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Abstract

This paper concerns with efficient communication over Gaussian and fading multiple-access channels (MACs).

Existing orthogonal multiple-access (OMA) and power-domain nonorthogonal-OMA (NOMA) cannot achieve all rate-

tuples in the MAC capacity region. Meanwhile, code-domain NOMA schemes usually require big-loop receiver-iterations

for multi-user decoding, which is subject to high implementation cost and latency. This paper studies a linear physical-

layer network coding multiple access (LPNC-MA) scheme that is capable of achieving any rate-tuples in the MAC

capacity region without receiver iterations. For deterministic Gaussian MACs with M users, we propose to utilize q-ary

irregular repeat accumulate (IRA) codes over finite integer fields/rings and q-ary pulse amplitude modulation (q-PAM)

as the underlying coded-modulation. The receiver sequentially computes M network coded (NC) message sequences,

where the previously computed message sequence is used as side information in computing subsequent ones. All users’

messages are then recovered by solving the computed M NC messages via the inverse of the NC coefficient matrix.

A joint nested code construction and extrinsic information transfer (EXIT) chart based code optimization method is

developed, yielding near-capacity performance (within 0.7 and 1.1 dB the capacity limits for two and three users

respectively). For fading MAC, we study the symmetric rate of LPNC-MA, and propose a pragmatic method for

identifying the mutual information (MI) maximizing network coding coefficient matrix. Numerical results demonstrate

that the frame error rate (FER) of the optimized LPNC-MA is within a fraction of dB the outage probability of fading

MAC capacity and LPNC-MA remarkably outperforms NOMA-SIC and IDMA in high spectral efficiency regime, while

avoiding the big-loop receiver iteration.
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I. INTRODUCTION

Multiple access (MA) is a pivotal component in wireless communication systems which distinguishes

different generations of mobile networks. Beyond 5G (B5G) and 6G networks are envisaged to support vast

range of throughput-hungry and latency-sensitive scenarios such as ubiquitous IoT, mobile cloud computing,

digital twin, which calls for next generation multiple access techniques that provide tremendously higher

system load, higher spectral-energy efficiency, lower latency and larger coverage.

From the perspective of information theory, Shannon first put forward the multiple access channel (MAC)

model [1]. Ahlswede characterized the capacity region of discrete memoryless MAC [2]. Cover et al. showed

the capacity region of the Gaussion MAC [3]. These results showed that remarkably larger rate-region can be

achieved by non-orthogonal multiple access (NOMA), which allows users to transmit simultaneously in the

same operating frequency band, in contrast to orthogonal multiple access (OMA) such as FDMA [4], TDMA

[5], orthogonal CDMA [6], [7], OFDMA [8]. From 1G to 5G, OMA based design methods were adopted,

which attempted to avoid the existence of multi-user interference. Such treatment of multi-user interference

simplifies the decoding operation at the receiver, at the cost of 1) reduced spectral-efficiency, 2) poor flexibility

in system load and rate allocation and 3) sophisticated algorithms required to maintain the orthogonality in

time or sub-carriers. These drawbacks of OMA set the bottlenecks in B5G/6G application scenarios involving

massive connectivity, low latency and high mobility requirements.

A. Power-Domain and Code-Domain NOMA

NOMA releases the orthogonality constraint imposed by OMA and can achieve the full capability of

MA. The core issue becomes how to efficiently and flexibly process the multi-user interference, i.e., multi-

user detection or multi-user decoding (MUD). One straightforward method is to use successive interference

cancellation (SIC), which is widely referred to as power-domain NOMA-SIC [9], [10]. By decoding the

stronger user first and then canceling out its interference to the weaker user, a corner point of the MAC

region can be achieved, where single-user decoding is sufficient. The SIC technique was applied in the

full-duplex system to handle the self-interference, which is called full-duplex NOMA (FD-NOMA) [11].

It is shown that FD-NOMA outperforms half-duplex (HD) system at moderate SNR [11], [12]. Yet, SIC

only achieves the corner points and the entire “dominant face” of MAC region needs time-sharing between

SIC with different ordering. This is clearly impractical in almost all typical application scenarios1. In terms

1We will provide detailed discussion on this in Section III.
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of achievable symmetric rate, which is of high relevance in open-loop systems with receiver channel state

information (CSI) only, NOMA-SIC may perform worse than OMA.

Beyond NOMA-SIC, advanced coding and signal processing techniques have been introduced to address

the MA problem. Those schemes are widely referred to as code-domain NOMA. Thanks to the invention

and renewed understanding of turbo and low-density parity-check (LDPC) code principle, turbo-like iterative

detection and decoding are exploited. Essentially, the goal is to approximate the joint maximum likelihood

(ML) decoding that is capacity region achieving, with realistic computational complexity. To achieve the ulti-

mate performance of code-domain NOMA, iterative multiuser detection and decoding is required. Specifically,

the inner multiuser detector calculates soft a posteriori probabilities (APPs) symbol-wisely for all users. The

APPs sequence w.r.t. each user is forwarded to that user’s channel code decoder, which could be iterative by

itself. The outputs of a bank of M channel-code decoders are fed back to the inner detector. With the updated

a priori information, the inner detector refines its output APPs and forwards them again to the outer channel-

code decoders. Such process continues until convergence is achieved. Here, the iteration within the outer

channel code decoder itself is referred to as the “small-loop iteration”. The iteration between the multi-user

detection and a bank of M channel-code decoders is referred to as the “big-loop iteration”. Note that each

big-loop iteration consists of a (large) number of small-loop iterations. Along this line, turbo-CDMA receivers

were first proposed by Wang and Poor in late 90s [13]. Li et al. introduced a chip-level interleaved CDMA,

named after interleave division multiple-access (IDMA) [14]. The chip interleaver enables uncorrelated chip

interference and thus simple matched filter optimally combines the chip-level signal to yield the bit-level soft

information.

Sparse code multiple-access (SCMA) differs from IDMA in that each bit-level information is spread only

to a small number of chips, which forms a sparse matrix in the representation of the multi-user signal that

can be depicted using a bi-partite factor graph [15], [16]. SCMA can also be upgraded to cater for grant-free

random access, which is an excellent fit to the massive-connectivity IoT scenario. For both IDMA and SCMA,

irregular design of the spreading/sparse codes have been investigated including the work of ourselves [17],

which yields improved convergence behavior of the multi-user decoding. There are other code-domain NOMA

techniques proposed such as PDMA, MUSA and etc. [18]. Albeit all the benefits and potential performance

enhancement promised by NOMA, there are quite some challenging issues for them to be utilized for next

generation MA. Empirically the required number of big-loop receiver iteration is 4 to 10. If the outer decoder

is sum-product based LDPC decoder, the number of small-loop iterations is hundreds per big-loop iteration,

and could be thousands for all 10 big-loop iterations. Note that the big-loop iterations have to be done in
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serial, which can bring about significant processing delay and huge expense in computation.

In short, power-domain NOMA-SIC may have low implementation cost but performs quite far from the

MAC capacity region, whereas code-domain NOMA schemes may perform close to the MAC capacity region

but the implementation is costly due to the big-loop receiver iteration. This motivates the following question:

can we achieve the entire MAC region without using the big-loop receiver iteration?

B. Compute-Forward and Physical-Layer Network Coding

Compute-forward (CF) is an information theoretic notion, which exploits the property that the linear

combination with integer coefficients of any two lattice points belong to the lattice to efficiently recover linear

combinations of M users’ messages. Existence of good nested lattice codes are used to prove the achievable

rates of CF. Linear physical-layer network coding (LPNC) is a practical technique to realize the theoretical

idea of CF. Specifically, LPNC implements soft APPs calculation, practical linear codes and modulation, as

well as practical BP decoding algorithms that replaces the theoretical notion of nested lattice codes. It is

widely known that LPNC is a practical embodiment of the CF notion. In this paper, we use CF and LPNC

interchangeably whichever is appropriate within the context.

The superposition of M users’ signals in real field is linked to the linear combination with integer coefficients

of their codewords in finite field/ring. Then, single-user decoding can be used to directly compute their integer-

sum in finite field/ring, referred to as network coded (NC) message, without need to completely decoding of all

users’ individual messages. For the two-user setup where the receiver is set to compute one NC message, up

to doubled throughput relative to conventional complete-decoding based method is achieved using LPNC [19].

