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Abstract — Maximum correntropy criterion (MCC)

provides a robust optimality criterion for non-Gaussian sig-

nal processing. In this paper, the weight update equation of
the conventional MCC-based adaptive filtering algorithm

is modified by reusing the past K input vectors, forming
a class of data-reusing MCC-based algorithm, called DR-

MCC algorithm. Comparing with the conventional MCC-

based algorithm, the DR-MCC algorithm provides a much
better convergence performance when the input data is

correlated. The mean-square stability bound of the DR-
MCC algorithm has been studied theoretically. For both

Gaussian noise case and non-Gaussian noise case, the ex-

pressions for the steady-state Excess mean square error
(EMSE) of DR-MCC algorithm have been derived. The re-

lationship between the data-reusing order and the steady-

state EMSEs is also analyzed. Simulation results are in
agreement with the theoretical analysis.
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I. Introduction

Adaptive filters are used in a wide range of signal pro-
cessing applications such as channel equalization, noise
cancellation, system modeling, etc[1]. The Least mean
square (LMS) algorithm[2] and its variants[3,4] are the
most famous adaptation technique, which is based on the
Minimum mean square error (MMSE) criterion. Recently,
the Maximum correntropy criterion (MCC), which is a ro-
bust optimality criterion for non-Gaussian signal process-
ing, has been successfully applied in adaptive filtering[5,6].
The MCC-based algorithm achieves a much better per-
formance than MMSE-based algorithm in non-Gaussian
environments, especially when the data are disturbed by
impulsive nosie. Similar to the MMSE-based algorithm,
the steady-state Excess mean square error (EMSE) of the
MCC-based adaptive filtering algorithm is highly depen-

dent on the trace of the input covariance matrix[7]. Hence
the convergence performance of MCC-based algorithm de-
grades with data correlation.

One available scheme to de-correlate the input data
is the data-reusing strategy[8], which has been proven ef-
fective in improving the convergence performance of the
LMS-type algorithms. The representative data-reusing al-
gorithms is the MMSE-based Affine projection algorithm
(APA)[9−12], which accelerates the convergence speed
based on multiple input vectors. Inspired by the APA,
we modify the weight update equation of the MCC-based
adaptive filter by reusing the input data and propose
a data-reusing version of MCC-based algorithm, named
DR-MCC algorithm. The proposed algorithm provides a
better convergence performance especially when the input
data is correlated. The relationship between the conven-
tional MCC-based algorithm and the DR-MCC algorithm
is discussed. The mean-square stability, the steady state
behavior and the computational complexity of the DR-
MCC algorithm are addressed from all around. Simulation
results are provided to support the analysis. Comparing to
the MMSE-based algorithms and the conventional MCC-
based algorithm, the proposed DR-MCC algorithm is su-
perior in terms of convergence speed and misadjustment.

II. Data-Reusing MCC-Based Algorithm

1. Conventional MCC-based algorithm
Consider the desired signal dk that arises from a

system identification model dk = xT
k h + vk, where

h ∈ �M×1 is the impulse response of the unknown
system, xk ∈ �M×1 denotes the input-signal vector
xk = [xk, xk−1, · · · , xk−L+1]T, vk is a stationary, zero-
mean, and independent noise sequence, which is indepen-
dent of the input signal xk. The error signal is defined
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as ek = dk − xT
k wk, where wk is the estimate of 4 at

iteration k. The correntropy, a local similarity measure
between two random sequences X and Y , is defined as
follows:

Vlocal(X, Y ) = E [κ(X, Y )] =
∫

κ(x, y)dFx,y(x, y) (1)

where x and y denote the elements in sequences X and
Y , respectively. κ(·, ·) is a shift-invariant Mercer kKernel
and Fx,y(x, y) is the joint distribution function of (x, y).
A widely used kernel is the Gaussian kernel:

κ(x, y) =
1√
2πσ

exp
(
− e2

2σ2

)
(2)

where e = x − y denotes element in the prediction error
sequence E = X−Y , and σ is the kernel width. The cost
function of the MCC-based algorithm can be expressed as
follows[6]:

JMCC(wk) =
1
N

k∑
i=k−N+1

exp
(
− e2

i

2σ2

)
(3)

where ei = di − xT
i wi. Using the stochastic gradient

method, the MCC-based adaptive algorithm can be ex-
pressed as[6]:

wk+1 = wk + μf(ek)xk (4)

where μ is the step-size, f(ek) is the error nonlinearity:

f(ek) = exp
(
− e2

k

2σ2

)
ek (5)

As σ → ∞, the MCC-based algorithm will reduce to
the LMS algorithm, which is MMSE-based:

wk+1 = wk + μekxk (6)

When the prediction error sequence follows a strong
non-Gaussian distribution, especially a impulse distribu-
tion case, the probability of large-value error in the error
sequence will be high. In this case, due to the threshold
effect of the kernel width σ and the negative exponen-
tial function in Eq.(5), the contribution of the large-value
error to the error nonlinearity is greatly weakened. By
comparing Eq.(4) with Eq.(6), it can be concluded that
the MCC-based adaptive algorithm helps the weight vec-
tor update in a more gentle way than the MMSE-based
algorithm when large-value prediction error occurs. That
is why the maximum correntropy criterion is more robust
than MMSE criterion in the non-Gaussian environments.

