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ABSTRACT The reliability of swarm systems needs to be investigated because of their self-adaption and
self-organized features. Previous studies mainly focused on the reliability of a single agent, whereas for
swarm systems, the ability to maintain their overall connection and function under adverse conditions is
more important. It remains challenging on how to evaluate the reliability of swarm systems at the system
level. In this paper, we present a reliability evaluation method for swarm systems by characterizing the
behavior of the whole system using the method of temporal network analysis. A novel comprehensive
reliability metric, i.e. cooperation reliability (CR), is proposed, considering both system integrity and motion
consensus. Meanwhile, by identifying critical individuals in swarm systems, we design different malicious
attack strategies. It is found that the malicious attacks perform much more harmfully to the reliability of
swarm systems than noise and random attack. Moreover, we find that the reliability of a swarm system is
sensitive to the swarm density in our framework due to the dynamical interaction of the system. Our findings
may shed light on understanding the complicated behaviors of swarm systems under attack and designing a
more robust swarm system.

INDEX TERMS Complex networks, malicious attacks, reliability, swarm system.

I. INTRODUCTION
Applications of swarm systems are emerging in various
fields, showing clearly the importance of swarm systems.
For instance, several UAV swarms, such as Gremlins, Coy-
ote drones, and Perdix, are designed for military tasks like
distributed reconnaissance, cooperative attack, and saturation
attack; In the civilian field, swarm systems are being applied
to distributed sensing, emergency rescue etc. These engineer-
ing applications take advantage of the superiority of swarm
systems in information sharing, collaboration, and robust-
ness, and require the swarm systems to be reliable. Begin-
ning with the observation of behaviors of biological flocks,
researchers have been studying swarm systems for decades.
Researchers studied the swarm systems in nature [1]–[10]
thoroughly and designed a number of artificial swarm
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systems [11]–[15] to achieve robustness, flexibility, scal-
ability, and more importantly, superior capabilities of the
whole system compared with single agents [13], [14]. How-
ever, under perturbations like noise or malicious attacks,
swarm systems may become unstable and even collapse.
Thus, the consensus of the system is difficult to maintain
[16]–[21], creating security challenges [22], [23] and relia-
bility concerns [24], [25].

Initially, researchers mainly focused on reliability of a
single agent. Winfield et al. [24] proposed three different
tentative approaches [25] to evaluate the reliability of a robot
swarm. These approaches tried to evaluate the reliability of
swarm system by the function of reliabilities of all the agents
in the system, but ignored the system’s self-adaption and self-
organized features, since they were developed on an arbitrary
assumption, that the whole system breaks down only if all
of its individuals break down. Due to the dynamical change
of system topology, usually the reliability function between
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the swarm system and the single agent is absolutely differ-
ent, especially under attack situation. The above problems
constitute a major challenge as how to evaluate the overall
reliability of swarm systems at the system level.

To study the topology and system-level ability of swarm
systems, researchers employed complex network theory.
They regard a swarm system as a network composed by
the individuals (nodes) and the interactions among them
(links), and analyze the network by statistical mechanics,
graph theory, control theory etc. Using this methodology,
Komareji and Bouffanais [18] found that the networks of
their swarm model based on the k-nearest neighbor rules
exhibit small-world effect and possess Poissonian-like inde-
gree distribution, differing from the power law characteristic
of scale-free networks. Moreover, researchers of swarm sys-
tems have gained extraordinary results in consensus problem
[17], [26], information flow [26], [27], controllability [18],
and resilience [18]–[21], [28]. In this paper, we expect that
network-based methodology can help us to grasp the big
picture of the whole system and develop a overall reliability
evaluation approach for swarm systems.

The vulnerability of swarm systems is another compelling
problem to study due to the network feature of swarm sys-
tems. Albert et al. [29] found that attacking highly connected
nodes in a scale-free network can cause more significant
damage to the topology than attacking those less connected
ones, which revealed the attack vulnerability of scale-free
networks. Jianwei Wang et al. proposed a cascading model to
explain the attack vulnerability of scale-free networks [30].
Propagation of cascading failures [31], [32] and restoration
from cascading failure [33]–[36] has been studied. After [29],
a series of studies about attack tolerance or vulnerability of
static networks [37]–[41] and temporal networks [42]–[47]
emerged. Metrics like degree, closeness, betweenness etc.
has been practiced to identify the significance of nodes [48],
[49]. Nevertheless, faced with malicious attacks, whether the
temporal network of a swarm system exhibits vulnerability
just like scale-free networks do is uncertain.

