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Abstract We report the first observation of the �c(2930)0

charmed-strange baryon with a significance greater than
5σ . The �c(2930)0 is found in its decay to K−�+

c in
B− → K−�+

c �̄−
c decays. The measured mass and width

are [2928.9 ± 3.0(stat.)+0.9
−12.0(syst.)] MeV/c2 and [19.5 ±

8.4(stat.)+5.9
−7.9(syst.)] MeV, respectively, and the product

branching fraction isB(B− → �c(2930)0�̄−
c )B(�c(2930)0

→ K−�+
c ) = [1.73±0.45(stat.)±0.21(syst.)]×10−4. We

also measure B(B− → K−�+
c �̄−

c ) = [4.80 ±0.43(stat.)±
0.60(syst.)] × 10−4 with improved precision, and search for
the charmonium-like state Y (4660) and its spin partner, Yη,
in the �+

c �̄−
c invariant mass spectrum. No clear signals of

the Y (4660) nor its spin partner are observed and the 90%
credibility level (C.L.) upper limits on their production rates
are determined. These measurements are obtained from a
sample of (772 ± 11) × 106B B̄ pairs collected at the ϒ(4S)

resonance by the Belle detector at the KEKB asymmetric
energy electron–positron collider.

The singly charmed baryon is composed of a charm quark
and two light quarks. Charmed baryon spectroscopy provides
an excellent ground for studying the dynamics of light quarks
in the environment of a heavy quark and offers an excel-
lent laboratory for testing heavy-quark or chiral symmetry of
the heavy or light quarks, respectively. Although many new
excited charmed baryons have been discovered by BaBar,
Belle, CLEO and LHCb in the past two decades [1], and many
efforts have been made to identify the quantum numbers of
these new states and understand their properties, we do not
yet have a fully phenomenological model that describes the
complicated physics of this sector [2,3]. Identification and
observation of new members in the charmed-baryon family
will provide more information to address these open issues.

The �c(2930) charmed-strange baryon has been reported
only in the analysis of B− → K−�+

c �̄−
c by BaBar [4],

where they claim a signal in the K−�+
c invariant mass dis-

tribution with a mass of [2931 ± 3(stat.)± 5(syst.)] MeV/c2

and a width of [36 ± 7(stat.) ± 11(syst.)] MeV. However,
neither the results of the fit to their spectrum nor the sig-
nificance of the signal were given; the Particle Data Group
(PDG) lists it as a “one star” state [1]. Despite the weak
experimental evidence for the �c(2930) state, it has been
taken into account in many theoretical models, including the
chiral quark model [5], the light-cone Quantum Chromody-
namics (QCD) sum rule [6], the 3P0 mode [7], the constituent
quark model [8,9], and the heavy-hadron chiral perturbation
theory [10].

Belle has previously studied B− → K−�+
c �̄−

c decays [11]
with a data sample of 386×106 B B̄ pairs but the distributions
of the intermediate K�c systems have not been presented.
The full Belle data sample of (772±11)×106B B̄ pairs per-

a e-mail: shencp@phys.hawaii.edu

mits an improved study of B− → K−�+
c �̄−

c and a test for
the existence of the �c(2930).

The same B decay mode can be used to study the �+
c �̄−

c
invariant mass. In this system, Belle has previously observed
a charmonium-like state, the Y (4630), in the initial state
radiation (ISR) process e+e− → γISR�+

c �̄−
c [12] with

a measured mass of [4634+8
−7(stat.)+5

−8(syst.)] MeV/c2 and

a width of [92+40
−24(stat.)+10

−21(syst.)] MeV. As this mass is
very close to that of the Y (4660) observed by Belle in the
ISR process e+e− → γISRπ+π−ψ ′ [13,14], many theo-
retical explanations assume they are the same state [15–
17]. In Refs. [18,19], where the Y (4660) is modeled as an
f0(980)ψ ′ bound state, the authors predict that it should
have a spin partner—a f0(980)ηc(2S) bound state denoted
as the Yη—with a mass and width of (4613±4) MeV/c2 and
around 30 MeV, respectively, and a large partial width into
�+

c �̄−
c [17,19].

In this Letter, we perform an updated measurement of
B− → K−�+

c �̄−
c [20] and observe the �c(2930)0 sig-

nal with a significance of 5.1σ . This analysis is based on
the full data sample collected at the ϒ(4S) resonance by
the Belle detector [21,22] at the KEKB asymmetric energy
electron–positron collider [23,24]. Simulated signal events
with B meson decays are generated using EvtGen [25],
while the inclusive decays are generated via PYTHIA [26].
These events are processed by a detector simulation based
on GEANT3 [27]. Inclusive Monte Carlo (MC) samples
of ϒ(4S) → B B̄ (B = B+ or B0) and e+e− → qq̄
(q = u, d, s, c) events at

√
s = 10.58 GeV are used to

check the backgrounds, corresponding to more than 5 times
the integrated luminosity of the data.

