOS methods requires labor-intensive and time-consuming manually labeled mask
annotations, making it hard to validate the algorithm quality in field tests. In this paper, we tackle the
problem of automatically measuring the mask quality for video object segmentation tasks without accessing
manual annotations. We propose that with an elaborately designed network structure, we can extract quality-
sensitive features to predict mask quality scores without ground-truth labels. To achieve this, we train an
end-to-end convolutional neural network to capture the quality-sensitive features with both spatial reference
and temporal reference. In the proposed Video Object Segmentation Evaluation Network, the VOSE-Net, the
corresponding video frame and motion amplitude information are used for spatial and temporal references
respectively. Instead of directly concatenating features for mask and references, we extract spatial quality cues
with feature correlation, which is more rational and effective in this specific task. Taking in the segmented
mask, its corresponding frame image and optical flow map, the VOSE-Net can provide an accurate quality
estimation without the need for human intervention. To train and verify the proposed network, we construct
a new dataset by using the DAVIS video segmentation benchmark and results from many public video object
segmentation algorithms. We also demonstrate the robustness and usefulness of the proposed method on several
applications, i.e. proposal selection, parameter optimization, arbitrary video mask evaluation. The experimental
results and analysis show that the VOSE-Net is fast, effective and of practical use.
. Introduction

Following the increasing demand for video analysis, the primary
ideo object segmentation (P-VOS) task has become a research fo-
us [1–5]. It requires methods to track and segment the most dominant
nstance in videos, and is also called single-instance video object seg-
entation, unsupervised video object segmentation, etc. Numerous
ethods have been developed in this field for the past decades [6,7],
roducing more and more accurate target masks [8], and segmenting
ith less and less processing time [9,10]. However, current algorithms
eavily rely on manual annotations to train and validate their models,
.g. using the densely-annotated datasets [3]. Video object segmen-
ation methods need the ground-truth annotations for test videos to
ompute the overall mask quality with evaluation metrics like the
accard similarity, F-score [11] (we show some examples of mask
rediction and their computed Jaccard scores in Fig. 1). This limits
he progress of P-VOS, for that the ground-truth labels are hard to get
n practical applications and the methods cannot obtain the objective
valuation scores to assess their ability or adjust parameters online.
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Based on this observation, we aim to provide a blind quality mea-
surement algorithm for primary video segmentation quality assessment
(VSQA), which can automatically estimate the mask quality scores
without the need of human annotations. This technique is known as
segmentation quality assessment (SQA) when applied on images [12].
Researchers have come up with several SQA methods [12–14], the
common idea of which is to extract cues from the segmentation mask
with its corresponding original image, and then regress the features
into the quality score. As SQA is a challenging problem, most methods
limit the task to patch-wise or bounding box restrained regions where
each image patch contains a single instance, or add in weak human
supervision [15] during prediction. Among the multiple SQA methods,
deep learning based models [12,14] show superior ability, similar to
what happens in other computer vision fields (image classification,
object detection, image segmentation, etc.). This is because of the
strong learning ability and powerful fitting capacity of deep neural
networks. Take [12] for an example, by feeding the original image
and segmentation patches into a deep neural network, [12] successfully
obtains an image segmentation evaluator, demonstrating that CNN is
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Fig. 1. Illustration of masks with various qualities from the proposed VISA dataset. The
left column gives some examples of the video frames with their pixel-wise manually
annotated masks (colored in red). Several segmentation results of different qualities are
shown on the right, where 𝐽 denote the Jaccard similarity scores (an objective score
evaluating the matching rate between mask and the ground-truth label, also known as
IoU).

capable of depicting mask-image correspondence which is adequate for
mask quality prediction.

In this paper, we extend the image segmentation quality assessment
to the video level. Different from images, masks from adjacent video
frames are not independent. They are closely related in the temporal
space (connected with object and background motions). Therefore,
in the proposed evaluator, we incorporate both spatial and temporal
features for video mask estimation. We build an end-to-end convo-
lutional neural network, the VOSE-Net (Video Object Segmentation
Evaluation Net), to estimate the video mask quality scores. The VOSE-
Net employs the original frame image for its spatial reference, and
the motion map (optical flow) for the temporal reference. Instead of
crudely concatenating features from references and segmentation mask,
the VOSE-Net fuses the spatial correlations with temporal information,
and maps into one comprehensive score for the input mask. The overall
framework has an end-to-end structure like shown in Fig. 2, where
mask quality of a test video frame can be obtained via a single forward
at the speed of about 70 ms.

To train and validate the proposed VOSE-Net, we construct a
new dataset from the densely-annotated video object segmentation
dataset [3] and various public video segmentation models. The Jaccard
similarity scores between mask-frame pairs are used as ground-truth
scores for evaluating the network ability. Furthermore, we compare
and analyze different feature fusion methods for segmentation quality
evaluation and experiment on three application scenarios (i.e. seg-
mentation proposal selection, post-processing parameter optimization,
quality evaluation on arbitrary videos) in Section 5.2. We show that
the proposed VOSE-Net is robust, generally applicable, and of practical
use.

Overall, our main contributions are as follows:

(1) we propose a deep mask quality assessment network for primary
video object segmentation;

(2) we construct a new dataset for objective video mask quality esti-
mation task, which can encourage the development of researches
in VSQA;

(3) we validate that the proposed VOSE-Net has satisfying quality
assessment ability and can be applied to a variety of related tasks.
2

2. Related work

2.1. Video object segmentation

Video object segmentation aims at separating target object from
background at pixel level. Depending on whether an initial annotation
frame is given in each test video, it can be classified into ‘unsuper-
vised’ video object segmentation and ‘semi-supervised’ video object
segmentation. ‘Semi-supervised’ video object segmentation methods
are considered to have known a manual object mask for the target
instance(s) in the first frame of videos. They have a specific concept of
the target instances to help them track and segment objects throughout
videos. Test videos with ‘semi-supervised’ setting can have more than
one target instance, as each of them can be manually defined in the
initial frame. ‘Unsupervised’ video object segmentation, also known
as primary video object segmentation, has no prior knowledge of the
target instance. When testing upon a new video, P-VOS algorithms do
not need manual first frame annotations, they are able to automatically
judge and locate onto the dominant video object, then separate it
from background pixels. P-VOS methods can be more easily applied
to practical uses because they have no burden for manual labels. As
no prior knowledge is given, test videos are required to have predom-
inant instances. Our proposed evaluator is designed for primary video
object segmentation, where the test videos are assumed to each have a
predominant target instance that algorithms can discover and segment
out.

A large number of video object segmentation techniques have been
developed recent years [8–10,16–23]. These methods are based on
graph models [19], object appearance [16,24], similarity cues [10,25],
etc. Some common informative cues they count on for video segmenta-
tion are the appearance cue, motion cue, memory cue, etc. For example,
[16] deals with video segmentation in a frame-independent order, it
over-fits a general foreground segmentation network on each test video
via heavily fine-tuning on the initial mask; [7] aggregates the appear-
ance cue with motion features to find an optimal feature combination in
video segmentation; [23] constructs the space–time correspondences of
video context for efficient video object segmentation; and [25] exploits
the collaborative pixel-level matching with instance-level attentions to
generate accurate mask predictions. The common motion cue, optical
flow, is often used to measure the pixel movement correspondence
in adjacent frames; while similarity cues might be used to measure
the appearance correspondence across a longer video clip (e.g. the
re-identification network used in [26]). In this paper, we propose to
use both the appearance cue and the motion cue for evaluating video
masks, i.e. the spatial reference and the temporal reference.

2.2. Segmentation quality evaluation

Segmentation quality assessment task is very different from the
long and widely studied image quality assessment task. Image quality
assessment (IQA) aims to estimate the quality of distorted images which
endure transmission loss, compression loss, etc. Even with the original
full-quality image as a reference, the quality score of a distorted image
is not quantifiable; therefore, the ground-truth scores for image quality
assessment datasets [27–30] are usually obtained by manual definition
or averaged human subjective scores.