Many prior research findings showed the effectiveness of using CF or LPNC in solving communication over

wireless channels with side information [20], [21]. The notion of CF is also generalized to the multiple-input

multiple-output (MIMO) setup, e.g., the integer-forcing (IF) framework [22], [23].

Recently, Zhu and Gastpar showed that any rate-tuple of the entire Gaussian MAC capacity region can be

achieved using CF, and the scheme was named CFMA [24]. Almost at the same time, we investigated using

practical LPNC, that borrows the notion of CF, for fading multiple access with multi-antenna at the receiver

[20], [25]. Later, Sula et al. studied practical design of CF for the Gaussian MAC with practical quadrature

amplitude modulation (QAM) and binary LDPC codes [26]. These initial works demonstrated that without

receiver iteration, CF/LPNC can potentially achieve the entire capacity-region with sequential computation and

decoding (SCD). This translated into improved energy-spectral efficiency, reduced computation complexity

and processing delay. The concept of SCD is: 1) sequentially computes L = M NC messages in a finite
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integer field/ring; 2) the previously computed NC messages are used as side information to compute the

subsequential NC messages. Finally, all users’ messages can be recovered by multiplying the inverse of the

network coding coefficient matrix (with full rank M ). It was understood that NOMA-SIC is a special case

of LPNC-MA with the network coding coefficient matrix set to a diagonal or permutation matrix.

Another MAC system that applies the notion of PNC is the network-coded MA (NCMA) [27]. NCMA

differs from CFMA in a) it considered both the medium-access layer and physical-layer, and b) successive

computation decoding, which can yield a greater coding gain, was not exploited. Also, the information theoretic

characterization is yet to be elaborated for NCMA.

In the current literature, CFMA or LPNC-MA with practical channel code and PAM/QAM modulation

remains insufficiently researched. The primary challenging issues involves: 1) practical capacity-approaching

nested code construction and decoding for Gaussian MAC; 2) code optimization under SCD; 3) identifying

the optimal network coding coefficient matrix for fading MAC with receiver CSI only. Following the spirit

of nested lattice codes, [28] developed low density lattice codes (LDLC), but the optimization of the code

degree distribution is formidable. The practical aspect of CFMA was reported in [26], which only considered

two-user Gaussian MAC, binary CF, and with fixed NC coefficients. Our work generalizes it to M users,

q-ary CF, and any NC coefficients, with nested code optimization.

C. Contribution of this Paper

• We present a LPNC-MA framework, which is regarded as a practical embodiment of the CFMA notion.

We propose to employ q-ary irregular repeat accumulate (IRA) codes over finite integer fields/rings and

q-PAM as the underlying coding-modulation for LPNC-MA, as well as a practical SCD algorithm at the

receiver. This is in contrast to previous works that are based on off-the-shelf binary channel codes with

many-to-one mapping to QAM symbol, such as those in bit-interleaved coded modulation (BICM) [29],

superposition coded modulation (SCM) [30] and the work on CFMA in [26]. The achievable mutual

information of the proposed method with q-PAM is presented and is shown to be able to achieve the

entire MAC region in practice.

• We propose a joint nested construction and degree distribution optimization method for the q-ary IRA

codes in LPNC-MA. Our treatment is based on the EXIT chart curve fitting technique tailored for the

nested IRA codes and SCD. For a number of typical rate-tuples, we demonstrate that the designed

LPNC-MA is within 0.7 dB and 1.1 dB the capacity limit for two and three users, respectively, and

overwhelmingly outperforms NOMA-SIC.
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• For fading MAC where the channel state information (CSI) is only available at the receiver, we analyze

the achievable symmetric rate and present a new efficient method for identifying the symmetric mutual

information maximizing NC coefficient matrix of LPNC-MA. It is demonstrated that the outage prob-

ability (OP) of our designed LPNC-MA scheme performs within a fraction of dB the lower bound of

the fading MAC, and easily outperforms NOMA-SIC by more than 5 dB. At a practical frame error rate

(FER) level, LPNC-MA’s FER is within 1dB to the lower bound, using practical IRA codes. For a large

number of users, LPNC-MA can cooperate with orthogonal spreading codes and extend to any number

of users. Simulation results show that for 16-user case, LPNC-MA significantly outperforms IDMA in

high spectral efficiency regime, while avoiding the big-loop receiver iteration.

D. Scopes

This paper focuses on multiple-access using practical channel coding and q-PAM modulation. By Gaussian

MAC we mean that the receiver is subject to additive white Gaussian noise. No efforts are devoted to the

Gaussian shaping of the coded-modulation symbols. All the achievable rates or mutual information in this

paper are with respect to the q-PAM channel input, not Gaussian inputs. This paper focus on single-antenna

setup and uplink MAC. Our developed LPNA-MA can also be applied to the multi-antenna and downlink

broadcast channel scenarios, e.g., in conjunction with the integer-forcing and reverse integer-forcing for MIMO

receiver or precoder [31]. This paper focus on narrow band system (e.g., a segment of sub-carriers within the

coherent bandwidth) and the model involves no inter-symbol-interference. In addition, massive MIMO and

grant-free random-access [32] are out of the scope of this paper.

II. LPNC-MA FOR GAUSSIAN MAC

A. Preliminary

Consider an uplink MAC where M users transmit simultaneously in the same frequency band. The base-

band equivalent signal model is given by

y =
M∑
m=1

hm
√
Pmxm + z, (1)

where xm, m = 1, 2, · · · ,M , denotes user m’s coded-modulation symbol sequence, Pm denotes user m’s

transmitting power, hm denotes the channel gain, y denotes the received signal sequence at the receiver, and

z denotes the additive white Gaussian noise (AWGN) with zero mean and variance σ2. We consider that the

average symbol energy of xm is normalized. The power of the weakest user is normalized to 1, and the signal
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to noise ratio (SNR) is given by , 1
σ2 for simplicity. For Gaussian MAC, hm = 1, m = 1, · · · ,M . For fading

MAC, hm denotes the fading channel coefficient of user i, which varies over different users and code blocks.

For clarity of presentation, real-valued model is used throughout this paper. A M -user complex-valued model

can be converted to a 2M -user real-valued model [33], and the results developed in this paper apply.

In this section, we consider Gaussian MAC channel model with perfect receiver-side CSI. This setup applies

to close-loop systems where the channel conditions remain constant for a long time and can be fed back to the

transmitters, or the adaptive modulation and coding (AMC) scheme with exact channel estimation (including

amplitude and phase) where an index for choosing (from a discrete set of) the coding rates and modulation-

levels is sent to the transmitters. For open-loop systems where feeding back can not be done, the fading MAC

model applies which will be separately studied in the next section.

1) Capacity Region of MAC: The capacity region of a Gaussian MAC is a polygon with a certain number

of corner points. The entire MAC region can be achieved using joint ML decoding, where the proof was based

on the random coding and jointly typicality decoding argument [3]. These corner points collectively determine

the “Dominant Face” (DF) of the capacity region [3]. The rate-tuples that are on the DF are of the greatest

interests in the research. In general, OMA cannot achieve the DF except one special point. In particular when

the received powers of different users vary significantly, the special point that OMA touches with the DF is

subject to huge gap in the rates among the users, which leads to fairness issue. With NOMA-SIC, only the

corner points can be achieved. Different SIC ordering yield different corner points. The DF may be achieved

by time-sharing of the SIC with different ordering, but this is very difficult to realize in practice. For example,

there are far too many segments for allocating time for sharing among different SIC orders even when M is

moderate, which leads to very short effective block length.

The code-domain NOMA schemes, such as iterative APP detection and decoding, CDMA/IDMA and

SCMA etc., attempt to approximate the jointly ML decoding solution by iteratively exchanging the extrinsic

information between the soft multi-user detector and a bank of M decoders. Typically, five to ten iterations

between the inner multi-user detector and outer channel code decoders are required for convergence. If the

channel code decoders are turbo or LDPC codes, which are iteratively decoded by themselves, the receiver

consists of big-loop iteration, each involves a large number of small-loop iterations for channel code decoding.

This may cause implementation difficulties and instability issues.
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Fig. 1. Block diagram of the encoders of M -user LPNC-MA. Here IZR stands for irregular zero-padding.