We reconstruct the �+
c via the �+

c → pK−π+, pK 0
S ,

�π+, pK 0
Sπ

+π−, and �π+π+π− decay channels. When
a �+

c and �̄−
c are combined to reconstruct a B candidate,

at least one is required to have been reconstructed via the
pK+π− or p̄K−π+ decay process. For charged tracks,
information from different detector subsystems, including
specific ionization in the central drift chamber, time mea-
surements in the time-of-flight scintillation counters and the
response of the aerogel threshold Cherenkov counters, is
combined to form the likelihood Li for species i , where
i = π , K , or p [28]. Except for the charged tracks from
� → pπ− and K 0

S → π+π− decays, a track with a like-
lihood ratio Rπ

K = LK /(LK + Lπ ) > 0.6 is identified
as a kaon, while a track with Rπ

K < 0.4 is treated as a
pion [28]. With this selection, the kaon (pion) identifica-
tion efficiency is about 94% (98%), while 5% (2%) of the
kaons (pions) are misidentified as pions (kaons). A track
with Rπ

p/ p̄ = Lp/ p̄/(Lp/ p̄ + Lπ ) > 0.6 and RK
p/ p̄ =

Lp/ p̄/(Lp/ p̄ + LK ) > 0.6 is identified as a proton/anti-
proton with an efficiency of about 98%; fewer than 1% of
the pions/kaons are misidentified as protons/anti-protons.
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The K 0
S candidates are reconstructed from pairs of

oppositely-charged tracks, treated as pions, and identified
by a multivariate analysis with a neural network [29] based
on two sets of input variables [30]. Candidate � baryons
are reconstructed in the decay � → pπ− and selected if
the pπ− invariant mass is within 5 MeV/c2 (5σ ) of the �

nominal mass [1].
We perform a vertex fit to signal B candidates. If there

is more than one B signal candidate in an event, we select
the one with the minimum χ2

vertex from the vertex fit. We
require χ2

vertex < 50 with a selection efficiency above 96%.
As the continuum background level is very low, continuum
suppression is not necessary.

The B candidates are identified using the beam-energy
constrained mass Mbc and the mass difference �MB .
The beam-energy constrained mass is defined as Mbc ≡√
E2

beam/c2 − (
∑ �pi )2/c, where Ebeam is the beam energy

and �pi are the three-momenta of the B-meson decay prod-
ucts, all defined in the center-of-mass system (CMS) of the
e+e− collision. The mass difference is defined as �MB ≡
MB −mB , where MB is the invariant mass of the B candidate
and mB is the nominal B-meson mass [1].

Figure 1 shows clear evidence of �+
c and �̄−

c in the dis-
tribution of M�̄−

c
versus M�+

c
(left panel) from the selected

B− → K−�+
c �̄−

c data candidates in the B signal region of
|�MB | < 0.018 GeV/c2 and Mbc > 5.27 GeV/c2 (∼ 3σ ),
illustrated by the green box in the right panel’s distribution
of �MB versus Mbc. The �c signal region (the central green
box in the left panel) is defined as |M�c − m�c | < 10
MeV/c2 (∼ 2.5σ ), where m�c is the nominal mass of the
�c baryon [1]. As the mass resolution of �c candidates is
almost independent of the �c decay mode, according to the
signal MC simulation, the same requirement is placed on all
�c decay modes. The non-�c background in the �c signal
region is estimated as half of the total number of events in
the four red sideband regions minus one quarter of the total
number of events in the four blue sideband regions of the left
panel.

To obtain the B− → K−�+
c �̄−

c signal yields, we perform
an unbinned two-dimensional (2D) simultaneous extended
maximum likelihood fit to the �MB versus Mbc distribu-
tions for the five reconstructed �c decay modes. The model
used to fit the Mbc distribution is a Gaussian function for
the signal shape plus an ARGUS function [31] for the back-
ground. The model for the �MB distribution is the sum of
a Gaussian function for the signal plus a first-order polyno-
mial for the background. The Gaussian resolutions are fixed
to the values from the fits to the individual MC distributions,
and the relative signal yields among the five final states is
fixed according to the relative branching fraction between
the final states and the detection acceptance and efficiency of
the intermediate states.
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Fig. 1 Signal-enhanced distribution of M(�̄−
c ) versus M(�+