In contrast, segmentation quality assessment has several universally-
accepted objective evaluation scores (e.g. the Jaccard similarity) given
the ground-truth object mask as reference. Algorithms for segmentation
quality assessment target at estimating the quality of a segmentation
mask. They can be roughly categorized into ‘non-blind’ and ‘blind’,
i.e. with or without accessing the manual segmentation labels. The
‘non-blind’ methods know both the to-be-evaluated segmentation mask
and the annotation; they manage to measure the correspondence be-
tween the test mask and the ground-truth annotation with mathemati-
cal analysis. For example, the commonly used segmentation evaluation
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Fig. 2. Framework of the VOSE-Net. This figure shows the overall framework for the proposed quality evaluator, the VOSE-Net. Guided by the spatial correlation reference and the
temporal motion information, the network can automatically estimate the quality score (0–1) of a video segmentation mask. Note that both references share the same convolution
body net with the mask input (Conv1–Conv5).
metric IoU [11] (also known as Jaccard similarity) computes the
intersection over union between ground-truth masks and predicted
segmentation; and the distance functions such as Hausdorff distance,
mean distance [31] and F1 measurement [32] are used to evaluate the
preciseness of segmentation border pixels (boundary accuracy). These
criteria are widely used in image segmentation [33], video segmen-
tation [3] and foreground segmentation tasks. For ‘blind’ estimation,
algorithms are required to assess the quality of a segmentation mask
with the absence of pixel-wise mask annotations. Seeing the rise of
CNN and its outperforming achievements in computer vision tasks,
methods [12–14] incorporate deep neural network for this task. As
there are many challenging factors (unknown object category, large
instance deformation, masks with various types of flaw), most of these
evaluation methods restrain the candidate area to a bounding box
which tightly surrounds a single instance. They feed segmented image
patch and the corresponding unprocessed patch to different structured
networks, train the network with objective quality scores (e.g. IoU),
and then enable the network to predict scores for test images without
manual annotations.

Most related to our method is [12], where the author uses a
VGG-16 [34] network to predict segmentation quality from segmented
patches located in object bounding boxes. Different from [12], we
extend the segmentation mask quality evaluation to the video domain
by adding in unique video cues with a more delicate network design,
carry out extensive comparisons and analysis for network feature fusion
strategies, as well as present several practical application scenarios.

3. The proposed method

3.1. The VOSE-Net

Inspired by the effectiveness of residual networks in computer vision
tasks [35–37], we build our VOSE-Net from the widely-used ResNet-
101 [4,38,39] structure. There are five main convolution blocks (Conv1
to Conv5) in the ResNet-101, outputting feature maps with sizes of 1/4,
1/4, 1/8, 1/16 and 1/32 of the input size respectively (see Fig. 2). As
demonstrated in [40], with the network going deeper, the extracted
feature condenses and promotes to a higher semantic level.

In that videos are sequences of consecutive frames whose informa-
tion lie in both spatial and temporal domains, we incorporate both
3

spatial-domain and temporal-domain references for the mask quality
evaluator. As illustrated in the framework of the VOSE-Net (Fig. 2), we
take the convolutional features from Conv5 with the highest semantic
level and the largest receptive field as our descriptions for the seg-
mentation mask, spatial reference and temporal reference, which we
use 𝑓𝑚, 𝑟𝑠 and 𝑟𝑡 to represent in the following. After extracting these
feature descriptions, we combine the spatial-domain information with
the temporal-domain information, and feed the aggregated feature into
a fully connected layer for predicting a specific quality score for the
input segmentation mask.

For the spatial information, we take the corresponding video frame
as the reference, which is similar to [12]. [12] directly concatenates
or element-wisely sums the spatial-reference feature (𝑟𝑠) and the mask
feature (𝑓𝑚), and proves that these simple operations can provide
enough quality information for image segmentation evaluation. In this
paper, we propose that their correlation information should help the
evaluation process more as the reference image and segmentation mask
inputs are closely related. We verify this point by experiments in
Section 5.1. In the proposed framework, we process 𝑟𝑠 and 𝑓𝑚 with a
correlation layer to obtain the spatial-domain information.

The correlation layer is designed to perform multiplicative patch
comparisons between two feature maps by [41]. For the feature maps
of spatial reference (𝑟𝑠) and segmentation mask (𝑓𝑚), the correlation
value is computed as:

C(𝑝𝑟, 𝑝𝑓 ) =
∑

𝑜∈[−𝑟,𝑟]×[−𝑟,𝑟]
𝑟𝑠(𝑝𝑟 + 𝑜) × 𝑓𝑚(𝑝𝑓 + 𝑜). (1)

In Eq. (1), 𝑝𝑟 and 𝑝𝑓 denote the position coordinates on feature maps 𝑟𝑠
and 𝑓𝑚 respectively. Let 𝑊 ×𝐻 × 𝐶 be the width, height, and channel
number of 𝑟𝑠 and 𝑓𝑚, then there is: 𝑝𝑟, 𝑝𝑓 ∈ {(𝑤, ℎ)|0 ≤ 𝑤 < 𝑊 , 0 ≤
ℎ < 𝐻}. 𝑟 determines the scope of candidate patch whose square edge
length is 2𝑟 + 1, and the correlation operation C(𝑝𝑟, 𝑝𝑓 ) computes the
relationship between patch centered at 𝑝𝑟 on 𝑟𝑠 and patch centered at
𝑝𝑓 on 𝑓𝑚. For simplicity, the correlation is only carried out within a
local range where 𝑝𝑟 − 𝑝𝑓 ∈ [−𝑑, 𝑑] × [−𝑑, 𝑑]. We pick the optical range
value of 𝑑 through experimental exploration in Section 5.1.

In the proposed VOSE-Net, we set the correlation scope to be specific
to point-wise (𝑟 = 0), and the local computation range to be a rather
large value (𝑑 = 4 compared with the feature map size 𝑊 = 10,𝐻 =
16). In this case, the computation of C(𝑝 , 𝑝 ) involves 𝐶 ∗ (2𝑑 + 1)2
𝑟 𝑓
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multiplications. As the correlation layer directly convolves feature map
with feature map, there are no trainable weights. This layer takes in
the same-size feature maps 𝑟𝑠 and 𝑓𝑚, and outputs their correlation
values with the size of 𝑊 ∗ 𝐻 ∗ (2𝑑 +1)2 (in practical implementation,
the relative displacements of (2𝑑 + 1)2 are organized in channel, so the
output is 3-dimensional instead of 4).

For the temporal information, we employ the commonly-used opti-
cal flow [42–44] to represent the inter-frame time–space relationship.
We propose that pixels in the same instance tend to have similar
movement between adjacent frames. For effectiveness and efficiency,
we choose a state-of-the-art, CNN-based optical flow algorithm, the
PWC-Net [44] to generate our temporal reference. We also compare
with two other optical flow algorithms [42,43] in Section 5.1 to show
the impact of optical flow on the overall performance. In practice, we
calculate the motion amplitude map which reflects the degree of motion
as the temporal-domain reference. The extracted temporal feature with
dimension of 2048 is decreased to the dimension of 64 by 1 × 1
convolution filters, in order to prevent spatial information (dimension
of 81) from being overwhelmed by the temporal feature. These two
features are then concatenated for the final quality prediction process.

For simplicity, the three inputs (spatial reference, temporal refer-
ence, segmentation mask) share the same parameters from Conv1 to
Conv5. Note that to do this, the temporal-domain reference image is
duplicated to three channels. After the fully-connected layer, the output
goes through a Sigmoid function to be normalized within [0, 1], then the
final estimation score can be expressed as:

𝑠𝑐𝑜𝑟𝑒 = 1
1 + 𝑒−(F([𝚒𝚗𝚏𝚘𝑠 ,𝚒𝚗𝚏𝚘𝑡];𝑊 ))

, (2)

here F(.) denotes the fully-connected layer with weights 𝑊 , the
patial information and temporal information 𝚒𝚗𝚏𝚘𝑠 and 𝚒𝚗𝚏𝚘𝑡 are the
patial correlation output C(𝑟𝑠, 𝑓𝑚) and motion amplitude descriptions
𝑡 respectively.

.2. Training details

To train and validate the proposed method, we construct a new
ideo mask quality evaluation database named the VIdeo Segmentation
ssessment (VISA) dataset. It provides us with the video frame, segmen-

ation masks and the corresponding objective quality scores (Jaccard
imilarities). The collection and detailed settings of the VISA dataset
ill be introduced in Section 4.1.

During training, we use the L1 Loss which is defined as:

1(𝑋𝑖) = | (𝑋𝑖) − 𝑦𝑖|, (3)

here  (.) denotes our quality estimation network; 𝑋𝑖 and 𝑦𝑖 de-
note the segmentation input and its corresponding ground-truth score,
respectively.

Standard Stochastic Gradient Descent (SGD) is used for optimizing
the proposed VOSE-Net, with the learning rate set to 1e-4, momentum
of 0.9, and batch size of 20 (due to memory limitation, we adjust
the value of average_loss to set the batch size). The initial learning
rate is decreased by 0.1 every 50’000 iterations for a total of 100’000
iterations. This whole process is carried out on a single Titan X GPU,
and it takes about 12 h to get a convergent model.