In this paper, wemodel swarm systems based on the Vicsek
model [16], where the function of the particles is ordered
motion. We construct temporal networks for our swarm sys-
tems and define the system-level reliability of a swarm system
as the ability to maintain swarm behavior, i.e. cooperation
reliability (CR), which is a combination of system integrity
and motion consensus. This is realistic for real situation. For
example, UAV swarm with reconnaissance mission needs
to transfer and exchange information with each other based
on clusters in the system, where connection guarantees the
interaction ability. Swarm also needs motion consensus in a
self-adaptive formation flight for the ease of system control.
Tomeasure the cooperation reliability, the swarm all-terminal
reliability (SATR) is defined to evaluate the integrity of the
system and the consensus metric is introduced to evaluate
the motion consensus of all the individuals. Moreover, using
identification methods of vital nodes in complex networks,
we design three attack strategies, including random attack and

two malicious attack strategies, and study their influences on
the reliability of our swarm systems. Specifically, we do not
consider the reliability of individual particles, i.e. we assume
that every single particle’s reliability equals to 1. In all, our
main contributions can be summarized as:

• Anovel reliability metric is proposed, combining system
integrity and motion consensus.

• We analyze the temporal networks of swarm sys-
tems based on percolation theory, considering the self-
adaption and self-organized features of the network.

• We also study and compare the reliabilities and behav-
iors of swarm systems under different attack strategies.

The rest paper is organized as follows. We introduce the
models in section II, including Vicsek model and temporal
networks. Reliability metrics are proposed in section III and
attack strategies are designed in section IV. We present and
discuss our results in section V. Finally, we summarize this
paper in section VI.

II. MODELS
A. VICSEK MODEL [16]
In this section, we describe some basic principles of the
Vicsek model briefly and explain how we employ this model
in this paper.

The Vicsek model consists of a square plane with peri-
odic boundary conditions and N self-driven particles. These
particles move continuously in the plane and their positions
and directions of motion are updated at each time step.
A particle’s motion direction is calculated by averaging the
directions of all the neighbors and then adding an external
noise.

At a certain time step t , the neighbors of a particle i are all
the nearby particles that are within a distance of r , represented
by a set of particles Pi(t),

Pi(t) =
{
j|dij(t) < r

}
, (1)

where dij denotes the distance from particle i to particle j.
Parameter r can be considered as the maximum communica-
tion range among particles.

The direction of particle i is updated by the expression

θi(t + 1) = 〈θ(t)〉r +∆θ1, ∆θ1 ∈ [−η/2, η/2], (2)

where θi(t + 1) is the direction of particle i at step t + 1,
and ∆θ1, denoting noise, is randomly chosen from the inter-
val [−η/2, η/2]. In (2), 〈θ (t)〉r represents the average of
directions of all the neighbors of the given particle. If θj(t)
represents the direction of particle j, then 〈θ (t)〉r is subject to
the expressionsin〈θ (t)〉r =

∑
j∈Pi(t)

sin θj(t)
Ni(t)

cos〈θ (t)〉r =
∑

j∈Pi(t)
cos θj(t)

Ni(t)

, (3)

where Ni(t) represents the number of the neighbors of
particle i.
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FIGURE 1. Evolving of swarm systems with different densities ρ. The networks of two swarm systems when time
step [(a) and (d)] t=0, [(b) and (e)] t=50, and [(c) and (f)] t=200 in a simulation are shown. The other parameters used in these
cases are: (a)-(c) the number of particles N=100 or (d)-(f) N=400, the length of the square cell is obtained by the expression
ρ=N/L2, the noise η=0, the speed ν=0.03, and the communication range r=1.