c ) (left
panel) and of �MB versus Mbc (right panel) from the selected B− →
K−�+

c �̄−
c candidates, summing over all five reconstructed �c decay

modes. Each panel shows the events falling in the solid green signal
region of the other panel. The dashed red and blue boxes in the left
panel show the �c sideband regions used for the estimation of the non-
�c background (see text)
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bars are data, the solid blue curves are the best-fit projections to the
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Figure 2 shows the projections of the fit superimposed
on the �c-signal-enhanced Mbc and �MB distributions,
summing over all five reconstructed �c decay modes. We
observe 153 ± 14 signal events with a signal significance
above 10σ , and extract the branching fraction of B(B− →
K−�+

c �̄−
c ) = [4.80 ± 0.43(stat.)] × 10−4.

The Dalitz distribution of the reconstructed B− →
K−�+

c �̄−
c candidates is shown in Fig. 3. A vertical-band

enhancement near M(K−�+
c ) ∼ 2.93 GeV/c2 is observed;

no signal band is apparent in the M(�+
c �̄−

c ) horizontal direc-
tion nor in the M(K−�̄−

c ) diagonal direction.
The B-signal-enhanced K−�+

c mass spectrum is shown
in Fig. 4. The shaded histogram is from the normalized
�+

c and �̄−
c mass sidebands, and the dot-dashed line is the

sum of the contributions from normalized e+e− → qq̄ and
ϒ(4S) → B B̄ generic MC samples. Since they are consis-
tent, we take the �+

c and �̄−
c mass sidebands to represent

the total background, neglecting the small possible contribu-
tion of background with real �+

c and �̄−
c . A clear �c(2930)

signal is observed. No structure is seen in the �+
c and �̄−

c
mass sidebands, nor in the generic MC samples, nor in the
wrong-sign-combination distribution of K−�̄−

c .
An unbinned simultaneous extended maximum likelihood

fit is performed to the K−�+
c invariant mass spectra for
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is the MC simulated phase-space distribution

selected B- and �c-signal events and the �+
c and �̄−

c mass
sidebands. An S-wave Breit-Wigner (BW) function con-
volved with a Gaussian function with the phase space factor
and efficiency curve included (the mass resolution of Gaus-
sian function being fixed to 4.46 MeV/c2 from the signal
MC simulation) is taken as the �c(2930) signal shape. Direct
three-body B decays are modeled by the shape corresponding
to B− → K−�+

c �̄−
c MC-simulated decays distributed uni-

formly in phase space. A second-order polynomial is used to
represent the �+

c and �̄−
c mass-sideband distribution, which

is normalized to represent the total background in the signal
events in the fit.

The fit results are shown in Fig. 4. The fitted mass and
width of the �c(2930) are M�c(2930) = [2928.9±3.0(stat.)]
MeV/c2 and ��c(2930) = [19.5 ± 8.4(stat.)] MeV, where a
fit bias of 1.4 MeV/c2 on the �c(2930) mass, determined
using MC simulation, has been corrected. The yields of the
�c(2930) signal and the phase-space contribution are N�c =
61 ± 16 and Nphsp = 79 ± 19.

To estimate the �c(2930) signal significance, we use an
ensemble of simulated experiments to estimate the probabil-
ity that background fluctuations alone would produce signals
as significant as that seen in the data. We generate K−�+

c
mass spectra according to the shape of the non-�c(2930)

background distribution (the dashed red line in Fig. 4), with
each spectrum containing 192 events which corresponds to
the total data entries in Fig. 4. We fit each spectrum as we do
the real data, searching for the most significant fluctuation,
and thus obtain the distribution of −2 ln(L0/Lmax) for these
simulated background samples. We perform a total of 13.2
million simulations and found 3 trials with a −2 ln(L0/Lmax)

value greater than or equal to the value obtained in the data.
The resulting p value is 2.27 × 10−7, corresponding to a
significance of 5.1σ .