B. LPNC-MA Encoder

We next present a LPNC-MA which realizes the CFMA notion and can be readily used for reliable

communication over Gaussian and fading MACs.

The LPNC-MA encoders are shown in Fig. 1. The messages of the M users are denoted by w′m ∈ Zkmq ,

where Zkmq , {0, 1, · · · , q−1}km ,m = 1, 2, · · · ,M , with sequence length given by km. Let k = max
m=1,2,··· ,M

km

which denotes the common length of the M message sequences after irregular zero padding (IZP). The zero-

padded messages of user m is denoted as wm. With common length k for any user, LPNC-MA uses q-ary

linear codes over finite integer fields/rings and q-PAM. The encoding operation is represented by

cm = G⊗wm, m = 1, 2, · · ·M, (2)

where G is a n×k generator matrix, n is the length of the encoded sequence. We define⊕ and⊗ be the addition

and multiplication operations separately in fields/rings, where S⊕V , mod(S+V, q), S⊗V , mod(SV, q).

The information rate is Rm = km
n

log2 q bits/symbol for user m.

For q-PAM constellation point with uniform spacing, the one-to-one mapping is given by

xm =
1

γ

(
cm −

q − 1

2

)
∈
{

1− q
2γ

, · · · , q − 1

2γ

}n
, (3)

where γ is a normalization factor to ensure unit average symbol energy. The mapping function is denoted by

δ(•) where xm = δ(cm). Note that this paper also considers non-uniformly spaced constellations.

The coding-modulation above was referred to as a q-ary modulation code in [34]. For simplicity, we just

use the name “q-ary linear codes” instead of “modulation codes” in this paper. Practical q-ary irregular repeat

accumulate (IRA) codes over finite field with low complexity encoding and decoding, and near-capacity

performance have been reported [34], and are employed in this paper. The encoder consists of repeater,

interleaver and accumulator with linear complexity, and the decoder utilizes iterative belief propagation (BP)

algorithm. Such coding-modulation is in contrast to previous works that are based on off-the-shelf binary
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channel codes with many-to-one mapping to QAM symbol, such as those in the work on practical CFMA in

[26]. he modulation codes have better performance than that of binary codes with high order modulation, with

comparable computation cost [35], [36]. Moreover, modulation codes have a one-to-one mapping between

codewords and constellation points, while binary codes with high order modulation do not have which leads

to a complex non-linear mapping after the superposition of modulation symbols.

Remark 1 (Irregular zero padding): The zero padding strategy ensures that the q-ary linear codes w.r.t. the

users are nested. We emphasize that the positions of zero padding need to be carefully designed, with an

irregular zero padding (IZP) method. The IZP pattern significantly affects the code degree distribution and

the error-rate performance, as will be detailed in Subsection E.

Fig. 2. Block diagram of LPNC-MA receiver.

C. Sequential Computation and Decoding (SCD)

Following the spirit of LPNC, the receiver is set to compute L linear combinations of users’ messages over

the finite field/ring, called NC messages. For MAC, L = M and A has full rank M . For other setups such

as distributed and relay networks, L may be smaller than M .

The l-th NC message sequence to be computed is written by

uTl = alW, l = 1, 2, · · · , L, (4)

where al is the NC coefficient vector, and W = [w1,w2, · · · ,wM ]T collects the message sequences of all

users. All L = M NC messages are collectively written as

U = A⊗W, (5)
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where A =


a1

...

aL

 =


a11 · · · a1M

... . . . ...

aL1 · · · aLM

 denotes the network coding coefficients matrix with entries

belonging to {0, 1, . . . , q − 1}. Note that A is required to have rank M in the finite fields/rings such that A

is invertible and W can be recovered for given U.

The codewords of NC messages are given by

CN = G⊗U, (6)

With the property of linear superposition in feilds/rings, the linear combination of users’ codewords is equal

to the codewords of the linear combination of users’ messages. The effective message length of the l-th NC

message sequence is kNl = max
alm 6=0

km, and the “computation rate” is RN
l =

kNl
n

log2 q bits/symbol [37].

The receiver is illustrated in Fig. 2, which consists of the following steps: 1) upon receiving y in (1), the

receiver conducts symbol-by-symbol APP detection to obtain a soft estimate of the linear combination of

the coded bits cN1 , · · · , cNM , with coefficients matrix A. 2) The APPs of cN1 , · · · , cNM are forwarded to the

IRA decoder, which successively computes the linear combination of the message bits û1, · · · , ûM . 3) The

decision on û1, · · · , ûM are multiplied with A−1, yielding the decision on the users’ messages ŵ1, · · · , ŵM .

The detailed procedures of the SCD algorithm for the q-ary IRA coded LPNC-MA is given below:

Step 1) Calculate the symbol-wise a posterior probabilities (APPs) of the first NC message sequence. For

convenience, let the t-th codeword of the l-th NC message sequence be denoted by cNl [t], t = 1, 2, · · · , n.

This step is to estimate the probabilities of the codewords of NC messages from the received signals. Recall

(1) and assume that Pm = 1. For a given NC coefficient matrix A, the APPs are calculated by (7), similar to

that in [19], where η is a normalization factor to ensure that
∑q−1

i=0 p(c
N
1 [t] = i|y) = 1.

Step 2) Forward the APP sequence to the q-ary IRA decoder that carries out belief propagation (BP)

algorithm to compute NC message sequence u1 (To avoid redundancy, the BP algorithm of the q-ary IRA

code is not shown in this paper which can be found in [34]).). The computed result is denoted by û1.

For the l-th (l ≥ 2) NC message sequence, the previously computed (l − 1) NC messages are taken as

p
(
cN1 [t] = i|y[t]

)
=

1

η

∑
a11c1[t]⊕···⊕a1M cM [t]=i

exp

−
(
y[t]−

M∑
m=1

hmδ (cm[t])

)2

2σ2

 , i = 0, · · · , q − 1 (7)
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side information to help with computing the l-th NC message sequence’s symbol-wise APPs. To do this, we

convert the computed NC message sequences û1, û2, · · · , ûl−1 to NC codewords by

ĉNj = G⊗ ûj, j = 1, 2, · · · , l − 1. (8)

Next, they are used as side information to calculate the symbol-wise APPs for ĉNl as in (9). After that, the

APP sequence is delivered to the q-ary IRA decoder which computes the l-th NC message sequence ûl.

Step 3) After all M NC messages û1, û2, · · · , ûM are sequentially computed, they are forwarded to a

network coding decoder which solves M NC messages, that is

Ŵ = A−1 ⊗ Û, (10)

where A−1 ⊗A = I, Û = [û1, · · · , ûM ]T , which recovers all M users’ messages. This completes the SCD.

The notion of network coding also applies to one-hop setup such as the multi-access channel. The processing

of the receiver in this multiple-access scheme is viewed as a network consisting of multiple nodes. In the

processing node l, it takes the (l − 1)-th network coded message as a side information to compute the l-th

NC message. At the final node of this processing network, all M NC messages are collected. By multiplying

with the inverse of the coefficient matrix A, all users messages are recovered. Note that the complexity of

the matrix inversion for recovering M users’ messages is negligible w.r.t. the complexities of detection and

decoding. The matrix inverse of computing is required once per block. The overhead of this is negligible for

a moderate-to-large block size. The complexity of the multiplication of each network coded message M -tuple

with is linear to M . This incurs an overhead that is minor compared to that of decoding and multi-user

detection, whose complexity order that is a polynomial of M , in any multiple-access system. As such, the

extra complexity in doing an inverse in GF(q) is not significant.

Furthermore, the encoding/decoding process in GF(q) does not incur significantly higher complexity. In

particular, DFT/FFT based algorithm can be introduced to vastly decrease the check-node update in the

iterative decoding over GF(q). When the DFT-based algorithm is not employed, in the CN update, we need

p
(
cNl [t] = i|y[t], cN1 [t], · · · , cNl−1[t]

)
=

1

η

∑
aj1c1[t]⊕···⊕ajM cM [t]=ĉNj [t],

j=1,··· ,l−1, al1c1[t]⊕···⊕alM cM [t]=i

exp

−
(
y[t]−

M∑
m=1

hmδ (cm[t])

)2

2σ2


(9)
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to find the combination of all n-1 input edges satisfying the CN constraint, including qn−2 terms in total.