Furthermore, (xi(t), yi(t)) represents the site of particle i,
which is updated by the expression{
xi(t+1)=xi(t)+ν cos θi(t + 1)
yi(t+1)=yi(t)+ν sin θi(t + 1),

i = 1, 2 . . . ,N , (4)

where ν is the speed of all the particles.

B. TEMPORAL NETWORKS CONSTRUCTION
Represented by G(t) = (V ,E(t)), the temporal network of a
swarm system based on the Vicsek model is an unweighted
and undirected graph at each time step. Node Vi in the net-
works represents particle i of the swarm system. E(t) rep-
resents the interactions (links) among particles. A link fails
when the distance between the two particles is larger than
r . Here, the distance between particles means the Euclidean
distance.

We show how the networks of swarm systems evolve
in Fig. 1, with a case of low density and a case of high density.
Initially, particles of the swarm system with low density are
scattered in the field and the clusters are fragmented and
dispersive (Fig. 1(a)). Gradually, those particles flock and
construct large clusters as time passes (Fig. 1(b) and 1(c)).
Whereas, in the other case, the swarm system’s networkmain-
tains fully connected from the beginning to the end because
of high swarm density.

III. RELIABILITY METRICS DEFINITION

The reliability of a system is the probability that it maintains
its required function without failure under required work
conditions for a given period of time [50]. For different swarm
systems, their functions can be various: animal swarms need
to migrate, hunt, or evade predators etc; artificial swarm sys-
tems can be employed to search and rescue victims, monitor
or attack enemies etc. No matter what the specific function
is, the swarm systems need to maintain swarm behavior.
Here, we propose a method that describes the commonality
of variant swarm systems. According to the definition of
reliability referred in the beginning, we consider the swarm
behavior as the required function of our swarm systems
and the noise or malicious attacks as the potential required
work conditions. The reliability of a swarm system is thus
defined as the ability to maintain swarm behavior under
required work conditions like noise or malicious attacks for
a given period of time. Different from traditional reliabil-
ity of electronic or mechanical systems, swarm reliability
evaluation requires taking a full consideration on its highly
dynamical, interdependent and resilient properties, revealing
the profound relationship between swarm reliability and its
properties. The failure of a single particle or a part of system
may not collapse the system [18]. Therefore, swarm reliabil-
ity evaluation needs to focus on the behavior of the whole
system.
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To measure the ability of a swarm system to maintain
swarm behavior, we consider two aspects, system integrity
and motion consensus. We believe that integrity and consen-
sus are the two indispensable properties of swarm behav-
ior. There are two reasons behind this thought. Firstly,
the integrity (or wholeness) of a swarm system reflects the
connection of its network, which is critical to the informa-
tion sharing and the decision making. Secondly, the con-
sensus ensures that the individuals in the swarm system act
cooperatively. Our results reveal that under harsh conditions
like strong noise or malicious attacks, neither of these two
properties can guarantee the reliable operation of the system.
In other words, in some cases, there exists gathered but disor-
dered swarms or ordered but fragmented swarms. To evaluate
the reliability of swarm systems, both integrity and consensus
need to be considered.

Network methods are effective in studying the integrity of
swarm systems. For instance, Komareji and Bouffanais [18]
used the size of giant strongly connected component (GSCC)
and the number of strongly connected components (SCC) as
two integrity metrics to analyze the resilience of consensus in
their model.We define swarm all-terminal reliability (SATR),
which is inspired by the all-terminal reliability of networks,
to evaluate the integrity of a swarm system in this paper. Com-
pared with GSCC, the SATR describes the overall feature of
the system rather than feature of the largest cluster. Given that
every single particle’s reliability equals to 1, we define SATR
of swarm systems as follow.
Definition 1: Swarm All-terminal Reliability SATR(t),

the probability that each pair of particles are connected by
at least one path. At time step t , if the swarm system is
composed ofN particles andm(t) clusters, where each cluster
containsN1,N2, . . . ,Nm(t) particles respectively, the SATR(t)
of this swarm system is obtained from the expression