2. Data-reusing MCC-based Algorithm
In fact, the weight update equation Eq.(4) is obtained

by approximating the sum in Eq.(3) by the current value
(N = 1). If we reuse the last K input (N = K) in Eq.(3),

the MCC-based adaptive algorithm can be modified as:

wk+1 = wk + μ
1
K

k∑
i=k−K+1

f(ei)xi (7)

where K can be viewed as the data-reusing order[8]. We
can take the matrix formulation of the Eq.(6) as follow:

wk+1 = wk +
μ

K
FkXk (8)

where Fk = [f(ek), f(ek−1), · · · , f(ek−K+1)], Xk =
[xk, xk−1, · · · , xk−K+1]T, ei = di − uT

i wk, i = k − K +
1, k − K + 2, · · ·k.

The variant ei denotes the i-th error signal produced
by the current estimated weight vector wk. The new
weight update equation Eq.(7) can be named as the data-
reusing MCC-based (DR-MCC) algorithm. By setting
K = 1, Eq.(7) will return to the Eq.(4).

Comparing Eq.(7) with Eq.(4), it can be seen that the
singular feature of the DR-MCC algorithm is the use of
the data pairs from previous iterations instead of using the
current data pair to generate the new gradient estimate,
which are in turn used to update the adaptive weight vec-
tor. Since each input data can update the weight vector in
different direction, along the average of the last K input
data, a more accurate gradient estimates can be expected.

III. Performance Analysis

We now examine the performance of the DR-MCC al-
gorithm. The analysis is based on the energy conserva-
tion relation[13−15] in the context of robustness analysis
of adaptive filters.

1. Mean-square stability
The Eq.(8) can be written in terms of the weight-error

vector, w̃k = h − wk, as

w̃k+1 = w̃k − μ

K
FkXk (9)

Squaring both sides and taking expectations of Eq.(8),
we can find that

E‖w̃k+1‖2 =E‖w̃k‖2 − 2μ

K
E

[
(FkXk)Tw̃k

]
+

μ2

K2
E

[
XT

k F T
k FkXk

] (10)

In the mean-square, the convergence of the DR-MCC
algorithm is guaranteed by

E‖w̃k+1‖2
< E‖w̃k‖2 (11)

Then the step-size μ should satisfy

0 < μ <
2K · E

[
(FkXk)Tw̃k

]
E

[
XT

k F T
k FkXk

] (12)
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When the adaptive filter is in a transient state, the
following approximation can be made[14]:

xiw̃k ≈ ei (13)

Then we can obtain the following equations,

E
[
(FkXk)Tw̃k

]
= E

[
k∑

i=k−K+1

f(ei)xT
i w̃k

]

≈ E

[
k∑

i=k−K+1

f(ei)ei

]
= K · E [f(ei)ei]

(14)

Using the assumption that the adaptive filter is long
enough such that ei is Gaussian, and xi is asymptotically
uncorrelated with f(ei), the following equation can be ob-
tained:

E
[
XT

k F T
k FkXk

]
= E

[
k∑

i=k−K+1

f2(ei)xT
i xi

]
= K · E [

xT
i xi

] · E [
f2(ei)

]
= K · Tr(RX) · E [

f2(ei)
] (15)

where RX = E
[
xix

T
i

]
is the covariance matrix of the

input vector, and the Tr(·) is the trace operator.
Substituting Eqs.(14) and (15) into Eq.(12) yields

0 < μ <
2K · E [f(ei)ei]

Tr(RX ) · E [f2(ei)]
(16)

It is obvious that f(ek) ≤ ek, then Eq.(16) satisfies
the following bound:

0 < μ <
2K

Tr(RX)
≤ 2K · E [f(ei)ei]

Tr(RX ) · E [f2(ei)]
(17)

It should be noted that the LMS algorithm is conver-
gent in the mean if the step-size μ satisfies[2]

0 < μ <
2

Tr(RX )
(18)

Comparing Eq.(17) with Eq.(18), it can be concluded
that the upper bound of the step-size μ of conventional
MCC-based algorithm is similar to that of LMS algo-
rithm. It is practical to use the same upper bound of the
LMS algorithm for the MCC-based algorithm. For DR-
MCC algorithm, as the data-reusing order K increases,
the upper bound of the step-size μ increases manyfold.