Since there are q types of constraints, the total number of multiplications required is (n− 2)qn−1. When the

DFT-based algorithm is adopted, a DFT operation is carried out over the probabilities of input edge, and an

IDFT operation is carried out for those of output edge, which requires 2q2 multiplications for each edge.

In addition, n-2 multiplications of DFT vectors are required, which lead to (n − 2)4q multiplications. The

total required multiplications is decreased to 2nq2 + 4(n− 2)q, which is much smaller than that without the

DFT-based algorithm.

D. Achievable Rate Region of LPNC-MA

Before investigating the optimized design of the q-ary IRA coded LPNC-MA, here we present its achievable

rate region that characterizes the performance limit.

Theorem 1: Consider prime q. Let Wm and Xm be the uncoded message and transmitted symbol of user m

respectively, and Y be the received symbol. Ul denotes the l-th NC message where l = 1, 2, · · · , L. Consider

coded modulation method and Gaussian MAC, for a given coefficient matrix A and a certain modulation, the

achievable rate region of M -user LPNC-MA is characterized by [38], [39]

Rm ≤H(Xm)−max{ϕ(a1m)H(U1|Y ), · · · ,

ϕ(aLm)H(UL|Y, U1, · · · , UL−1)},
(11)

where m = 1, · · · ,M,

ϕ(a) =

 0, a = 0

1, a 6= 0
,

and H(•) denotes the entropy function.

Proof. Recall that Wm is uniformly distributed from Zq, so H(Wm) = log(q). With coded modulation

method where bijection relationship holds between Zq and Xm, Xm also has uniform distribution. Therefore,

H(Xm) = H(Wm) = log(q). According to (4), the probability of Ul = i is denoted by

p(Ul = i) =
∑

al1j1⊕···⊕alM jM=i

M∏
m=1

p(Wm = jm)

= qM−1 · 1

qM
=

1

q
.

Therefore, H(Ul) = H(Xm) = log(q). For given coefficient matrix A, the achievable computation rate of the
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l-th (l > 1) NC message is given by [39]

RN
l ≤ I(Y ;Ul|U1, · · · , Ul−1), l = 2, · · · , L,

where I(•) denotes the mutual information function and RN
1 ≤ I(Y ;Ul). Let RN be the collection of all L

achievable computation rate, which is defined as

RN ,
⋃

l=1,··· ,L

{RN
l }.

If alm 6= 0, the l-th NC message Ul includes the message Wm, which means that the rate of user m is no

greater than the computation rate of the l-th NC message, written as

Rm ≤ RN
l .

For user m, we define RN
m ,

⋃
alm 6=0

{RN
l }, which collects all the computation rates that constraint user m’s

rate Rm. Note that RN
m ⊆ RN . The rate of user m is bounded by

Rm ≤ min{RN
l |RN

l ∈ RN
m}

≤ min{I(Y ;Ul|U1, · · · , Ul−1)|alm 6= 0}

= min{H (Ul|U1, · · · , Ul−1)−H (Ul|Y, U1, · · · , Ul−1) |alm 6= 0}

(a)
= H(Ul)−max{H (Ul|Y,U1, · · · , Ul−1) |alm 6= 0}

(b)
= H(Xm)−max{H (Ul|Y,U1, · · · , Ul−1) |alm 6= 0}

= H(Xm)−max{ϕ(a1m)H(U1|Y ), · · · , ϕ(aLm)H(UL|Y,U1, · · · , UL−1)},

where step (a) follows from the fact that U1, · · · , UL are independently uniform distributed, step (b) follows

from the fact that Xm and Ul are independently uniform distributed.

Remark 2: From (11), user m’s rate Rm is bounded by the minimum achievable computation rate whose

corresponding NC message involves user m’s message. When M users’ rates satisfy (11), M NC messages

can be correctly computed. Therefore, for given A, all users’ messages are able to be correctly recovered.

In [24], it is shown that by varying the NC coefficient matrix, the shaping lattice and the scaling factor,

other rate-pairs can be achieved. In this paper, we consider q-PAM, where the treatment in [24] can be realized

by introducing non-uniformly spaced q-PAM constellations [40], as will be detailed next.

Here we give a toy example to briefly explain the non-uniformly spaced constellation (NUC). Consider

q = 5. Let the ratio of the origin-middle point distance to the origin-edge point distance be ρ(0 < ρ < 1).
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Fig. 3. An example for non-uniform constellations of q-PAM when q = 5.

Then, the constellation is
{
− 1
γ
,− ρ

γ
, 0,− ρ

γ
,− 1

γ

}
, where γ is to normalize the average symbol energy. Let δ(i)

denote i-th element of the constellation, thus the modulated symbols are

x = δ (c) . (12)

Note that for a lager q > 5, the NUC needs multi-letters to describe.

Fig. 4. An example of the achievable rate region of a M = 2 Gaussian MAC.

Consider M = 2, with [
√
P1,
√
P2] = [1.3777, 1] and the noise variance σ2 = 0.06454. Consider A =

[1 1; 1 0]. Then (11) is written as

R1 ≤ H(X1)−max {H(U1|Y ), H(U2|Y, U1)} ,

R2 ≤ H(X2)−H(U1|Y ).

(13)

The rate pair (1
2
, 2

3
) on the DF is achieved. By swapping the role of users 1 and 2 and let A = [1 1; 0 1], the

rate pair (2
3
, 1

2
) is achieved.

With non-uniformly spaced constellations for all ρ, the achievable rate-tuples are shown in Fig. 4. It is

shown that LPNC-MA achieves all rate-tuples on the DF. In contrast, SIC with all choices of non-uniformly

spaced constellation can only achieve those rate-tuples that are close to the corners of the DF.
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Fig. 5. Achievable rate region for M = 3 deterministic MAC. Here we only display the result where the step size of ρ is 0.05 for the limit of
our evaluation time. Utilizing more accurate step size, the whole dominant face can be achieved.

Fig. 5 shows the achievable rate region of LPNC-MA for M = 3 Gaussian MAC where [
√
P1,
√
P2,
√
P3] =

[1.4537, 1.3479, 1] and the noise variance is σ2 = 0.03791, where the step size of ρ is 0.05. By utilizing smaller

step size, the whole dominant face can be achieved.

E. Joint Nested Code Constructions and Degree Distribution Optimization

In order to achieve all the points on the DF, users need to transmit different rates, which leads to different

generating matrices among users. Nested linear (or lattice) codes hold can be designed to ensure that the

linear combination with integer coefficients of multiple codewords belong to the expanded codebook (or the

same fine lattice) [41]. Then, the NC messages can be computed via single-user decoding.

In this part, we present a new design method of generating jointly nested and optimized IRA codes, aiming

at approaching the rate-region limit presented above. Consider M = 2. Let (R1, R2) be the rates of the two

users and assume R1 < R2. Now we need to design two IRA codes C1, C2 that satisfy: 1) C1 ⊆ C2; 2) C1 and

C2 have “good” code degree profiles for the convergence of BP algorithm in decoding.

The Tanner graph of our nested IRA codes construction is shown in Fig. 6, consisting of three steps:

Step 1) Code degree profile optimization for C1: We first optimize C1 which is the same as the optimization

for the single NC message case [19]. The degree profiles of the component node of q-ary IRA codes is

obtained by using the EXIT chart curve fitting via linear programming 2 [19], [42], [43]. The nodes of C1 are

depicted with solid black circles and squares, and the repeat nodes (RNs) are connected to the check nodes

(CNs) through interleaver 1 with edges denoted by solid lines. With the optimized degree profile w.r.t. C1,

the edges of these nodes are determined.

2To avoid redundancy, the details on EXIT chart curving fitting design is not shown in this paper, which can be found in [19].



16

Fig. 6. Tanner graph of the nested IRA codes for the two-user case.