The product branching fraction ofB(B− → �c(2930)�̄−
c )

B(�c(2930) → K−�+
c ) = [1.73 ± 0.45(stat.)] × 10−4
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blue line is the best fit, the dashed red line is the total non-�c(2930)

backgrounds, the dotted green line is the phase space contribution, the
shaded cyan histogram is from the normalized �+

c and �̄−
c mass side-

bands, and the dot-dashed magenta line is the sum of the MC-simulated
contributions from the normalized e+e− → qq̄ and ϒ(4S) → B B̄
generic-decay backgrounds

is calculated as N�c
total/[2NB±ε

�c
all B(�+

c → pK−π+)2],
where N�c

total is the fitted �c(2930) signal yield; NB± =
Nϒ(4S)B(ϒ(4S) → B+B−) (Nϒ(4S) is the number of
accumulated ϒ(4S) events and B(ϒ(4S) → B+B−) =
0.514 ± 0.006 [1]); B(�+

c → pK−π+) = (6.35 ±
0.33)% is the world-average branching fraction for �+

c →
pK−π+ [1]; ε

�c
all = ∑

ε
�c
i × �i/�(pK−π+) (i is the

�c decay-mode index, ε
�c
i is the detection efficiency from

MC simulation and �i is the partial decay width of �+
c →

pK−π+, pK 0
S, �π−, pK 0

Sπ
+π−, and �π−π+π− [1]).

Here, B(K 0
S → π+π−) or B(� → pπ−) is included in �i

for the final states with a K 0
S or a �.

The M�+
c �̄−

c
spectrum is shown in Fig. 5, in which no

clear Yη or Y (4660) signals is evident. An unbinned extended
maximum likelihood fit is applied to the �+

c �̄−
c mass spec-

trum to extract the signal yields of the Yη and Y (4660) in B
decays. In the fit, the signal shape of the Yη or Y (4660) is
obtained from MC simulation directly with the input param-
eters MYη = 4616 MeV/c2 and �Yη = 30 MeV for Yη [17],
and MY (4660) = 4643 MeV/c2 and �Y (4660) = 72 MeV for
Y (4660) [1]; a third-order polynomial is used to describe all
other contributions. The fit results are shown in Figs. 5(a)
and (b) for the Yη and Y (4660), respectively. From the fits,
we have (10 ± 23) Yη signal events with a statistical signal
significance of 0.7σ , and (−10±26) Y (4660) signal events.

As the statistical signal significance of each Y state is
less than 3σ , 90% C.L. Bayesian upper limits on B(B− →
K−Y )B(Y → �+

c �̄−
c ) are determined to be 1.2 × 10−4 and

2.0 × 10−4 for Y = Yη and Y (4660), respectively, by solv-

ing the equation
∫ Bup

0 L(B)dB/
∫ +∞

0 L(B)dB = 0.9, where
B = nY /[2εYallNB±B(�+

c → pK−π+)2] is the assumed
product branching fraction; L(B) is the corresponding max-
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Fig. 5 The �+
c �̄−

c invariant mass spectra in data with (a) Yη and (b)
Y(4660) signals included in the fits. The solid blue lines are the best fits
and the dotted red lines represent the backgrounds. The shaded cyan
histograms are from the normalized �+

c and �̄−
c mass sidebands

imized likelihood of the data; nY is the number of Y signal
events; and εYall = ∑

εYi × �i/�(pK−π+) (εYi being the
total efficiency from MC simulation for mode i). To take the
systematic uncertainty into account, the above likelihood is
convolved with a Gaussian function whose width equals the
total systematic uncertainty.

There are several sources of systematic uncertainties in the
branching fraction measurements. The detection efficiency
relevant (DER) errors include those for tracking efficiency
(0.35%/track), particle identification efficiency (1.9%/kaon,
0.9%/pion, 2.4%/proton and 2.0%/anti-proton), as well as �

(3.0%) and K 0
S (1.7%) selection efficiencies. Assuming all

the above systematic error sources are independent, the DER
errors are summed in quadrature for each decay mode, yield-
ing 5.8–8.3%, depending on the mode. For the four branching
fraction measurements, the final DER errors are summed in
quadrature over the five �c decay modes using weight fac-
tors equal to the product of the total efficiency and the �c

partial decay width. We estimate the systematic errors asso-
ciated with the fitting procedure by changing the order of the
background polynomial, the range of the fit, and the values
of the masses and widths of the Yη and Y (4660) by ±1σ , and
by enlarging the mass resolution by 10%; the deviations from
nominal in the fitted results are taken as systematic errors.
Uncertainties for B(�+

c → pK−π+) and �i/�(pK−π+)

are taken from Ref. [1]. The final errors on the �c partial
decay widths are summed in quadrature over the five modes
with the detection efficiency as a weighting factor. The world
average of B(ϒ(4S) → B+B−) is (51.4±0.6)% [1], which
corresponds to a systematic uncertainty of 1.2%. The system-
atic uncertainty on Nϒ(4S) is 1.37%. Assuming all sources
listed in Table 1 to be independent, the total systematic uncer-
tainties on the branching fraction measurements are summed
in quadrature.