3.3. Applications

As mentioned above, a blind mask evaluator is very useful in
practical applications. It can be used to select the most likely object
mask among hundreds of segmentation proposals, or help search the
best set of parameters for post-processing methods. Most importantly,
this evaluator can help estimate the performance of different algorithms
on raw videos like Internet videos, amateur videos, homemade videos,
etc. Very different from the ones in the video segmentation datasets
where methods are trained upon, raw videos face the conundrum of
4

choosing the best-performing segmentation algorithm without human
intervention. We propose that this can be solved by our automatic
quality evaluator, the VOSE-Net. We demonstrate in Section 5.1 that
with the VOSE-Net, we are able to estimate the general ability of various
unsupervised video segmentation methods and choose the proper one
for each specific test video. Detailed analysis, quantitative comparisons
and visual illustrations are shown in Section 5.2.

4. Dataset construction

We construct a new dataset of video frames and segmentation
masks from various qualities for training and testing video mask quality
evaluators, the VIdeo Segmentation Assessment (VISA) dataset.

4.1. Data and distribution

We collect data from the DAVIS 2016 dataset [3], with all the
video frame images and the segmentation masks from both semi-
supervised [4,5,8–10,16–20,24,45–54] and unsupervised [6,7,55–60,
60–65] algorithms in order to cover a wide range of mask qualities. In
total, we obtain about ninety thousand segmentation masks with their
original frames. The ground-truth label for each segmentation mask is
set to be the Jaccard similarity score [11] (also referred to as the IoU,
intersection-over-union) value:

𝐽 (𝐼𝑚, 𝐼𝑔𝑡) =
|𝐼𝑚 ∩ 𝐼𝑔𝑡|
|𝐼𝑚 ∪ 𝐼𝑔𝑡|

=
|𝑇𝑃 |

|𝑇𝑃 | + |𝐹𝑁| + |𝐹𝑃 |
, (4)

where 𝐼𝑚 and 𝐼𝑔𝑡 represent the segmentation mask and ground-truth
nnotation respectively; 𝑇𝑃 , 𝐹𝑁 and 𝐹𝑃 denote the true positive,
alse negative and false positive pixel points, respectively; |.| counts
he number of pixels within each set. Among the three commonly used
valuation metrics, i.e. the Jaccard similarity (𝐽 ), boundary score (𝐹 )
nd temporal instability (𝑇 ), we choose 𝐽 to represent the overall
ask quality for that 𝐽 can better illustrate the overall qualities of

egmentation masks, and that higher 𝐽 scores often accompany with
igher 𝐹 scores.

The segmentation masks are split into a training set of 66’474
mages and a testing set of 12’396 images, where the videos do not
verlap in the training and testing set (i.e. masks for 10 categories
nly appear in the testing set, while masks for the other 40 categories
nly appear in the training set). To make the evaluation results on
his dataset more convincing, we also put masks from three algorithms
nly in the testing set so that the learning methods cannot obtain their
egmentation pattern via training.

Fig. 1 shows some examples of frame images, manual annotations,
egmentation masks and ground-truth scores (𝐽 ) from the VISA dataset.
e draw the mask quality distribution in the VISA dataset in Fig. 3,
here we can see that the masks within this database cover a wide

ange of qualities, including error segmentations (masks that do not
verlap with ground-truth labels) and perfect predictions (masks that
re exactly the same with ground-truths). To extend to a larger range
f mask types, we also carry out a specific mask warping data augmen-
ation process during training. Details for the mask warping technique
re introduced in Section 4.3.

.2. Evaluation criterion

We use four evaluation metrics to compare the ground-truth Jaccard
imilarity with the predicted score by the VOSE-Net, i.e. MAE, RMSE,
LCC and SRCC.

MAE (Mean Absolute Error) and RMSE (Root Mean Square Error)
re two commonly used criteria for evaluating the preciseness of vari-
ble predictions. MAE computes the average absolute error between
ach pair of predicted variable and its ground-truth value:

𝐴𝐸 = 1
𝑁
∑

|𝐽𝑖 − 𝑝𝑟𝑒𝑑𝑖|, (5)

𝑁 𝑖=1
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Fig. 3. Distribution of ground-truth Jaccard scores in the VISA dataset.

where 𝑁 is the number of image set, 𝐽𝑖 is the ground-truth Jaccard
similarity (Eq. (4)), and 𝑝𝑟𝑒𝑑𝑖 stands for the network prediction value.
Similarly, RMSE computes the root value of squared error to measure
the difference between prediction and labels:

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝐽𝑖 − 𝑝𝑟𝑒𝑑𝑖)

2. (6)

As MAE measures the mean values of differences between predicted
quality scores and ground-truths and RMSE measures the standard devi-
ation between predictions and ground-truths. The combination of these
two metrics can be used to evaluate the effectiveness of the quality
prediction models. For MAE and RMSE ∈ [0,∞), better prediction
methods have lower values.

PLCC (Pearson Linear Correlation Coefficient) and SRCC (Spear-
man’s Rank Correlation Coefficient) are two widely used metrics to
measure the affinity between two groups of variables. The equations
for PLCC and SRCC are defined as follows:

𝑃𝐿𝐶𝐶 =
∑𝑁

𝑖=1(𝐽𝑖 − 𝐽 )(𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑)
√

∑𝑁
𝑖=1(𝐽𝑖 − 𝐽 )2

∑𝑁
𝑖=1(𝑝𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑)2

, (7)

𝑆𝑅𝐶𝐶 = 1 −
6
∑𝑁

𝑖=1(𝑅𝐽𝑖 − 𝑅𝑝𝑟𝑒𝑑𝑖 )
2

𝑁(𝑁2 − 1)
, (8)

where 𝐽 and 𝑝𝑟𝑒𝑑 are the averaged value of ground-truth set (𝐽 )
and prediction set (𝑝𝑟𝑒𝑑); 𝑅𝐽𝑖 and 𝑅𝑝𝑟𝑒𝑑𝑖 denote the ranks of values
𝐽𝑖 and 𝑝𝑟𝑒𝑑𝑖 respectively. Not like MAE and RMSE which measures
accuracy for points independently, PLCC and SRCC evaluate the group
distribution correlation in parametric and non-parametric ways. They
both have the distribution between −1 to 1, where 0 denotes that the
two point groups are not correlated; a higher positive value means
the two groups are more positively correlated; and negative values
illustrate negative correlations.

In this paper, we use MAE and RMSE to validate the accuracy of
the VOSE-Net prediction, and the PLCC and SRCC to demonstrate that
the VOSE-Net has a similar score distribution trend with manual labels
(which means for better masks, the VOSE-Net has higher predicted
scores, and vice versa).

4.3. Data augmentation

For train-time data augmentation, we apply two useful methods
on the VISA dataset: the commonly-used affine transformation, and a
self-designed mask warping algorithm.

Affine transformation. For affine transformation, like most of the
video segmentation methods [4,16], we apply random flipping, rota-
tion, scaling and translation operation to both masks and video frames.
The transformation range is limited to: rotation angle ∈ [−10, 10],
5

Table 1
Ablation study on the VISA test set. This table shows the performance of the VOSE-
Net without either reference (spatial, temporal) or training data augmentation steps
(introduced in Section 4.3).

MAE ↓ RMSE ↓ PLCC ↑ SRCC ↑

VOSE-Net 0.034 0.052 0.980 0.958
– spatial reference 0.106 0.155 0.805 0.761
– temporal reference 0.055 0.08 0.941 0.907
– affine transformation 0.04 0.063 0.970 0.946
– mask warping 0.039 0.06 0.973 0.951
– affine transformation 0.047 0.075 0.958 0.938– mask warping

scaling factor ∈ [0.8, 1.5], and translation within 10% of the image
width or height.

During training, each pair of adjacent video frames in the same
training batch share the same set of transformation parameters so that
their temporal connection stays unbroken.

Mask warping. To train with masks of more variety, we propose a
mask warping augmentation method for segmentation masks. For mask
warping, we randomly contaminate each input mask (not the video
frame) with three different operations described as follows.

(1) BLUR operation randomly blurs the input mask with radius from
0 to 5 pixels to produce larger and worse masks.

(2) HAIRY operation adds horizontal and vertical burr to make the
mask hairier, the percentage of edge burr is controlled below
30%.

(3) DISTORTION operation maps the mask pixels from one random
quadrangle to another (position change within 16 pixels), result-
ing in a twisted target mask.

During training, each input mask is augmented 1000 times with
a random combination of these three mask warping algorithms. We
show some visual examples for these mask contamination operations
in Fig. 4, where the ground-truth masks (𝑚𝑎𝑠𝑘 in the second column)
are contaminated with BLUR, HAIRY and DISTORTION operations
respectively. To better illustrate how these operations influence mask
quality, we also present their Jaccard similarity scores (Section 4.1)
on the top-left corner of each converted mask. We can see that all
three mask warping operations degrade the original mask quality with
different types of noises, thus making the training data much richer.