Step 2) C1’s degree profile as a constraint to optimize C2’s degree profile: We next consider the optimization

of C2. Recall that R2 > R1, thus user 2 has a longer message sequence, i.e., k2 > k1. There are k2 − k1

zero-padded positions for the user 1’s message sequence, which are depicted with the hollow circles. Since

the k1 solid black circles have been determined in Step 1, we still need to optimize the degree profile of the

k2−k1 hollow circles. Note that the edges w.r.t. the nodes of C1 impose an extra constraint to the optimization

of degree distribution of C2. Consider RNs of degree 2. It requires that the number of degree-2 RNs in C2

should be no less than that in C1, translated into a lower limit on the proportion of degree 2 when optimizing

C2’s code degree distribution. For example, consider k1 = 5000 and k2 = 10000. If C1 has 100 RNs of

degree 2, C2 should have at least 100 RNs of degree 2, which imposes a “1%” lower limit on degree 2 when

optimizing C2. In general, all RNs with different degrees need to satisfy such constraints, which are included

in the EXIT chart curve fitting, obtaining the C2’s optimized code degree distribution.

Step 3) Interleaver design and nested construction: Now we obtain the optimized degree profiles of C1 and

C2. For each degree, the number of RNs in C2 is more than that in C1, where the extra RNs are those hollow

circles in Fig. 6 and are the positions adding zero for user 1. There are k2 − k1 such zero padded positions

in total. However, if interleaver 2 is random, the connections of all lines (no matter solid or dashed lines) are

random, thus the degree distribution of CNs in C1 will change randomly when adding zero in the positions

of those hollow circles for user 1. In other words, optimized C1 and C2 are no longer nested when interleaver

2 is random. Therefore, interleaver 2 needs to be designed to ensure that the optimized C1 and C2 are nested.

Our method for this is that the connecting relation (solid lines) of RNs and CNs in C1 is random through

interleaver 1, while it is fixed for C2. The rest of the lines (the dashed lines) in C2 are randomly connected
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through interleaver 2’. This design of interleaver 2 ensures the optimized code degree distribution of C1 even

though user 1 with zero padding utilizes C2 as the channel code. This completes the joint nested construction

and optimization of C1 and C2.

Remark 3: The interleavers 1 and 2′ are randomly selected while interleaver 2 is not random in overall.

This may lead to a performance degradation for C2 relative to the single-user case. In order to reduce the

degradation, we carry out the followings: 1) restrict the proportion of check nodes with degree equal to 1

from 2% to 40% 3; 2) avoid adding three or more lines on the check nodes. Our EXIT chart and simulation

results show the performance loss is fairly small.

Here we briefly explain how the above code construction and optimization enables C1 ⊆ C2. Let the

generator matrices of C1 and C2 be denoted by G1 and G2 respectively. The codewords of user 1 and user

2 are c1 = G1 ⊗w′1 and c2 = G2 ⊗w2. Also, the construction method ensures that c1 = G2 ⊗w1, where

w1 denotes the zero padded version of w′1 (add zeros in the positions of the hollow circles shown in Fig. 6).

Define W1 as the sequence set of w1, which contains all possible sequences of w1. In the same way, define

W2 as the sequence set of w2. It is apparent that W1 is a subset of W2 (W1 ⊆ W2) as some deterministic

positions of w1 are always zeros. Consequently, after multiplying the same matrix G2, C1 ⊆ C2 is obtained.

For M > 2, the constructions and optimizations are performed layer-by-layer. Let (R1, R2, · · · , RM ) be the

transmitting rate tuple of M users and assume R1 < R2 < · · · < RM without loss of generality. We aim to

design M IRA codes C1, C2, · · · , CM such that C1 ⊆ C2 ⊆ · · · ⊆ CM and they have code degree profiles that

favor the convergence of BP algorithm in decoding. For the m-th (m = 2, · · · ,M) layer, take the optimized

degree distribution of Cm−1 and fixed connections of Cm−1’s RNs and CNs as constraints to optimize code

degree distribution of Cm using EXIT chart curve fitting, until all M IRA codes are designed.

Table I presents a number of code construction and optimization results. Here we briefly explain the

construction and optimization process for M = 3, as that for M = 2 is a subcase. Assume q = 5. Given

that [
√
P1,
√
P2,
√
P3] = [1.5425, 1.46255, 1] and σ2 = 0.11605, the target code rates are R1 = 0.2238, R2 =

0.4762, R3 = 0.5000. The process is as following:

1) Optimize the code degree distribution of q-ary IRA codes with R1 = 0.2238, using the EXIT chart curve

fitting method, named as C1;

2) Then C1’s degree profile serves as a constraint to optimize C2’s degree profile;

3) Design C2’s interleaver to guarantee the nested relation between C1 and C2;

4) C2’s degree profile serves as a constraint to optimize C3’s degree profile;
3We use nonsystematic IRA codes in this work, where check nodes need degree 1 to enable a successful start to the iterative decoding [43].
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TABLE I
DEGREE DISTRIBUTION OF NESTED IRA CODES

Coefficients Code Rate Check Node Degree Information Node Degree

M = 2, q = 5
[
√
P1,

√
P2] = [1.3777, 1],

σ2 = 0.06454

R1 = 0.5000 0.0571x+ 0.9429x2
0.2721x2 + 0.1474x3 + 0.1623x5 +

0.0621x6 + 0.0933x7 + 0.1424x11 +

0.1205x12

R2 = 0.6667
0.0413x+0.2511x2 +

0.4663x3 + 0.2413x4

0.2427x2 + 0.1938x3 + 0.1174x5 +

0.0449x6 + 0.0675x7 + 0.0266x8 +

0.1030x11 + 0.1073x12 + 0.0968x14

M = 2, q = 5
[
√
P1,

√
P2] = [1.3777, 1],

σ2 = 0.06454

R1 = 0.5798
0.0216x+

0.5856x2 + 0.3928x5
0.1714x2 + 0.1694x3 + 0.2633x5 +

0.0499x6 + 0.1805x12 + 0.1655x15

R2 = 0.5798
0.0216x+

0.5856x2 + 0.3928x5
0.1714x2 + 0.1694x3 + 0.2633x5 +

0.0499x6 + 0.1805x12 + 0.1655x15

M = 3, q = 5
[
√
P1,

√
P2,

√
P3] =

[1.5425, 1.46255, 1],
σ2 = 0.11605

R1 = 0.2238
0.3612x+0.3864x2 +

0.2082x3 + 0.0442x5

0.0824x2 + 0.0948x3 + 0.1332x5 +

0.1066x8 + 0.0818x10 +

0.4647x24 + 0.0365x29

R2 = 0.4762
0.0400x+0.2982x2 +

0.5776x3 + 0.0843x5

0.1244x2 + 0.1955x3 + 0.0899x5 +

0.1585x8 + 0.0488x9 + 0.0583x10 +

0.2939x24 + 0.0305x29

R3 = 0.5000

0.0378x+0.2800x2 +

0.3893x3 +

0.2095x4 + 0.0834x5

0.1277x2 + 0.1897x3 + 0.0878x5 +

0.1540x8 + 0.0481x9 + 0.0573x10 +

0.2847x24 + 0.0304x29 + 0.0201x50

5) Design C3’s interleaver to guarantee the nested relation between C2 and C3;

This finishes the process. Their error-rate performance will be shown in Section IV.

III. LPNC-MA FOR FADING MAC

In this section, we study efficient communication over M -user fading MACs. Block fading is considered

where the coefficients remain constant in each coding block and vary over blocks. The users have the same

statistical channel characteristics and signal-to-noise ratio. The symmetric coding rate is denoted by R. The

receiver is assumed to have perfect estimation of the CSI, while the users do not know the CSI. Equal power

and equal target rates among the users are considered.

A. Encoding and Decoding

Each user adopts the same channel coding and modulation with the identical rate R. The encoding operations

are the same as those depicted for Gaussian MAC, but no efforts are required for code nesting4.

The receiver carries out the SCD depicted in the previous section. The key difference to Gaussian MAC is

that, for each fading channel realization, the NC coefficient matrix A needs to be carefully selected such that

the error-rate performance is optimized. This is a challenging task when taking into account practical q-ary

4The optimization of node degree distribution of q-ary IRA codes is based on q-PAM modulation for single-user AWGN channel.
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IRA codes, q-PAM/QAM modulation with a certain range of coding rates. Note that the selection of A needs

to be done once for each block of n symbols.

B. Achievable Symmetric Rate

According to Theorem 1 and [38], the symmetric rate R is given by

R < I(U1;Y ),

R < I(U2;Y |U1),

...