The following systematic uncertainties are considered for
the �c(2930) mass and width. Half of the correction due to
the fitting bias on the �c(2930) mass is taken conservatively
as a systematic error. By enlarging the mass resolution by
10%, the difference in the measured �c(2930) width is 0.7

Table 1 Relative systematic uncertainties (%) in the branching
fraction measurements. Here, B1 ≡ B(B− → K−�+

c �̄−
c ),

B2 ≡ B(B− → �c(2930)�̄−
c )B(�c(2930) → K−�+

c ), B3 ≡
B(B− → K−Yη)B(Yη → �+

c �̄−
c ), and B4 ≡ B(B− →

K−Y (4660))B(Y (4660) → �+
c �̄−

c )

Branching fraction DER Fit �c decays NB± Sum

B1 4.81 3.94 10.81 1.82 12.6

B2 4.73 2.27 10.81 1.82 12.1

B3 4.76 8.65 10.86 1.82 14.8

B4 4.77 23.1 10.83 1.82 26.0

MeV, which is taken as a systematic error. By changing the
background shape, the differences of 0.3 MeV/c2 and 0.9
MeV in the measured�c(2930)mass and width, respectively,
are taken as systematic uncertainties.

The signal-parametrization systematic uncertainty is esti-
mated by replacing the constant total width with a mass-
dependent width of �t = �0

t × �(MK−�+
c
)/�(M�c(2930)),

where �0
t is the width of the resonance, �(MK−�+

c
) =

P/MK−�+
c

is the phase space factor for an S-wave two-
body system (P is the K− momentum in the K−�+

c CMS)
and M�c(2930) is the K−�+

c invariant mass fixed at the
�c(2930) nominal mass. The differences in the measured
�c(2930) mass and width are 0.2 MeV/c2 and 5.3 MeV,
respectively, which are taken as the systematic errors. Adding
an additional possible resonance with mass and width free
at around 2.85 GeV/c2 into the fit to the M(K−�+

c ) spec-
tra, the fit gives M�c(2930) = (2929.3 ± 3.1) MeV/c2 and
��c(2930) = (21.7 ± 9.3) MeV; the differences of +0.4
MeV/c2 and +2.2 MeV from the mass and width found with-
out the additional resonance, respectively, are taken as sys-
tematic errors. An alternative fit to the M(K−�+

c ) spectra
with interference between the �c(2930) and the phase-space
contribution included gives M�c(2930) = (2917.0 ± 5.5)

MeV/c2 and ��c(2930) = (13.8 ± 6.9) MeV; the differences
of −11.9 MeV/c2 and −5.7 MeV from the nominal mass and
width, respectively, are taken as systematic errors. Assuming
all the sources are independent, we add them in quadrature
to obtain the total systematic uncertainties on the �c(2930)

mass and width of +0.9
−12.0 MeV/c2 and +5.9

−7.9 MeV, respectively.
In summary, using (772 ± 11) × 106 B B̄ pairs, we per-

form an updated analysis of B− → K−�+
c �̄−

c . In the
K−�+

c mass spectrum, the charmed baryon state �c(2930)0

is clearly observed for the first time with a statistical signif-
icance greater than 5σ . The measured mass and width are
M�c(2930) = (2928.9 ± 3.0+0.9

−12.0) MeV/c2 and ��c(2930) =
(19.5 ± 8.4+5.9

−7.9) MeV. The branching fraction is B(B− →
K−�+

c �̄−
c ) = (4.80 ± 0.43 ± 0.60) × 10−4, which is con-

sistent with the world average value of (6.9±2.2)×10−4 [1]
but with much-improved precision. We measure the product
branching fraction B(B− → �c(2930)�̄−

c )B(�c(2930) →
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K−�+
c ) = (1.73 ± 0.45 ± 0.21) × 10−4, where the first

error is statistical and the second systematic. Because of the
limited statistics, we do not attempt analysis of angular cor-
relations to determine the spin parity of the �c(2930)0, how-
ever we expect that this will be possible with the much larger
data sample which will be collected with the Belle II detector.
Without this information, we are not able to identify the quark
content of this state as there are many theoretical possibili-
ties. There are no significant signals seen in the �+

c �̄−
c mass

spectrum. We place 90% C.L. upper limits for the Y (4660)

and its theoretically predicted spin partner Yη of B(B− →
K−Y (4660))B(Y (4660) → �+

c �̄−
c ) < 1.2 × 10−4 and

B(B− → K−Yη)B(Yη → �+
c �̄−

c ) < 2.0 × 10−4 [32].
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