5. Experimental results

In this experimental section, we demonstrate the accuracy, robust-
ness and general applicability of the VOSE-NET via extensive experi-
ments and analysis. Besides, we also carry out a thorough comparison of
the network feature fusion, parameter settings; and show some practical
applications. All our dataset, code and models will be made available
to the public.

5.1. Automatic quality evaluation

In this part, we demonstrate the automatic mask quality estimation
ability of the proposed VOSE-Net, as well as the effectiveness of its
network structure, data augmentation process, and parameter settings.
The networks are trained and tested on the VISA dataset’s training set
and testing set, respectively.

Ablation study
We conduct an ablation study to validate that each part of the pro-

posed VOSE-Net has its own contribution to the overall performance.
As shown in Table 1, we remove each separable part from the VOSE-
Net, i.e. the spatial reference, temporal reference, data augmentation by
affine transformation and by mask warping (defined in Section 4.3).
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Fig. 4. Example results for mask warping operations in data augmentation. 𝐼𝑚𝑎𝑔𝑒 and 𝑀𝑎𝑠𝑘 denote the original video image and the ground-truth annotation respectively. Columns
3 to 5 show the impact of mask warping operations (i.e. 𝐵𝐿𝑈𝑅, 𝐻𝐴𝐼𝑅𝑌 and 𝐷𝐼𝑆𝑇𝑂𝑅𝑇𝐼𝑂𝑁) when applied on the ground-truth mask. 𝐽 illustrates the Jaccard score for each
converted mask.
Fig. 5. Example results of the VOSE-Net predictions in cases of occlusion and large
motion where the temporal reference flow is inaccurate. 𝑠𝑗 and 𝑠𝑝 denote the
ground-truth score and the VOSE-Net prediction score, respectively.

We can see that for mask quality assessment, the spatial reference
is of more importance than the temporal reference: removing spatial
reference causes 0.051 more loss in MAE than removing the temporal
reference. This is because the spatial reference (original frame image)
can provide more detailed texture and color information than the
temporal reference (optical flow): the comparison between a mask and
its corresponding image can show the alignment of mask boundaries,
image color piece distribution, mask completeness, etc. Besides, the
temporal reference, optical flow, may fail to capture accurate temporal
correlations between frames with occlusion or large motion like shown
in Fig. 5. And in such cases, the spatial reference can keep providing
accurate mask quality features for is it strongly correlated to the
original image and is not affected by temporal variations.

We can also see that data augmentation plays an important role
in the training process: without the affine data augmentation and
the mask warping data augmentation, the overall MAE worsens from
0.034 to 0.04 (drops 17%) and 0.039 (drops 15%) respectively. This
6

Table 2
Ability of the VOSE-Net to predict 𝐽 , 𝐹 and 𝐺 scores.

MAE ↓ RMSE ↓ PLCC ↑ SRCC ↑

VOSE-Net-J 0.034 0.052 0.980 0.958
VOSE-Net-F 0.061 0.084 0.945 0.938
VOSE-Net-G 0.043 0.65 0.966 0.951

demonstrates that both augmentation methods can help enrich the data
distribution and therefore make the network more robust and of higher
prediction accuracy.

Ability of predicting F and G scores
Although the VOSE-Net is designed to predict the overall perfor-

mance (𝐽 scores) of video segmentation masks. We show that it is
also capable of predicting the boundary accuracies (𝐹 scores) and
the comprehensive 𝐺 scores where 𝐺 = (𝐽 + 𝐹 )∕2. We train the
VOSE-Net on the VISA dataset with ground-truth scores for 𝐹 and
𝐺 respectively, and evaluate the performances in Table 2, where the
VOSE-Net trained to predict 𝐽 , 𝐹 and 𝐺 scores are denoted by −𝐽 ,
−𝐹 , −𝐺. We can see that with the same training settings, the VOSE-Net
predicts 𝐽 scores most accurately, and is worst at directly predicting
𝐹 scores. The reason that boundary accuracies are harder to be blindly
estimated may be that the temporal references do not guarantee precise
boundaries, and that less information is provided from the correlation
between the original image and spatial reference on boundaries than
the entire mask areas. This difficulty also lowers the precision in 𝐺
score estimation, for it is a comprehensive score consisting of both 𝐽
and 𝐹 . We propose that as 𝐽 score represents the intersection-over-
union of the predicted mask and ground-truth mask, the VOSE-Net is
able to predict the video segmentation qualities in most cases. For more
accurate blind boundary quality estimation, further studies are still
needed. In addition, the VOSE-Net cannot directly predict the temporal
stability score 𝑇 introduced in Section 4 for that this score computes
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Table 3
Comparison of the VOSE-Net with different components on the VISA test set. Most of the networks are trained only with affine transformation for saving training time.

Settings Input type Max displacement Optical flow Data augmentation MAE ↓ RMSE ↓ PLCC ↑ SRCC ↑

S1 𝑀𝑅𝐺𝐵 1 (3) PWC-Net [44] Affine transformation 0.047 0.071 0.962 0.938
S2 𝑀𝑅𝐺𝐵 2 (5) PWC-Net [44] Affine transformation 0.043 0.07 0.963 0.943
S3 𝑀𝑅𝐺𝐵 3 (7) PWC-Net [44] Affine transformation 0.041 0.063 0.970 0.945
S4 𝑀𝑅𝐺𝐵 4 (9) PWC-Net [44] Affine transformation 0.039 0.060 0.973 0.951
S5 𝑀𝑅𝐺𝐵 5 (11) PWC-Net [44] Affine transformation 0.039 0.060 0.973 0.951
S6 𝑀𝑅𝐺𝐵 6 (13) PWC-Net [44] Affine transformation 0.040 0.062 0.971 0.947
S7 𝑀𝑅𝐺𝐵 7 (15) PWC-Net [44] Affine transformation 0.043 0.07 0.963 0.943
S8 𝑀𝑅𝐺𝐵 8 (17) PWC-Net [44] Affine transformation 0.047 0.075 0.958 0.938

S4 𝑀𝑅𝐺𝐵 4 (9) PWC-Net [44] Affine transformation 0.039 0.06 0.973 0.951
S9 𝑀𝐵𝑖 4 (9) PWC-Net [44] Affine transformation 0.079 0.109 0.909 0.875

S4 𝑀𝑅𝐺𝐵 4 (9) PWC-Net [44] Affine transformation 0.039 0.06 0.973 0.951
S10 𝑀𝑅𝐺𝐵 4 (9) EpicFlow [43] Affine transformation 0.041 0.063 0.970 0.945
S11 𝑀𝑅𝐺𝐵 4 (9) FlowNet2[42] Affine transformation 0.04 0.062 0.971 0.947

VOSE-Net 𝑀𝑅𝐺𝐵 4 (9) PWC-Net [44] Affine transformation 0.034 0.052 0.980 0.958
+ Mask warping
r
t

the overall algorithm performance consistency over the videos, while
the VOSE-Net measures short-term mask qualities.

Component analysis
The VOSE-Net has several variable components, i.e. the max dis-

lacement for correlation computation, the input mask form, and the
ptical flow computation methods.

The max displacement parameter in the correlation layer determines
he range of correlation operation (see correlation definition in Eq. (1))
if the max displacement is 𝑑 pixel, then the computation range is
𝑑+1 pixels. To obtain the optimal max displacement value, we search
rom the minimum value 1 to the size of the feature map (𝑆1 − 𝑆8 in
able 3), where we find that medium values 4 and 5 tie for the same
est performance. To reduce computation, we choose 4 for the max
isplacement value in the VOSE-Net.

For the input mask form, we test two types of mask input: the
inary mask prediction from video segmentation methods (𝑀𝐵𝑖) and

the colored mask 𝑀𝑅𝐺𝐵 which is obtained by cutting the corresponding
frame image with the binary mask. Comparing 𝑆4 and 𝑆9 in Table 3, it
is easy to see that 𝑀𝑅𝐺𝐵 makes a better input type. This accords with
our conjecture, in that masks in the form of 𝑀𝑅𝐺𝐵 keep more details
and have better correspondence with their spatial references.

We also compare three state-of-the-art optical flow algorithms [42–
44] to see how different optical flow qualities impact on the mask
evaluation performance. Comparison of 𝑆4, 𝑆10 and 𝑆11 illustrates that
the VOSE-Net is only minorly influenced by the changing of optical flow
sources, which further validates the robustness of the VOSE-Net.

Based on the above comparisons, we choose the optimal compo-
nent setting (Max Displacement: 4, Input Type: 𝑀𝑅𝐺𝐵 , Optical Flow:
PWC-Net) for the VOSE-Net as presented in the last row of Table 3.