SATR(t) =

∑m(t)
j=1

(Nj
2

)(N
2

) , (5)

where
(Nj
2

)
is the 2-combination of cluster j and

(N
2

)
is the

2-combination of the whole system. Note that SATR is very
different from the traditional ATR of a static network. Tra-
ditional ATR is probability of each pair of nodes being con-
nected given the probability of failure for each link. However,
SATR emphasizes the number of clusters in the system. Clus-
ter size distribution is significant in percolation theory [51],
[52], which captures the features of phase transition. Fewer
clusters means a more integrated of the system and vice versa.
The cluster statistics is widely used in traditional swarm sys-
tem analyses [53]–[55]. SATR is the overall characterization
of cluster statistics. When the system only has one cluster,
i.e., m(t) = 1, SATR(t) reaches its maximal value 1. When
all particles disconnect from the system, i.e., m(t) = N ,
SATR(t) = 0. Thus, SATR is more suitable and objective to
describe the swarm system. On the other hand, we use the
order parameter that Vicsek et al. used in [16] as consensus
metric to measure the motion consensus.

FIGURE 2. Cooperation reliability of swarm systems as the system
evolving. Results of several levels of noise η are shown. The values of
cooperation reliability are average over 100 realizations and in each
realization the model runs for 10000 steps. The other parameters used in
these cases are: the number of particles N=100, the length of the square
cell L=14.1, the speed ν=0.03, and the communication range r=1.

Definition 2: Consensus metric Va(t), the average velocity
of the whole swarm system [16],

Va(t) =
1
N
|

N∑
i=1

⇀
νi|, (6)

where N is the number of particles in the system and
⇀
νi is

the normalized velocity of particle i. Va(t) is approximately
0 when the directions of all the particles are totally unordered.
When they move toward the same direction, Va(t) = 1.
To evaluate the reliability of swarm systems comprehen-

sively, we define the cooperation reliability (CR) as the reli-
ability metric as follow.
Definition 3:Cooperation ReliabilityCR(t), the ability of a

swarm system to maintain swarm behavior at the time step t .
We calculate CR(t) by the expression

CR(t) = SATR(t)× Va(t). (7)

Fig. 2 shows how the cooperation reliability converges as
the system evolving. The stronger noise, the lower steady
value of the cooperation reliability.

IV. ATTACK STRATEGIES
To simulate the potential external attacks on swarm systems,
different attack strategies are considered. They are expected
to destroy the swarm behavior of swarm systems as efficiently
as possible. Let p denote the proportion of the attacked par-
ticles, then the number of the attacked particles is denoted
by N × p. The attacks on particles are adopted by disturbing
their moving directions. The direction of an attacked particle,
particle i, is updated by the expression

∼

θi (t + 1) = θi(t + 1)+∆θ2, ∆θ2 ∈ [−π,π], (8)

where
∼

θi (t+1) denotes the direction under attack and θi(t+1)
is the direction obtained from (2). Similar to angle ∆θ1, ∆θ2
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is also a uniform distribution random number within the given
interval and it denotes the external attack.

Then the location of the attacked particle i is updated byxi(t + 1) = xi(t)+ ν cos
∼

θi (t + 1)

yi(t + 1) = yi(t)+ ν sin
∼

θi (t + 1),
i = 1, 2 . . . ,N . (9)

Notably, the noise and the attacks both influence the
swarm behavior by disturbing the moving directions of par-
ticles, but the differences between them are remarkable.
(i) Firstly, the noise is added on all the particles in the system,
whereas the attacks only influence a part of particles. (ii) Sec-
ondly, usually the strength and effect of noise is relatively
mild, whereas the attacks are much stronger. In our study,
the attacks on a particle can be intuitively interpreted as
2π noise on this particle. No matter which attack strategy we
employ, the way to update the directions of the attacked par-
ticles are the same, that is to update the directions according
to (8). The difference lies in the selections of the attacked par-
ticles. Next, we will introduce three different attack strategies
based on different methods of selection.

A. RANDOM ATTACK
In random attack (RA), the attacked particles are randomly
chosen from all the particles, ignoring their positions or any
other properties. This strategy is designed as a comparison
of the malicious attacks presented subsequently. Moreover,
the random attack can simulate the failures of individuals
in the swarm system. In robot swarm systems, for example,
failures of communication module or motion module can
cause such errors of direction updating we designed by (8).