R < I(UM ;Y |U1, · · · , UM−1),

(14)

where I(•) denotes mutual information (MI) function. To simplify the representation, the MIs are represented

by I1, I2, · · · , IM , then R can be expressed as

R < min {I1, I2, · · · , IM} . (15)

Different network coded coefficients matrices yield different symmetric rates. A key issue is to find A that

maximizes (15), that is

Aopt = max
Rank(A)=M

min {I1, I2, · · · , IM}, (16)

where the entries of A belong to {0, · · · , q − 1}.

According to the chain rule of MI, the sum of the MIs is equal to a constant value

I1 + I2 + · · ·+ IM = I(U1, U2, · · · , UM ;Y ) = I(W1,W2, · · · ,WM ;Y ) , Isum. (17)

Here, A is of full rank, such that U and W can be obtained from each other with a given A.

C. A Pragmatic Solution to The Optimized NC Coefficient Matrix

The matrix A has M2 elements. A brute-force search of all A involves qM2 possible candidates. The

computational complexity increases exponentially with M2. Here, we propose a pragmatic algorithm for

selecting A. This is a algorithm similar to greedy algorithm, which finds the coefficients layer by layer.

Recall that the NC coefficient of the l-th NC message is aTl = [al1, · · · , alM ]. For the first layer, select aT1 by

aT1 = max
aT
1 6=0

min

{
I1,

Isum − I1

M − 1

}
. (18)
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For the l-th layer, select aTl by

aTl = max
Rank([a1,··· ,al]T )=l

min

{
Il,
Isum −

∑l
i=1 Ii

M − l

}
. (19)

The first term represents the MI w.r.t. the current NC message, and the second term represents the maximum

value of the minimum MI of the subsequent M − l NC messages.

Note that the coefficient matrix obtained by the above pragmatic algorithm is not necessarily the global

optimal solution Aopt. Yet it yields the near optimal solution as we will see from the numerical results

momentarily. Next, we illustrate the complexity of the proposed algorithm.

Lemma 1: If the NC coefficient vectors of the first l NC messages can be written as [a1, · · · , al−1, al] =

[a1, · · · , al−1,
∑l

i=1 αiai]
T (αi ∈ {0, 1, · · · , q − 1}, i = 1, 2, · · · , l, αl 6= 0), the conditional entropies satisfy

H(Y |U1, · · · , Ul−1, Ul) = H(Y |U1, · · · , Ul−1, Ul
′) where Ul′ = (

∑l
i=1 αiai)

T [W1,W2, · · · ,WN ]T .

Proof. The conditional entropy is written as

H(Y |U1, · · · , Ul−1, Ul) =
1

ql

∑
j1,··· ,jl

H(Y |[U1, · · · , Ul] = [j1, · · · , jl]). (20)

Since U is the linear combination of user symbols W , we have

Ul
′ = (

l∑
i=1

αiai)
T [W1,W2, · · · ,WN ]T =

l∑
i=1

αi(ai
T [W1,W2, · · · ,WN ]T ) =

l∑
i=1

αiUi. (21)

Therefore, the constellation points corresponding to [U1, · · · , Ul] = [j1, · · · , jl] are the same as those cor-

responding to [U1, · · · , Ul′] = [j1, · · · ,
∑l

i=1 αiji]. Condition αl 6= 0 ensures that when [j1, · · · , jl] takes

different values, [j1, · · · ,
∑l

j=1 αiji] also has different values. So the final values of H(Y |U1, · · · , Ul−1, Ul)

and H(Y |U1, · · · , Ul−1, Ul
′) are the same, although their summation order are different.

For the NC coefficient aTl of l-th NC message, different selections of
∑l

i=1 αia
T
i (αi ∈ {0, 1, · · · , q−1}, i =

1, 2, · · · , l, αl 6= 0) have no difference in the value of Il (Il = H(Y |U1, · · · , Ul−1)−H(Y |U1, · · · , Ul)). Thus,

we only need to select one of ql−1(q − 1) choices in (19).

For the first NC message, there are qM − 1 possible combinations of non-zero coefficients. However,

considering the cyclic invariance of modular q operation, there are only qM−1
q−1

independent coefficient vectors.

For the l-th NC message, considering the rank condition that the NC coefficient needs to meet, there are

(qM−ql−1) possible combination coefficients (ql−1 represents the combination of the previous l−1 coefficients).

Therefore, there are qM−ql−1

ql−1(q−1)
= qM+1−l−1

q−1
independent coefficients to be calculated to obtain suitable aTl .
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The coefficients determined in previous layer do not change in subsequent layer, thus the complexity is

O(
M∑
l=1

qM+1−l − 1

q − 1
) = O(

q(qM − 1)−M(q − 1)

(q − 1)2
) ≈ O(qM). (22)

In contrast, the total choices in the brute-force search method are their product
∏M

l=1
qM+1−l−1

q−1
, whose

complexity is O(q
M2

2 ). For example, for a practical q = 5 and M = 4, the complexity can be saved by

(1− q4

q8
= 1− 1

q4
), which is over 99%.

D. Non-uniformly spaced Constellation

Similar to the Gaussian case, here we illustrate nonuniformly spaced constellation for the fading case. For

the Gaussian MAC, one is free to choose the constellation for each rate-pair target. For fading MAC, one

needs to find a certain constellation that performs well on average for all fading realizations.

Consider M = 2. Assume that the equidistant q-PAM mapping is adopted, the channel gain h = [h1, h2] =

[1.1, 1], finite field size q = 5 and the noise variance σ2 = 0.03162 (SNR=15dB). If aT1 = [1, 1] is selected,

then I1 = 0.9195 log2(5) and I2 = 0.3360 log2(5), this will result in that min {I1, I2} is dominated by I2,

so that the symmetric rate R is quite small. Therefore, the idea here is to balance I1 and I2 by selecting

non-uniform constellations, which maximizes min {I1, I2}.

Fig. 7. Achievable symmetric rate R varies with the constellation parameters ρ of the two users.

Fig. 7 shows the achievable symmetric rates with different constellation parameters ρ of the two users. The

gray surface represents the maximum symmetry rate of the MAC that can be achieved by joint ML decoding.
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It can be seen that the maximum rate of LPNC-MA changes greatly, while the sum rate I(W1,W2;Y ) changes

little. Thus, it is possible for min {I1, I2} to approach I(W1,W2;Y )/2 with a specific constellation parameter.

The parameter regions of LPNC-MA and SIC whose achievable rates exceed 90% of the ML decoding are

drawn on the xOy axis plane separately. The purple region represents LPNC-MA and the region enclosed by

black curve represents SIC. Note that the constellation parameter is determined in advance and used for all

fading realizations. The channel coefficient varies randomly, and is assumed to follow a Rayleigh distribution.

The realization of h = [1.1, 1] and h = [1, 1.1] are equally likely. The figure corresponding to h = [1, 1.1] is to

exchange the x-axis and y-axis of Fig. 7. The projection areas of SIC will not coincide under the two channel

gains. However, the projection areas of LPNC-MA scheme will coincide because its shape is similar to a

ring. Here, we include Fig. 7 for a specific channel realization. This is just to provide an intuitive explanation

on why LPNC-MA outperforms NOMA-SIC (for the fading setup), which helps with the understanding of

the gain from LPNC-MA.

For the cases with M > 2, the constellation mapping is optimized by focusing on equal channel gain of

each user to maximize max
Rank(A)=M

min {I1, I2, · · · , IM}. Note that the parameter ρ is continuous. Here we

can discretize several different constellation mapping, which have different spacing characteristics as far as

possible. Then the NC coefficient selection is combined with different constellation mapping for different

users for calculating max
Rank(A)=M

min {I1, I2, · · · , IM} to find the optimized mapping scheme.

E. Outage Probability and FER

Here we briefly illustrate the outage probability (OP) of LPNC-MA, which sets the lower bound on the

FER of our designed q-ary IRA codes based LPNC-MA for fading MAC. For a target symmetric rate Rset,

the OP of LPNC-MA is

poutage(R) = Pr(min {I1, I2, · · · , IM}Aopt
< Rset), (23)

which is averaged over the p.d.f. of the fading channel coefficients. The OP of SIC is equivalent to LPNC-MA

with A being a the permutation matrix5.