Mask Quality evaluation with various feature fusions
The VOSE-Net integrates multiple knowledge representations [66]

for predicting mask qualities, i.e. reinforcing between visual knowledge
and deep representations, and then fusing deep representations to
enable explicit reasoning of blindly estimating video mask qualities.
Different from the commonly used late fusion for flow and RGB models,
we delicately design the VOSE-Net structure to contrastively integrate

GB model features and complementarily add in flow model features
or better prediction. In this part, we compare with several networks
rained for different types of references and feature fusion schemes
including late fusion like 𝑛𝑒𝑡1, 𝑛𝑒𝑡3 and 𝑛𝑒𝑡7) to demonstrate the

high performance and structure effectiveness of the VOSE-Net. All the
etworks are trained with the same train-set data of the VISA database
with the affine transformation data augmentation) and the same op-
imization parameters as described in Section 3.2. We use 𝑓𝑚, 𝑟𝑠 and
𝑡 to represent the features of segmentation mask, spatial and temporal
eferences respectively; we use ⊕ to denote the feature concatenation
peration, and ⊗ to denote the feature correlation operation. As de-
cribed in Section 3.1, we use the original frame image as the spatial
7

Table 4
Network structure comparison. Performance comparison of different network structures.
𝑓𝑚 , 𝑟𝑠 , 𝑟𝑡 denote features of segmentation mask, spatial reference and temporal refer-
ence respectively; ⊕,⊗ denote the feature concatenation and correlation operations
espectively. Networks are trained only with affine transformation for saving training
ime.

MAE RMSE PLCC SRCC

𝑛𝑒𝑡1 − 𝑓𝑚 ⊕ 𝑟𝑠 0.067 0.103 0.920 0.871
𝑛𝑒𝑡2 − 𝑓𝑚 ⊗ 𝑟𝑠 0.055 0.08 0.941 0.907
𝑛𝑒𝑡3 − 𝑓𝑚 ⊕ 𝑟𝑡 0.106 0.155 0.805 0.761
𝑛𝑒𝑡4 − 𝑓𝑚 ⊗ 𝑟𝑡 0.210 0.261 −0.003 −0.03
𝑛𝑒𝑡5 − 𝑓𝑚 ⊗ (𝑟𝑠 ⊕ 𝑟𝑡) 0.188 0.253 −0.015 −0.01
𝑛𝑒𝑡6 − (𝑓𝑚 ⊗ 𝑟𝑠)⊕ (𝑓𝑚 ⊗ 𝑟𝑡) 0.125 0.164 0.777 0.756
𝑛𝑒𝑡7 − 𝑓𝑚 ⊕ 𝑟𝑠 ⊕ 𝑟𝑡 0.055 0.088 0.941 0.907
𝑛𝑒𝑡8 − 𝑓𝑚 ⊕ 𝑟𝑡 ⊕ (𝑓𝑚 ⊗ 𝑟𝑠) 0.039 0.061 0.972 0.950

𝑛𝑒𝑡9 − 𝑟𝑡 ⊕ (𝑓𝑚 ⊗ 𝑟𝑠) 0.039 0.06 0.973 0.951*VOSE-Net

reference 𝑟𝑠, and the optical flow motion amplitude as the temporal
reference 𝑟𝑡.

From Table 4, we can see that for single reference networks (𝑛𝑒𝑡1−
𝑛𝑒𝑡4), 𝑟𝑠 (the original frame image) has much better reference value
than 𝑟𝑡 (motion information): the MAE of 𝑛𝑒𝑡3 is 58% higher(worse)
than that of 𝑛𝑒𝑡1. We can also see that it is the close correlation between
segmentation mask the original image that helps estimate the mask
quality: the correlation operation between 𝑓𝑚 and 𝑟𝑠 helps improve the
prediction accuracy (𝑛𝑒𝑡1 vs. 𝑛𝑒𝑡2), while the same operation between
𝑓𝑚 and 𝑟𝑡 heavily harms the overall performance (𝑛𝑒𝑡3 vs. 𝑛𝑒𝑡4 or 𝑛𝑒𝑡2
vs. 𝑛𝑒𝑡4). This phenomenon is further verified by networks with two
references which also involve 𝑓𝑚 ⊗ 𝑟𝑡, i.e. 𝑛𝑒𝑡5, 𝑛𝑒𝑡6.

Double-reference networks show consistent improvement over
single-reference ones, e.g 𝑛𝑒𝑡7 decreases 18% in MAE and 15% in RMSE
than 𝑛𝑒𝑡1 with adding in the temporal space reference; 𝑛𝑒𝑡7 decreases
48% in MAE and 43% in RMSE than 𝑛𝑒𝑡3 with adding in the spatial
space reference. Nevertheless, adding in more features for fusion does
not promise better performance, e.g. 𝑛𝑒𝑡8 has one more 𝑓𝑚 concatenated
with 𝑟𝑡 ⊕ (𝑓𝑚 ⊗ 𝑟𝑠) than 𝑛𝑒𝑡9, but has lower performance.

The proposed VOSE-Net (𝑛𝑒𝑡9) has the best performance of 0.039
MAE, 0.06 RMSE, 0.973 PLCC and 0.951 SRCC, showing that it has
a favorable reference type and feature fusion strategy for the video
segmentation mask quality evaluation task. Fig. 6 presents some visual
examples of segmentation proposals (not in the VISA training or test-
ing set) with the two scores (ground-truth 𝑠𝑗 and predicted 𝑠𝑝). The
prediction score 𝑠𝑝 is very close to 𝑠𝑗 , validating the automatic quality
evaluation ability of the VOSE-Net.

General applicability
To validate the general applicability of the VOSE-Net, we directly
apply it on various datasets and compare its performance scores. We
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Fig. 6. Example results of the VOSE-Net prediction scores on various segmentation proposals. 𝑠𝑗 , 𝑠𝑐 and 𝑠𝑝 denote the ground-truth score, proposal confidence score, and the
VOSE-Net prediction score, respectively. Proposals with the highest 𝑠𝑝 are highlighted in yellow; while proposals with the highest 𝑠𝑐 are highlighted in blue.
firstly separate the ‘VISA’ test set into ‘VISA-1’ and ‘VISA-2’ by whether
the masks of the algorithms are used in constructing ‘VISA’ training
set or not. As shown in Table 5, performances of the VOSE-Net is
only slightly different among these three settings, e.g. MAEs for ‘VISA’,
‘VISA-1’,‘VISA-2’ are 0034, 0.033 and 0.036, respectively. This demon-
strates that the VOSE-Net is not overfitted to masks produced by specific
algorithms.

We also apply the VOSE-Net on the precomputed segmentation
results (including intermediate ones) of three new VOS algorithms
which are not incorporated in dataset construction, i.e. STCN [23],
HMMN [22] and MiVOS [21]. Dataset ‘DAVIS’ in Table 5 denotes
the DAVIS validation set with segmentation masks from the above
three algorithms respectively. Table 5 illustrates that the VOSE-Net has
similar performances on the ‘DAVIS’ dataset setting with ‘VISA’, with
lower MAE on ‘VISA’ (0.041 vs. 0.034) and lower RMSE (0.034 vs.
0.052) on ‘DAVIS’, this may be because that original videos in the VISA
dataset are the same as those in the DAVIS database.

Therefore, we further apply the VOSE-Net on the much larger
YoutubVOS dataset [67]. We randomly select 500 videos with primary
instances from the YoutubVOS training set and test the effectiveness
of the VOSE-Net on large-scale unseen video data. Optical flow for the
temporal reference is computed with PWC-Net [44] at both 5 fps and
30 fps, and candidate segmentation masks are generated with [4,68]
at both frame rates. As shown in the last two rows of Table 5, the
VOSE-Net maintains the ability to blindly estimate mask qualities on
Youtube videos (with MAE of 0.091). In addition, we observe that
the mask quality predictions with 30 fps flows as temporal references
are better than those with 5 fps flows (MAE 0.091 vs. 0.112), this
shows that the fineness of optical flows can influence the mask quality
estimation results (i.e. flows computed at 5 fps are coarser and have
more flaws). Another interesting finding is that the most influenced
evaluation metric during dataset changing is the SRCC, which measures
the correlation between variable data rankings, this shows that when
applied to videos different from training data, the VOSE-Net may score
low-quality masks with high scores and disrupt the score rankings in
some cases. We show some visual examples of such error cases in the
supplementary material for better illustration.
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Table 5
Quality estimation of the VOSE-Net on various datasets.