B. MALICIOUS ATTACKS
To break down the swarm systems efficiently, the malicious
attacks target those vital particles, using vital nodes identi-
fication methods of complex networks. We rank all the par-
ticles decreasingly according to a certain temporal network
property and then select the top N × p particles to attack.
We define two specific malicious strategies using different
temporal metrics as follow.

1) TEMPORAL DEGREE ATTACK
For a certain node Vi, its degree is the number of other nodes
that directly connects to it [48]. Nodes connected to more
nodes are more vital in some cases since they are able to affect
more nodes. Since all the particles are moving, the degree of
each particle is time-varying. Therefore, we define the tem-
poral degree Di(t) as the degree of node Vi at a certain time
step t . Under this strategy, the particles are ranked by their
temporal degrees. We call this strategy degree attack (DA)
for short in the rest of this paper.

2) TEMPORAL CLOSENESS CENTRALITY ATTACK
The closeness centrality of networks tries to identify the parti-
cles that are the closest to the information flow. The particles
with higher closeness centralities are closer to the center

of a network. Since the networks of swarm systems can be
fragmented, we adopt the definition of closeness centrality
in (10) [48], which is applicable to both fully connected
networks and fragmented networks. For the node Vi of a
network with N nodes, the closeness centrality is calculated
by the expression

CCi =
∑

1≤i<j≤N

1
lij
, (10)

where lij denotes the distance between Vi and Vj. Here,
the distance represents the length of the shortest path between
these two nodes. Particularly, if node Vi and node Vj are not
connected, the distance between them equals to infinity. The
temporal closeness centrality CCi(t) represents the closeness
centrality of node Vi at a certain time step t . The strategy
that attacks particles in terms of their closeness centralities
is called closeness attack (CA) for short.

V. RESULTS AND DISCUSSION
We investigate the evolvement and reliability of swarm sys-
tems under various conditions. The results show how the
noise and different attack strategies affect the integrity and the
consensus of swarm systems. The average of the cooperation
reliability, 〈CR〉, is obtained by

〈CR〉 = 〈SATR〉 × 〈Va〉, (11)

where 〈SATR〉 denotes the average of SATR and 〈Va〉 denotes
the average of Va over the 100 realizations.

A. NOISE EFFECT
The effects of noise on the motion consensus of swarm
systems have been studied by Vicsek et al. [16] and
Czirók and Vicsek [56]. Nevertheless, how noise influences
the integrity of a swarm system is unclear. Komareji and
Bouffanais [18] studied the evolvement of the size of GSCC
and the number of SCC, yet they only presented the result of
a fixed noise.

Fig. 3 shows the behaviors of particles under various
noises. Firstly, from the perspective of single particles, the tra-
jectories of particles under stronger noise are more winding.
As a result, particles under stronger noise travel less distance
by the same steps. Particularly, the particles under 2π rad
noise (the highest noise) just linger in small regions around
their original locations, because the noise is so strong. Sec-
ondly, from the perspective of the entire system, the swarm
system under stronger noise is more fragmented, indicating
lower SATR, and trajectories of all the particles are more
disordered, namely lower Va. Also, under stronger noise,
the particles are more scattered (Fig. 3(a)-3(c)), resulting
from the disturbance of the noise on the swarm behavior.

To investigate the effects of noise quantitatively, we calcu-
late SATR, Va, and CR of swarm systems with various den-
sities under various levels of noise. We find that the stronger
the noise, the lower SATR, Va, and CR (Fig. 4). The reason is
that under noise, the swarm systems are easier to break apart.

Moreover, Fig. 4 shows that under the same noise,
the swarm systems with higher densities always exhibit
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FIGURE 3. Effect of noise on swarm systems. (a)-(c) The networks of swarm systems under various noises η after simulation
of 10000 steps and (d)-(f) their particles’ trajectories of the last 40 steps are shown. The swarm in (a) and (d) is under the noise
η=0; the swarm in (b) and (e) is under the noise η=1π; the swarm in (c) and (f) is under the noise η=2π. The other parameters
used in these cases are: the number of particles N=100, the length of the square cell L=10, the speed ν=0.03, and the
communication range r=1.