The OP lower bound is given via the evaluation of the MAC capacity region, that is

Pr
[
mR < I

(
{Wi}i∈Ωm

;Y | {Wj}j∈{M}/Ωn

)]
,m = 1, 2, · · · ,M, (24)

5The permutation matrix is determined by the order of SIC.
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where {M} denotes a collection of indexes from 1 to M and Ωm denotes all combinations of m elements

selected from {M}. With the optimized A and constellation parameter, we are ready to implement the q-ary

IRA codes based LPNC-MA for fading MAC, and evaluate its practical FER performance.

IV. NUMERICAL RESULTS

A. Discussions for the assumptions of LPNC-MA

1) Assumptions and coordination for deterministic Gaussian MAC: Following the convention of NOMA,

we assume that the receiver knows the number of users M in the coordination process before the transmission.

We also assume that accurate CSI is obtained via the training process with sufficient preamble length. Based

on the CSI, the receiver determines a coding strategy, from a discrete set of nested IRA codes candidates, PAM

constellations and NC matrix A, which meets the rate requirements of users. For the deterministic Gaussian

MAC, we consider close-loop coordination, i.e., the choice of nested IRA codes and PAM constellations is

reliably delivered to the users, in a fashion similar to adaptive modulation and coding (AMC).

2) Assumptions and coordination for fading MAC: For non-deterministic fading MAC setup, we again

assume that the receiver knows M and has accurate CSI. Following the convention, we consider open-loop

system for the fading MAC setup, where the feedback is unavailable thus AMC cannot be implemented.

In this setup, the users have no indication about the channel conditions and permitted rates, so each user

just simply transmits at a designated target rate for all fading blocks. In general, different users may have

different target rates, but for clarity and simplicity we just consider that all users have identical target rates

as in conventional treatment. Then, the core issue becomes identifying the optimal NC coefficient matrix A,

which has been discussed in Section III. C.

3) Discussion on the overheads: For Gaussian MAC, the extra overheads lie in a) finding NC matrix A,

b) selecting the nested IRA codes and c) non-uniformly spacing of the PAM constellations. Note that the

nested IRA codes are pre-designed off-line, which provides a table containing a discrete set of choices of

codes and PAM constellations. In the online MAC transmission process, the extra overhead for delivering the

indices of the choice of coding and modulation is (almost) identical to that of conventional AMC.

For fading MAC where AMC is not conducted and thus coordination is not required, the extra overhead

of the online MAC transmission process is due to identifying the optimal NC matrix A, which is performed

once per fading block. Using our developed greedy-algorithm based method, the cost for identifying the best

A can be made reasonably small, i.e., negligible compared to the detection and decoding complexity. Such

extra overhead is almost unnoticeable when the code block length becomes relatively large in practice.
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B. Performance of LPNC-MA for Gaussian MAC

(a) Rate-pairs ( 1
2
, 2
3

) and ( 2
3
, 1
2

) on the dominant face. (b) Error-rate performance.

Fig. 8. Achievable rate-pair and error-rate performance for M = 2 with uniformly spaced q-PAM constellation, q = 5. The received powers are
[
√
P1,

√
P2] = [1.3777, 1]. The SNR w.r.t. the capacity limit is at 11.9017dB.

1) Two-user Cases: First recall the M = 2 example previously shown in Fig. 4, with received powers of

the two users given by [
√
P1,
√
P2] = [1.3777, 1] and noise variance σ2 = 0.06454. LPNC-MA was shown

to achieve all the rate-pairs on the DF therein. With uniformly spaced q-PAM, q = 5, LPNC-MA achieves

the rate-pairs (1
2
, 2

3
) and (2

3
, 1

2
) on the DF 6. The corresponding NC coefficients matrix for rate-pair (1

2
, 2

3
) is

A = [1 1; 1 0], i.e., first computes the modulo-q sum and then uses it as side information to decode user 1’s

message. The nested IRA codes with q-PAM are used to characterize its practical performance. The optimized

code degree distributions can be found in Table I. The block length k is 100,000, and the fidelity is that more

than 100 frame errors are collected before the termination of the simulation for each simulation point. Fig. 8(b)

shows the error-rate performance of LPNC-MA. In particular, the symbol error-rate (SER) of both the first and

second NC messages are shown separately. Note that if the gap between these two is significant, the overall

error-rate suffers as it is dominated by the worst of the two. Using our developed nested code construction

and optimization, the gap between these two are minimized which yields the best overall performance. Under

the same conditions, we also show the performance of NOMA-SIC in Fig. 8(b). Note that for the two-user

case, NOMA-SIC decodes one user’s message first and then cancels it from the received signal to decode

the other user’s message. Moreover, the performance of NOMA-SIC can be further improved by selecting

the best ordering. In the simulation result in Fig. 8(b), we show NOMA-SIC with the best ordering, where

the equivalent matrix A = [1 1; 0 1]. We see that our designed LPNC-MA performs within 0.7dB the MAC

capacity at SER of 10−4, which overwhelmingly outperforms SIC by about 5 dB.
6The coding rates ( 1

2
, 2
3

) are of practical interests and this is why this example is selected for illustration purpose.
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Here, we give an intuitive explanation on the huge performance gap between LPNC-MA and NOMA-SIC.

In Fig. 8(a), NOMA-SIC can achieve the corner rate-pair (0.37, 0.8). However, the user 1’s target rate is 1
2
,

which is 0.13 bits more than NOMA-SIC’s achievable rate on the set SNR. To achieve the target rate, a

larger SNR is required for NOMA-SIC. This raises an enormous gap between the curve for decoding user 1’s

message and the capacity limit. On the other hand, the user 2’s achievable rate of NOMA-SIC is higher than

the target rate on the set SNR, thus NOMA-SIC can achieve the target rate at a lower SNR for the second

decoding step. This causes a phenomenon in NOMA-SIC that the performance of the first decoding step is

pretty bad, but that of the second is especially good. In this case, the overall performance of NOMA-SIC

is pretty bad. In contrast, LPNC-MA has balanced performances in all decoding steps, due to its ability to

achieve the whole dominant face. Next, we give another example to show that LPNC-MA can achieve all

points on the dominant face with non-uniform constellations.

(a) Rate-pair ( 7
12
, 7
12

) on the dominant face. (b) Error-rate performance.

Fig. 9. Achieved rate-pair of ( 7
12
, 7
12

) and error-rate performance. The channel parameters are the same as in Fig. 8.

We next consider another (symmetric) rate-pair ( 7
12
, 7

12
) on the dominant face, as shown in Fig. 9(a). Here

ρ = 0.323. The corresponding NC coefficients matrix is A =

 1 1

1 0

. Note that the purpose of this example

in Fig. 9(a) with symmetric rate-pair is to show a different rate pair relative to that in Fig. 8(a) under the same

channel parameter. In this particular example we consider symmetric rate. In such case, the code nesting can

be avoided. It is noteworthy that non-uniformly spaced PAM constellation is generally required to achieve the

symmetric rate-pair on the dominant face of MAC region. For fair comparison, NOMA-SIC utilizes the same

modulation codes as the LPNC-MA scheme, with an optimal decoding order. Fig. 9(b) shows the error-rate

performance of LPNC-MA and NOMA-SIC under this scenario. We see that LPNC-MA is only 0.65dB away
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from the capacity limit at SER of 10−4, and outperforms NOMA-SIC by about 7dB. Clearly, SIC is not a

good candidate in terms of symmetric rate, which will tremendously impact the FER performance in fading

MAC as we will see in the next subsection.

(a) Rate-tuple (0.2238, 0.4762, 0.5) on the dominant
face.

(b) Error rate performace.

Fig. 10. Achieved rate-tuple of (0.2238, 0.4762, 0.5) and error-rate performance for the three-user MAC. The received powers are
[
√
P1,

√
P2,

√
P3] = [1.5425, 1.46255, 1], q = 5 and noise variance σ2 = 0.11605. The capacity limit is at 9.3535dB.

2) Three-user Cases: Next we proceed to LPNC-MA for three-user MAC. Here we consider the powers

[
√
P1,
√
P2,
√
P3] = [1.5425, 1.46255, 1] and noise variance σ2 = 0.11605. With uniformly spaced q-PAM,

q = 5, LPNC-MA achieves the rate-tuples on the DF shown in Fig. 10(a). Among those, we illustrate the

rate-tuple (0.2238, 0.4762, 0.5), with the corresponding NC coefficients matrix

A =


1 1 1

1 0 0

0 1 0

 . (25)

For fair comparison, NOMA-SIC utilizes the same code as in LPNC-MA, with an optimal decoding order.