Dataset MAE ↓ RMSE ↓ PLCC ↑ SRCC ↑

VISA 0.034 0.052 0.980 0.958
VISA-1 0.033 0.051 0.980 0.959
VISA-2 0.036 0.055 0.979 0.956
DAVIS 0.041 0.034 0.944 0.804
Youtube-5fps 0.112 0.125 0.880 0.724
Youtube-30fps 0.091 0.144 0.910 0.715

5.2. Applications

To demonstrate the robustness and practical applicability of the pro-
posed VOSE-Net, we apply it to several useful tasks, i.e. segmentation
proposal selection, parameter optimization and raw video segmentation
evaluation. The first two tasks are carried out on the DAVIS 2016
validation set, where we can use the ground-truth labels to check the
effectiveness of the VOSE-Net. As for the third task, we download ten
web videos which have predominant instances, get segmentation masks
from three different video segmentation algorithms, and let the VOSE-
Net judge the quality of each prediction mask to see if it matches human
intuitions. Detailed results and analysis are as follows.

Segmentation proposal selection
One simple application of our quality evaluator is to automatically

select the best segmentation proposal from groups of candidates. For ex-
ample, we extract a bunch of segmentation masks from MaskRCNN [69]
with various backbone networks (ResNet50 [70], ResNet101 [70],
ResNext101 [71], ResNext152 [71]) and training strategies (1x, 2x,
3x, 4x). For each backbone and training setting (e.g. R50-1x, ResNet50
with strategy 1x), MaskRCNN generates several segmentation masks for
each frame with detection confidence scores from 0 to 1. Taking the
mask with the highest confidence score as its segmentation output for
each image, the performance of each network is as shown in Table 6,
row 1–9. When combining all the proposals together, the highest score
selection strategy (𝑚𝑎𝑥𝑐𝑜𝑛𝑓 ) does not improve over a single network
(e.g. the 𝑚𝑎𝑥𝑐𝑜𝑛𝑓 has J mean of 0.575, which is lower than its subset
𝑋101−2𝑥). Neither does the 𝑚𝑎𝑥𝑎𝑟𝑒𝑎 strategy which picks out the largest
mask proposal for each frame. In contrast, the VOSE-Net can accurately
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Fig. 7. Example of the VOSE-Net quality estimation for masks on arbitrary videos. This figure presents samples of Internet video frames with segmentation masks from different
methods, and the VOSE-Net is used to assess mask qualities with its prediction score 𝑠𝑝. High-quality and low-quality masks selected by 𝑠𝑝 are shown on the left and right
respectively.
assess the quality of each proposal and select the ones most likely to
be target masks. From the last row of Table 6, we can see that with
the same set of proposals, the VOSE-Net proposal selection strategy
overwhelms the network confidence strategy (𝑚𝑎𝑥𝑐𝑜𝑛𝑓 ) by 22.3% J
mean and 21% F mean. For better visual illustrations, we also show
some typical proposals in Fig. 6 with their ground-truth scores 𝑠𝑗
(Jaccard similarity computed with ground-truth mask), network con-
fidence scores 𝑠𝑐 and the VOSE-Net prediction scores 𝑠𝑝, demonstrating
that the VOSE-Net automatic assessment of each proposal is similar to
ground-truth scores without the need for manual labels.

Post-processing parameter optimization
Post-processing techniques are widely used in segmentation tasks

[16,72,73] to enhance mask details. For example, [4] adds CRF op-
timization after video segmentation; [72] employs denseCRF which
can be embedded in convolutional network; and [5] trains one mask
refinement network for each target as post-processing. However, most
post-processing methods need to fine-tune on the first frame mask, or
need to grid search for optimized parameter settings with access to
the first frame annotation. For unsupervised testing where the videos
have no manual labels, empirical values are directly applied to every
video despite of their differences. In this case, the optimization process
largely relies on researchers’ experience. However, we propose that
with help of the VOSE-Net, this parameter selection process can be done
automatically with a thorough exploration of optimization potentials.

Take CRF for an example, there are usually four tunable parameters
in the CRF optimization process, the color-dependent terms 𝜃𝛼 and 𝜃𝛽 ,
the color-independent term 𝜃𝛾 , and the optimization iteration number
#𝐼𝑡𝑒𝑟𝑠. The commonly suggested values for these four parameters are
80, 13, 3 and 5. We use the proposals selected by the VOSE-Net in
Table 6 as a baseline algorithm, and conduct a parameter search.

As shown in Table 7, not all the parameter settings are suitable for
video segmentation mask post-processing. For 𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ, we search
all the parameter settings on the first frame of each test video, and
select the one with the highest J mean. For VOSE-Net, we search all
the parameters on three random frames from each video, and select
the setting with the highest prediction score. The last two rows of
Table 7 show that parameter selection with the VOSE-Net outperforms
all candidate parameter settings, as well as the 𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ strategy
9

Table 6
Segmentation proposal selection on the DAVIS 2016 val set.

Method J mean ↑ J recall ↑ F mean ↑ F recall ↑

R50-1x 0.518 0.592 0.519 0.561
R50-2x 0.550 0.614 0.559 0.585
R101-1x 0.548 0.629 0.555 0.588
R101-2x 0.560 0.637 0.568 0.597
X101-1x 0.565 0.646 0.571 0.608
X101-2x 0.584 0.661 0.594 0.633
X101-3x 0.509 0.572 0.515 0.534
X101-4x 0.576 0.648 0.588 0.606
X152 0.550 0.625 0.557 0.585

𝑚𝑎𝑥𝑎𝑟𝑒𝑎 0.479 0.563 0.460 0.465
𝑚𝑎𝑥𝑐𝑜𝑛𝑓 0.575 0.646 0.586 0.519
VOSE-Net 0.798 0.955 0.791 0.875

Table 7
CRF parameter optimization on the DAVIS 2016 val set.

[𝜃𝛼 , 𝜃𝛽 , 𝜃𝛾 ] #𝐼𝑡𝑒𝑟𝑠 (J mean, F mean)

3 5 10 15

[20, 13, 3] 0.811,0.794 0.812,0.795 0.812,0.794 0.812,0.794
[40, 13, 3] 0.806,0.795 0.801,0.788 0.794,0.781 0.790,0.778
[60, 13, 3] 0.785,0.771 0.772,0.757 0.757,0.741 0.751,0.735
[80, 13, 3] 0.763,0.739 0.743,0.719 0.719,0.695 0.708,0.685
[100, 13, 3] 0.712,0.689 0.689,0.659 0.652,0.628 0.637,0.618

[20, 13, 5] 0.748,0.729 0.728,0.706 0.703,0.684 0.691,0.673
[20, 13, 7] 0.741,0.722 0.720,0.699 0.695,0.676 0.684,0.666
[20, 13, 9] 0.735,0.715 0.713,0.692 0.688,0.668 0.677,0.659

[20, 7, 3] 0.780,0.757 0.766,0.746 0.752,0.734 0.745,0.729
[20, 9, 3] 0.771,0.751 0.755,0.736 0.738,0.720 0.729,0.714
[20, 13, 3] 0.811,0.794 0.812,0.795 0.812,0.794 0.812,0.794
[20, 15, 3] 0.747,0.726 0.725,0.701 0.699,0.676 0.687,0.664

Baseline J mean = 0.798, F mean = 0.791
𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ J mean = 0.801, F mean = 0.788
VOSE-Net J mean = 0.812, F mean = 0.803

which uses first frame annotations. This verifies that the proposed

VOSE-Net is qualified for an alternative of manual parameter tuning

experience.
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Quality evaluation on arbitrary videos
To demonstrate the robustness and universality of the VOSE-Net,

we download ten videos from the Internet, including real-world, 3D
animation and 2D animation movie clips with primary objects of per-
sons, robots, animals, vehicles, etc. We use PWC-Net [44] to compute
optical flow for each video, and three different types of segmentation
methods to generate video masks [4,69,74]. [69] is a detection-based
segmentation network that generates segmentation masks along with
detection boxes, where we use the same setting as X101-2x in Table 6
(select the proposals with max confidence scores); [74] is a pixel
difference based foreground segmentation method, which computes a
dynamic threshold to distinguish foreground pixels from background
pixels; and [4] is a fully convolutional neural network which follows
the general segmentation idea of FCN [75] and integrates optical flow
information within the network.

Fig. 7 shows some segmentations with high qualities (left) and low
qualities (right) judged by the VOSE-Net. Although we cannot obtain
the exact ground-truth scores for these video frames, we can see that the
segmentations are in line with human intuitions. For more performance
of the VOSE-Net on raw videos, we provide a supplementary video for
evaluation of the above three methods on all ten videos.

6. Conclusion

In this paper, we build an automatic quality measurement algorithm
for video object segmentation masks, the VOSE-Net, to accurately esti-
mate mask qualities without access to manual labels. We construct a
VIdeo Segmentation Assessment (VISA) dataset to train the proposed
evaluator, as well as validate its high precision of quality evaluation.
Besides, we demonstrate the robustness of the VOSE-Net in three differ-
ent applications, illustrating its general applicability and universality.
We propose that this automatic quality evaluator can be applied widely
in field tests and other video segmentation related techniques, helping
to assess mask qualities and tune dynamic parameters online without
manual intervention.