FIGURE 4. Effect of noise on the reliability of swarm systems. (a) Swarm all-terminal reliability, (b) consensus metric and (c) cooperation reliability of
swarm systems with various density ρ are shown. The other parameters used in these cases are: the number of particles N=100, the density ρ=N/L2,
the speed ν=0.03, and the communication range r=1.

higher SATR, Va, and CR, which means the swarm sys-
tems with higher densities are more reliable. The fact is,
when the density is higher, the particles are more likely to
connect with each other. The density also influences SATR.
When the density is high, SATR anti-intuitively increases
as strong noise increases (Fig. 4(a)). (i) When the noise is
weak, the system still maintains swarm behavior. With the
strengthening of the noise, the networks are fragmented more
severely, so SATR reduces. (ii) However, when the noise is

strong enough, the swarm behavior vanishes and the particles
are scattered. Given that the density is very high, the more
scattered distribution of the particles makes it easier for the
particles to connect with each other, so SATR anti-intuitively
increases. Yet the particles do not achieve motion consensus
in such case. More visually, the network of a high-density
swarm system under strong noise is similar to the network
in Fig. 1(d). This finding reveals the disadvantage of merely
SATR in evaluating the reliability of swarm systems, that
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FIGURE 5. Effect of random attack (RA) on the reliability of swarm systems. (a) Swarm all-terminal reliability, (b) consensus metric and (c) cooperation
reliability of swarm systems are shown. The other parameters used in these cases are: the number of particles N=100, the density ρ=N/L2, the noise
η=0.1π, the speed ν=0.03, and the communication range r=1.

FIGURE 6. Effect of malicious attacks on swarm systems. (a)-(d) The networks of four swarm systems after 10000 steps of simulation and
(e)-(h) their particles’ trajectories of the last 40 steps are shown. The attacked particles are marked by circles. The swarm system in (a) and (e) is
under degree attack (DA), with attack proportion p=0.1; the swarm system in (b) and (f) is under degree attack, with attack proportion p=0.5; the
swarm system in (c) and (g) is under closeness attack (CA), with attack proportion p=0.1; the swarm system in (d) and (h) is under closeness attack,
with attack proportion p=0.5. The other parameters used in these cases are: the number of particles N=100, the noise η=0.1π, the length of the
square cell L=10, the speed ν=0.03, and the communication range r=1.

it cannot tell whether the particles flock or just gather dis-
orderly. Moreover, when the noise η increases from 0 to
0.1π, the consensus metric Va just decays a little, whereas
SATR declines much more significantly (Fig. 4(a) and 4(b)),
which indicates that the consensus metric Va is not enough to
evaluate the reliability of swarm systems either.

B. EFFECTS OF ATTACK STRATEGIES
1) RANDOM ATTACK
The reliability of swarm systems under random attack with
various failure proportion p and density ρ has been studied.

Normally, SATR decreases as the failure proportion p grows
(Fig. 5(a)). The consensusmetric and the cooperation reliabil-
ity monotonically decrease as p increases (Fig. 5(b) and 5(c)).

2) MALICIOUS ATTACKS
Malicious attacks are expected to break down the swarm sys-
tems efficiently. To investigate their impacts, we first observe
the networks of the swarm systems under malicious attacks
and the trajectories of the particles in Fig. 6.

It shows that the swarm systems under malicious attacks
are more fragmented and the motions of their particles are
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FIGURE 7. Effect of malicious attacks on the reliability of swarm systems. [(a) and (d)] Swarm all-terminal reliability, [(b) and (e)] consensus metric, and
[(c) and (f)] cooperation reliability of swarm systems under degree attack (DA) or closeness attack (CA) are shown. The other parameters used in these
cases are: the number of particles N=100, the density ρ=N/L2, the noise η=0.1π, the speed ν=0.03, and the communication range r=1.