Fig. 10(b) shows that the error-rate performance. Efforts are made to minimize the gap between the three

curves w.r.t. the three NC messages using our optimized nested code construction. We see that LPNC-MA is

1.1dB away from the capacity limit at SER of 10−4, and outperforms SIC by more than 9 dB.

In this section, we considered prime q. In most current standards, 2m-PAMs are usually employed which

calls for non-prime q. Recently we developed a doubly-irregular RA codes over integer rings that apply to any

non-prime q, which can be used in LPNC-MA. For complex-valued model, LPNC-MA can be straightforwardly

employed by sending two independent streams along the I and Q phases of q2-QAM. A M -user complex-

valued model is equivalent to a 2M -user real-valued model, so the operations and design remain unchanged.
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C. LPNC-MA for Fading MAC

This part shows the frame error rate (FER) performance of LPNC-MA for fading MAC. The CSI is assumed

to be perfectly estimated at the receiver side, but not available to the transmitters. The M users are assumed to

have the same target rate in the simulations, while it can be easily extended to non-identical target rates. We

consider Rayleigh fading and block fading, where the channel coefficients remain constant within each coding

block of length n and varies over blocks. For comparison, NOMA-SIC uses the same codes and modulations

as used in corresponding LPNC-MA, with an optimally successive decoding order. The fidelity is that more

than 500 frame errors are collected before termination of the simulation for each SNR point.

Fig. 11. Outage probability of LPNC-MA for three-user fading MAC.

Fig. 12. FER of LPNC-MA for three-user fading MAC.

Consider symmetric target rate of R = 0.4 log2 5 bits/symbol/user. We first evaluate the outage probability

(OP) of LPNC-MA, that is, the probability that the target rate is out of the achievable rate-region (or greater

than the symmetric rate) for the given channel realization. Then we proceed to simulate the FER of our

developed LPNC-MA scheme, with block length k = 4000. Both uniformly spaced and non-uniformly spaced
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(with parameter ρ = (0.3, 0.5, 0.7)) constellations are considered. The OP of M = 3 users LPNC-MA is shown

in Fig. 11. We see that at 10−2 (or 3× 10−3) , the OP of LPNC-MA with non-uniformly spaced constellation

is only 0.8dB (or 0.3dB) from the lower bound of fading MAC. The FER performance is shown in Fig. 12.

Comparing the curves of FER and outage probability of LPNC scheme, there is a gap of about 0.7dB. With

the increase of code length, the gap may be further narrowed. Tremendously improved performance over

NOMA-SIC is observed for both OP and FER. It can be seen that the outage probability can be used as a

fairly accurate performance metric for the implementation and optimization of LPNC-MA.

Fig. 13. Outage probability of LPNC-MA for four-user fading MAC.

The OP of LPNC with M = 4 is shown in Fig. 13. The target rate is R = 0.2 log2 5 bits/symbol/user.

The nonuniformly spaced constellations with parameters ρ = (0.3, 0.5, 0.6, 0.7) is considered. It is seen that

at OP of 0.0032, the OP of LPNC-MA scheme reaches the MAC lower bound. A greater improvement over

NOMA-SIC is also observed.

D. Comparison with IDMA

1) Extending to A Large Number of Users: Our developed LPNC-MA and design method can be applied

to MACs with any number of users. In practice, one simple way to extend to a large number of users would

be to append a spreading code onto the LPNC-MA originally designed for three or four users. For example,

each user may append a length-N Hadamard sequence [14]. Then the total number of users of LPNC-MA

becomes MN , where each user’s effective rate is reduced to 1/N . However, this way of extending LPNC-MA

to MN users, although simpler, may not compete with directly designing of LPNC-MA for MN in terms of

rate-region and symmetric rate.

2) Complexity Comparison: The proposed scheme features lower complexity and less processing delay

compared to existing code-domain NOMA system that utilizes big-loop receiver iterations. To see this, note
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that the computational complexity is primarily due to the multi-user detection and channel-code decoding.

Let Isl denotes the number of iterations of the sum-product algorithm of channel-code decoding, and Ibl

denotes the number of big-loop receiver iterations. The total number of channel-code decoding is given by

M ∗ Ibl ∗ Isl, and the total number of detection is Ibl. Note that LPNC-MA needs M ∗ Isl decoding and M

detection, whereas the typical value of Ibl is usually 4 to 10 in existing code-domain NOMA such as iterative

APP detection and decoding, IDMA and SCMA.

In particular, we provide a detailed complexity analysis in q-ary codes based LPNC and binary codes

based IDMA, whose performances. IDMA has linear detection complexity O(M) with interference Gaussian

approximation, which requires more iterations to converge (e.g., 10 or even 20 iterations). LPNC-MA has

O(qM) detection complexity, which is minor compared to decoding complexity when M is moderate in the

LPNC framework considered in this work. The decoding complexity mainly comes from multiplications in

check nodes. For each iteration, the complexity is O(nq log2 q) [35], where n is the length of codewords.

For fair comparison, binary IRA codes need n log2 q codewords. Consider that LPNC-MA requires M serial

computation with one q-ary IRA decoder and IDMA requires Ibl big-loop iterations with M parallel binary

IRA decoders. Assume two types of decoders have the same Isl, thus the complexity ratio is given by

r =
Mnq log2 q

2n log2 qMIbl
=

q

2Ibl
. (26)

For example, for q = 5 and Ibl = 10, the computation cost of LPNC-MA is only 1/4 of IDMA’s.

Fig. 14. Frame error rate of LPNC-MA and IDMA for 16-user fading MAC.

3) Performance Comparison: In Fig. 14, we present numerical results of a 16-user system where a 4-

user LPNC-MA scheme is extended to 16-user using length-4 orthogonal Hadamard sequences. 16 users are

divided into 4 groups, where in each group we utilize LPNC-MA together with a length-4 Hadamard sequence
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for spreading. The result shows that FER performance of LPNC-MA approaches its lower bound, as well as

within 1.5dB gap to the Gaussian lower bound. Then, we compare the FER performance of LPNC-MA to

that of IDMA. Here for the IDMA system, the repetition code has length-6 and each user employs a rate

0.6966 binary IRA code optimized for single-user AWGN channel. For LPNC-MA, the rate 0.2 5-ary IRA

code (used in the previous example) and length-4 Hadamard spreading sequences are used. The sum rate is

1.8576 bits/symbol for both systems (as for a fair comparison). Note that this can be regarded as operating

in a medium-to-high spectral efficiency. It is demonstrated that at FER lower than 10−2, the LPNC-MA

significantly outperforms IDMA. In this situation, the IDMA system operates with a load of 185%, which is

very challenging for the iterative elementary signal estimator decoder to converge. Also note that big-loop

iteration is avoided in the LPNC-MA system.

V. CONCLUSION AND FUTURE WORKS

A linear physical-layer network coding multiple access (LPNC-MA) scheme for efficient communication

over Gaussian and fading MACs was studied. q-ary irregular repeat accumulate (IRA) codes over finite integer

rings was utilized as the underlying coding-modulation. A practical sequential computation and decoding

(SCD) algorithm was developed. A joint nested code construction and optimization method was developed.

For a number of typical rate-tuples, the performance is within 0.7dB and 1.1 dB the capacity limits, for two and

three users respectively. These near capacity-region performances were achieved with single-user decoding,

without receiver-iterations and time-sharing. For fading MAC where the CSI is only available at the receiver,

a pragmatic method for identifying the mutual information maximizing network coding coefficient matrix

was presented. Numerical results demonstrated that the frame error rate of LPNC-MA is within a fraction

of dB from the outage probability of the fading MAC, and remarkable improvement or complexity reduction

over NOMA-SIC and other code-domain NOMA schemes is achieved. Open problems along this research

direction includeFor multiple-antenna base station, how to exploit the notion of LPNC-MA to devise efficient

detector and precoder for the uplink and downlink? How LPNC-MA will impact grant-free random-access in

massive connectivity scenario and cell-free systems? We will look into these problems in the near future.
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