CRediT authorship contribution statement

Jingchun Cheng: Conceptualization, Methodology, Software, Writ-
ing – original draft. Jiajie Song: Investigation, Data curation. Rui
Xiong: Validation, Writing – review & editing. Xiong Pan: Super-
ision, Project administration. Chunxi Zhang: Supervision, Funding
cquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgment

This work is supported by the China Postdoctoral Science Founda-
ion under Grant No. 2021M690293.

ppendix A. Supplementary data

Supplementary material related to this article can be found online
10

t https://doi.org/10.1016/j.measurement.2022.111003.
eferences

[1] Yanchao Yang, Brian Lai, Stefano Soatto, Dystab: Unsupervised object segmen-
tation via dynamic-static bootstrapping*, in: 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp. 2825–2835.

[2] Sabarinath Mahadevan, Ali Athar, Aljosa Osep, Sebastian Hennen, Laura Leal-
Taixé, B. Leibe, Making a case for 3D convolutions for object segmentation in
videos, ArXiv (2020) abs/2008.11516.

[3] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, A. Sorkine-
Hornung, A benchmark dataset and evaluation methodology for video object
segmentation, in: Computer Vision and Pattern Recognition, 2016.

[4] Jingchun Cheng, Yi-Hsuan Tsai, Shengjin Wang, Ming-Hsuan Yang, Segflow:
Joint learning for video object segmentation and optical flow, in: ICCV, 2017.

[5] Jonathon Luiten, Paul Voigtlaender, Bastian Leibe, Premvos: Proposal-generation,
refinement and merging for video object segmentation, in: ACCV, 2018.

[6] Yeong Jun Koh, Chang-Su Kim, Primary object segmentation in videos based
on region augmentation and reduction, in: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017, pp. 7417–7425.

[7] Suyog Dutt Jain, Bo Xiong, Kristen Grauman, Fusionseg: Learning to combine
motion and appearance for fully automatic segmentation of generic objects in
videos, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, 2017, pp. 2117–2126.

[8] Won-Dong Jang, Chang-Su Kim, Online video object segmentation via convo-
lutional trident network, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 5849–5858.

[9] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig Adam, Bastian Leibe,
Liang-Chieh Chen, Feelvos: Fast end-to-end embedding learning for video object
segmentation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 9481–9490.

[10] Jingchun Cheng, Yi-Hsuan Tsai, Wei-Chih Hung, Shengjin Wang, Ming-Hsuan
Yang, Fast and accurate online video object segmentation via tracking parts, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 7415–7424.

[11] Paul Jaccard, Étude comparative de la distribution florale dans une portion des
alpes et des jura, Bull. Soc. Vaudoise Sci. Nat. 37 (1901) 547–579.

[12] Fanman Meng, Lili Guo, Qingbo Wu, Hongliang Li, A new deep segmentation
quality assessment network for refining bounding box based segmentation, IEEE
Access 7 (2019) 59514–59523.

[13] W. Shi, Fanman Meng, Q. Wu, Segmentation quality evaluation based on multi-
scale convolutional neural networks, 2017 IEEE Visual Communications and
Image Processing (VCIP) (2017) 1–4.

[14] C. Huang, Q. Wu, Fanman Meng, Qualitynet: Segmentation quality evaluation
with deep convolutional networks, 2016 Visual Communications and Image
Processing (VCIP) (2016) 1–4.

[15] J. Pont-Tuset, F. Marqués, Supervised evaluation of image segmentation and
object proposal techniques, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2016)
1465–1478.

[16] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel
Cremers, Luc Van Gool, One-shot video object segmentation, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.
221–230.

[17] Joakim Johnander, Martin Danelljan, Emil Brissman, Fahad Shahbaz Khan,
Michael Felsberg, A generative appearance model for end-to-end video object
segmentation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 8953–8962.

[18] Nicolas Märki, Federico Perazzi, Oliver Wang, Alexander Sorkine-Hornung,
Bilateral space video segmentation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 743–751.

[19] Matthias Grundmann, Vivek Kwatra, Mei Han, Irfan Essa, Efficient hierarchical
graph-based video segmentation, in: 2010 Ieee Computer Society Conference on
Computer Vision and Pattern Recognition, IEEE, 2010, pp. 2141–2148.

[20] Federico Perazzi, Oliver Wang, Markus Gross, Alexander Sorkine-Hornung, Fully
connected object proposals for video segmentation, in: Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 3227–3234.

[21] Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang, Modular interactive video object
segmentation: Interaction-to-mask, propagation and difference-aware fusion, in:
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 5555–5564.

[22] Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon
Lee, Euntai Kim, Hierarchical memory matching network for video object
segmentation, in: ICCV, 2021.

[23] Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang, Rethinking space-time networks
with improved memory coverage for efficient video object segmentation, in:
NeurIPS, 2021.

[24] Paul Voigtlaender, Bastian Leibe, Online adaptation of convolutional neural
networks for the 2017 davis challenge on video object segmentation, in: The
2017 DAVIS Challenge on Video Object Segmentation-CVPR Workshops, Vol. 5,
2017.

[25] Zongxin Yang, Yunchao Wei, Yi Yang, Collaborative video object segmentation by
multi-scale foreground-background integration, IEEE Trans. Pattern Anal. Mach.
Intell. (2021) 1.

[26] Xiaoxiao Li, Yuankai Qi, Zhe Wang, K. Chen, Z. Liu, J. Shi, Ping Luo, X. Tang,
Chen Change Loy, Video object segmentation with re-identification, ArXiv (2017)

abs/1708.00197.

https://doi.org/10.1016/j.measurement.2022.111003
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb1
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb1
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb1
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb1
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb1
http://abs/2008.11516
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb3
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb3
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb3
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb3
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb3
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb4
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb4
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb4
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb5
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb5
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb5
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb6
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb6
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb6
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb6
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb6
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb7
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb7
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb7
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb7
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb7
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb7
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb7
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb11
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb11
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb11
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb12
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb12
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb12
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb12
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb12
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb13
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb13
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb13
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb13
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb13
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb14
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb14
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb14
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb14
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb14
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb15
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb15
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb15
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb15
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb15
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb19
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb19
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb19
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb19
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb19
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb21
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb21
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb21
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb21
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb21
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb21
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb21
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb22
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb22
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb22
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb22
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb22
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb23
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb23
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb23
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb23
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb23
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb24
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb24
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb24
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb24
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb24
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb24
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb24
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb25
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb25
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb25
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb25
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb25
http://abs/1708.00197


Measurement 194 (2022) 111003J. Cheng et al.
[27] Xiaoliang Hu, Zhijiang Xie, Fei Liu, Assessment of speckle pattern quality in
digital image correlation from the perspective of mean bias error, Measurement
(2020) 108618.

[28] Michal Kedzierski, Damian Wierzbicki, Radiometric quality assessment of images
acquired by uav’s in various lighting and weather conditions, Measurement 76
(2015) 156–169.

[29] Deepti Ghadiyaram, A. Bovik, Massive online crowdsourced study of subjective
and objective picture quality, IEEE Trans. Image Process. 25 (2016) 372–387.

[30] Patrick Le Callet, Florent Autrusseau, Subjective quality assessment IRCCyN/IVC
database, 2005, http://www.irccyn.ec-nantes.fr/ivcdb/.

[31] V. Movahedi, J. Elder, Design and perceptual validation of performance measures
for salient object segmentation, 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition - Workshops (2010) 49–56.

[32] G. Csurka, Diane Larlus, F. Perronnin, What is a good evaluation measure for
semantic segmentation? in: BMVC, 2013.

[33] M. Everingham, S. Eslami, L. Gool, C.K. Williams, J. Winn, Andrew Zisserman,
The pascal visual object classes challenge: A retrospective, Int. J. Comput. Vis.
111 (2014) 98–136.

[34] K. Simonyan, Andrew Zisserman, Very deep convolutional networks for
large-scale image recognition, 2015, CoRR abs/1409.1556.

[35] Zifeng Wu, Chunhua Shen, Anton Van Den Hengel, Wider or deeper: Revisiting
the resnet model for visual recognition, Pattern Recognit. 90 (2019) 119–133.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.,
Imagenet large scale visual recognition challenge, IJCV (2015).

[37] Zhuxin Chen, Zhifeng Xie, Weibin Zhang, Xiangmin Xu, Resnet and model fusion
for automatic spoofing detection, in: INTERSPEECH, 2017, pp. 102–106.

[38] Jifeng Dai, Yi Li, Kaiming He, Jian Sun, R-fcn: Object detection via region-based
fully convolutional networks, in: Advances in Neural Information Processing
Systems, 2016, pp. 379–387.

[39] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár, Focal loss
for dense object detection, in: Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 2980–2988.