FIGURE 8. Comparison of effects of random attack (RA), degree attack (DA), and closeness attack (CA). Cooperation reliability of swarm systems with
various densities ρ are shown. The densities of the swarm systems are equal to (a) 0.1, (b) 0.3, (c) 0.5, and (d) 1.0 respectively. The other parameters used
in these cases are: the number of particles N=100, the density ρ=N/L2, the noise η=0.1π, the speed ν=0.03, and the communication range r=1.

more disordered, compared with the swarm systems only
under noise in Fig. 3(a) and 3(d). However, we also notice
that the attacked particles usually gather together without
motion consensus, as shown in Fig. 6 by their trajectories.
We call this phenomenon the disordered gathering of attacked
particles.

As for reliability of swarm systems, Fig. 7 shows that
SATR, Va, andCR suffer serious damages under the malicious
attacks, even when the attack proportion is small. Whereas,
due to the disordered gathering of attacked particles, increas-
ing the attack proportion cannot enlarge the much damage on
SATR. It can even be counterproductive when the density is
too high (Fig. 7(a)).

Furthermore, trends of these metrics with different densi-
ties exhibit subtle diversities. The SATR, Va, and CR decrease
more significantly in the swarm systems with lower densities,
indicating that the swarm systems with lower densities are
more vulnerable.

C. COMPARISON OF THREE ATTACK STRATEGIES
Fig. 8 presents the comparison of three attack strategies with
various attack proportions. The CR of swarm systems under
malicious attacks are lower than that under the random attack.
This diversity shows that (1) the malicious attacks are more
efficient to break down the swarm systems than random
attack and (2) some particles are more critical to the whole
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FIGURE 9. Comparison of effects of random attack (RA), degree attack (DA), and closeness attack (CA) with fixed attack proportion 0.1. (a) Swarm
all-terminal reliability, (b) consensus metric and (c) cooperation reliability of swarm systems are shown. The densities ρ of the swarm systems are equal
to 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0 respectively. The other parameters used in these cases are: the attack proportion p=0.1, the number of particles
N=100, the density ρ=N/L2, the noise η=0.1π, the speed ν=0.03, and the communication range r=1.

system than others, though there is no difference in their indi-
vidual functions or performances. Moreover, between two
malicious strategies, the closeness attack is more efficient
than the degree attack, suggesting that the particles with high
closeness centralities are more critical than the particles with
high degrees. To compare the effects of these three attack
strategies further, we investigate SATR, Va, and CR with a
fixed attack proportion p = 0.1, where we notice the high-
est difference among effects of these three attack strategies.
Fig. 9 reveals that no matter for SATR, Va, or CR, malicious
attacks perform better attack effect than random attack. The
particles with high degree or high closeness centrality are able
to influence more particles. Thus, they are more important for
the swarm systems to maintain swarm behavior. Meanwhile,
within the framework of Vicsek model, the superiority of
closeness attack over degree attack reveals that the impor-
tance of individuals is not only related to the number of
neighbors (or degrees), but more importantly, the average
distance to the other individuals, i.e. the location in the whole
system.

VI. CONCLUSION
In this paper, we propose a novel reliability evaluationmethod
for swarm systems by characterizing the system behavior,
considering system integrity and motion consensus jointly.
Compared with previous reliability metrics of swarm sys-
tems, the cooperation reliability emerges from the interaction
among agents, reflecting the self-adaption and self-organized
features of swarm behavior. This method is widely applicable
for various swarm systems since it describes the commonality
of different swarm systems. Moreover, to demonstrate this
method, we study the reliability of swarm systems based on
the Vicsek model under adverse work conditions including
noise, random attack, and malicious attacks. The malicious
attacks are designed by vital nodes identification in com-
plex network. Simulation results show that the cooperation
reliability comprehensively reflects the swarm system’s abil-
ity to maintain its function under different work conditions.

Also found is the vulnerability of swarm systems under mali-
cious attacks, which indicates that misbehavior of different
individuals influences behavior of the whole system differ-
ently, due to diverse locations in the system or connections to
other individuals. This finding can be helpful for developing
attack or protection strategies of swarm systems.

Yet, the malicious attack strategies designed in this paper
have some shortcomings, since it is difficult for attackers to
obtain the time-varying topology information of the swarm
networks instantly. We will study the structural formation
pattern of dynamic swarm networks in the future, try to
uncover the relevance between failures and the structure of
a dynamic swarm system in terms of topology changes and
timing sequence, and further design a more robust swarm
system.
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