[40] Matthew D Zeiler, Rob Fergus, Visualizing and understanding convolutional
networks, in: European Conference on Computer Vision, Springer, 2014, pp.
818–833.

[41] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas,
Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, Thomas Brox, Flownet:
Learning optical flow with convolutional networks, in: Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 2758–2766.

[42] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
Thomas Brox, Flownet 2.0: Evolution of optical flow estimation with deep
networks, in: CVPR, 2017.

[43] Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, Cordelia Schmid,
Epicflow: Edge-preserving interpolation of correspondences for optical flow, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1164–1172.

[44] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz, Pwc-net: Cnns for optical
flow using pyramid, warping, and cost volume, in: CVPR, 2018.

[45] Tim Meinhardt, Laura Leal-Taixé, Make one-shot video object segmentation
efficient again, in: NeurIPS, 2020.

[46] Hongje Seong, Junhyuk Hyun, Euntai Kim, Kernelized memory network for video
object segmentation, in: ECCV, 2020.

[47] Qingnan Fan, Fan Zhong, Dani Lischinski, Daniel Cohen-Or, Baoquan Chen,
Jumpcut: non-successive mask transfer and interpolation for video cutout, ACM
Trans. Graph. 34 (6) (2015) 195:1–195:10.

[48] Anna Khoreva, Rodrigo Benenson, Eddy Ilg, Thomas Brox, Bernt Schiele, Lucid
data dreaming for video object segmentation, Int. J. Comput. Vis. (2018) 1–23.

[49] Federico Perazzi, Anna Khoreva, Rodrigo Benenson, Bernt Schiele, Alexander
Sorkine-Hornung, Learning video object segmentation from static images, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 2663–2672.

[50] Jae Shin Yoon, Francois Rameau, Junsik Kim, Seokju Lee, Seunghak Shin, In
So Kweon, Pixel-level matching for video object segmentation using convolu-
tional neural networks, in: Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 2167–2176.

[51] S Avinash Ramakanth, R Venkatesh Babu, Seamseg: Video object segmentation
using patch seams, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 376–383.

[52] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, Philip HS Torr, Fast
online object tracking and segmentation: A unifying approach, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.
1328–1338.

[53] Anna Khoreva, Anna Rohrbach, Bernt Schiele, Video object segmentation with
language referring expressions, in: Asian Conference on Computer Vision,
Springer, 2018, pp. 123–141.
11
[54] Varun Jampani, Raghudeep Gadde, Peter V Gehler, Video propagation networks,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 451–461.

[55] Wenguan Wang, Hongmei Song, Shuyang Zhao, Jianbing Shen, Sanyuan Zhao,
Steven CH Hoi, Haibin Ling, Learning unsupervised video object segmentation
through visual attention, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 3064–3074.

[56] Margret Keuper, Bjoern Andres, Thomas Brox, Motion trajectory segmentation via
minimum cost multicuts, in: Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 3271–3279.

[57] Brian Taylor, Vasiliy Karasev, Stefano Soatto, Causal video object segmentation
from persistence of occlusions, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 4268–4276.

[58] Anestis Papazoglou, Vittorio Ferrari, Fast object segmentation in unconstrained
video, in: Proceedings of the IEEE International Conference on Computer Vision,
2013, pp. 1777–1784.

[59] Yong Jae Lee, Jaechul Kim, Kristen Grauman, Key-segments for video object
segmentation, in: 2011 International Conference on Computer Vision, IEEE, 2011,
pp. 1995–2002.

[60] Pavel Tokmakov, Karteek Alahari, Cordelia Schmid, Learning video object
segmentation with visual memory, in: Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 4481–4490.

[61] Pavel Tokmakov, Cordelia Schmid, Karteek Alahari, Learning to segment moving
objects, Int. J. Comput. Vis. 127 (3) (2019) 282–301.

[62] Mennatullah Siam, Chen Jiang, Steven Lu, Laura Petrich, Mahmoud Gamal, Mo-
hamed Elhoseiny, Martin Jagersand, Video segmentation using teacher-student
adaptation in a human robot interaction (HRI) setting, 2018, arXiv preprint
arXiv:1810.07733.

[63] Peter Ochs, Thomas Brox, Object segmentation in video: a hierarchical vari-
ational approach for turning point trajectories into dense regions, in: 2011
International Conference on Computer Vision, IEEE, 2011, pp. 1583–1590.

[64] Brent Griffin, Jason Corso, Tukey-inspired video object segmentation, in: 2019
IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE,
2019, pp. 1723–1733.

[65] Katerina Fragkiadaki, Geng Zhang, Jianbo Shi, Video segmentation by tracing
discontinuities in a trajectory embedding, in: 2012 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, 2012, pp. 1846–1853.

[66] Yi Yang, Yueting Zhuang, Yunhe Pan, Multiple knowledge representation for big
data artificial intelligence: framework, applications, and case studies, Front. Inf.
Technol. Electron. Eng. (2021).

[67] N. Xu, L. Yang, Yuchen Fan, Jianchao Yang, Dingcheng Yue, Yuchen
Liang, Brian L. Price, Scott D. Cohen, Thomas S. Huang, Youtube-VOS:
Sequence-to-sequence video object segmentation, in: ECCV, 2018.

[68] S. Oh, Joon-Young Lee, N. Xu, S. Kim, Video object segmentation using
space-time memory networks, in: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 9225–9234.

[69] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross B. Girshick, Mask R-CNN, IEEE
Trans. Pattern Anal. Mach. Intell. 42 (2020) 386–397.

[70] Kaiming He, X. Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for
image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[71] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He, Aggregated
residual transformations for deep neural networks, in: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5987–5995.

[72] Philipp Krähenbühl, V. Koltun, Efficient inference in fully connected CRFs with
Gaussian edge potentials, in: NIPS, 2011.

[73] K. Maninis, S. Caelles, Y. Chen, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, L. Van
Gool, Video object segmentation without temporal information, IEEE Trans.
Pattern Anal. Mach. Intell. 41 (2019) 1515–1530.

[74] Leyi Xiao, H. Ouyang, Chaodong Fan, An improved otsu method for threshold
segmentation based on set mapping and trapezoid region intercept histogram,
Optik 196 (2019) 163106.

[75] J. Long, Evan Shelhamer, Trevor Darrell, Fully convolutional networks for
semantic segmentation, in: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 3431–3440.

Jingchun Cheng is a Post-Doc at BeiHang University. She
received her bachelor’s degree in Electronic Engineering
at Tsinghua University in 2014, was a visiting scholar in
UC Merced in 2017, and received her Ph.D. degree in
Electronic Engineering from Tsinghua University in 2020.
Her research interests include video object segmentation,
face recognition, autonomous driving, etc.

http://refhub.elsevier.com/S0263-2241(22)00270-6/sb27
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb27
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb27
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb27
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb27
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb28
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb28
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb28
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb28
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb28
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb29
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb29
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb29
http://www.irccyn.ec-nantes.fr/ivcdb/
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb31
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb31
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb31
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb31
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb31
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb32
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb32
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb32
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb33
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb33
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb33
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb33
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb33
http://abs/1409.1556
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb35
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb35
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb35
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb36
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb36
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb36
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb36
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb36
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb37
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb37
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb37
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb38
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb38
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb38
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb38
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb38
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb40
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb40
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb40
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb40
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb40
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb42
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb42
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb42
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb42
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb42
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb44
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb44
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb44
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb45
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb45
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb45
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb46
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb46
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb46
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb47
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb47
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb47
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb47
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb47
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb48
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb48
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb48
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb53
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb53
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb53
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb53
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb53
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb59
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb59
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb59
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb59
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb59
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb61
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb61
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb61
http://arxiv.org/abs/1810.07733
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb63
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb63
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb63
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb63
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb63
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb64
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb64
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb64
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb64
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb64
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb65
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb65
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb65
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb65
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb65
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb66
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb66
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb66
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb66
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb66
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb67
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb67
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb67
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb67
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb67
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb68
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb68
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb68
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb68
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb68
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb69
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb69
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb69
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb70
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb70
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb70
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb70
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb70
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb71
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb71
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb71
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb71
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb71
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb72
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb72
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb72
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb73
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb73
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb73
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb73
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb73
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb74
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb74
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb74
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb74
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb74
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb75
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb75
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb75
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb75
http://refhub.elsevier.com/S0263-2241(22)00270-6/sb75

	An automatic quality evaluator for video object segmentation masks
	Introduction
	Related work
	Video object segmentation
	Segmentation quality evaluation

	The proposed method
	The VOSE-Net
	Training details
	Applications

	Dataset construction
	Data and distribution
	Evaluation criterion
	Data augmentation

	Experimental results
	Automatic quality evaluation
	Applications

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Supplementary data
	References