2. Steady-state behavior
Based on the weight-error vector w̃k , the error signal

can be written as

ek = ea,k + vk (19)

where ea,k = xT
k w̃k is the a priori error, which is as-

sumed zero-mean and independent of the noise vk. The

mean-square a priori error E
[
e2

a,k

]
is the so-called Excess

mean square error (EMSE), which is a popular measure
of performance[7]. The limit of the EMSE is the so-called
steady-state EMSE, which is defined as following

S = lim
k→∞

E
[
e2

a,k

]
(20)

The steady-state EMSE of the conventional MCC-
based algorithm is derived and verified in literature[7]. For
DR-MCC algorithm, we focus on the relationship between
the data-reusing order and the steady-state EMSE.

As k → ∞, the filter is stable and achieves the steady-
state value such that the weight error power

lim
k→∞

E‖w̃k+1‖2 = lim
k→∞

E‖w̃k‖2 (21)

Based on Eq.(19), Eq.(10) becomes

2K · lim
k→∞

E [f(ek)ea,k] = μ · Tr(RX) · lim
k→∞

E
[
f2(ek)

]
(22)

Following the Ref.[7], we also consider the Gaussian
noise case and non-Gaussian case to derive the theoreti-
cal steady-state EMSE.

1) Gaussian noise case:
Assume that the noise vk is zero-mean Gaussian dis-

tributed, with a variance σ2
v. Using the independence as-

sumption, the variance of the error ek is defined as σ2
e ,

where σ2
e = E

[
e2

a,k

]
+σ2

v . The following equations can be

derived[7]

lim
k→∞

E [f(ek)ea,k] =
σ3S

(σ2 + σ2
v + S)3/2

(23)

lim
k→∞

E
[
f2(ek)

]
=

σ3(S + σ2
v)

(2S + 2σ2
v + σ2)3/2

(24)

Substituting Eq.(23) and Eq.(24) into Eq.(22) yields

2K · σ3S

(σ2 + σ2
v + S)3/2

= μ · Tr (RX) · σ3(S + σ2
v)

(2S + 2σ2
v + σ2)3/2

(25)
Then S can be obtained by solving the following fixed-

point equation:

S =
μ

2K
· Tr(RX) · (σ2 + σ2

v + S)3/2(S + σ2
v)

(2S + 2σ2
v + σ2)3/2

(26)

From Eq.(25), one can derive that

S =
λμTr(RX )σ2

v

2K − λμTr(RX)
(27)

where λ = (
σ2 + σ2

v + S

2S + 2σ2
v + σ2

)3/2, λ < 1.

2) Non-Gaussian noise case:
In the non-Gaussian noise case, the steady-state

EMSE can be derived based on Taylor series expansion[7]
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of the function f(·) as defined in Eq.(5). At steady-state,
the distributions of ea,k and ek are independent of k,
hence the time index k can be omitted for brevity and
rewrite Eq.(22) as

2K · E [f(e)ea] = μ · Tr(RX ) · E [
f2(e)

]
(28)

Taking the Taylor expansion of f(e) = f(ea + v) with
respect to ea around v yields

f(e) = f(ea + v)

= f(v) + f ′(v)ea +
1
2
f ′′(v)e2

a + o(e2
a)

(29)

where o(e2
a) denotes the third and higher-order terms, and

f ′(v) = exp(− v2

2σ2
)(1 − v2

σ2
)

f ′′(v) = exp(− v2

2σ2
)(

v3

σ4
− 3v

σ2
)

(30)

Then the following equations can be derived[7]:

E [f(e)ea] ≈ E [f ′(v)] S (31)

E
[
f2(e)

] ≈ E
[
f2(v)

]
+ E

[
f(v)f ′′(v) + |f ′(v)|2

]
S

(32)

Substituting Eq.(31) and Eq.(32) into Eq.(28) yields

S =μ · Tr(RX ) · E [
f2(v)

]
/ {2K · E [f ′(v)]

−μ · Tr(RX ) · E
[
f(v)f ′′(v) + |f ′(v)|2

]} (33)

Based on Eqs.(30), the following equation can be ob-
tained

S =μ · Tr(RX) · E
[
exp(− v2

2σ2
)v2

]
/{

2K · E
[
exp(− v2

2σ2
)(1 − v2

σ2
)
]
−

μ · Tr(RX ) · E
[
exp(− v2

2σ2
)(1 +

2v4

σ4
− 5v2

σ2
)
]}
(34)

Note that the steady-state EMSE of Eq.(34) is valid
only when the a priori error ea is small such that the term
E

[
o(e2

a)
]

is negligible. This implies that a larger step-size
μ or noise power will result in a larger a priori error.

In brief, it can be concluded from Eq.(27) and Eq.(34)
that, when the step-size is small enough, as the data-
reusing order increases, the steady-state EMSE of the DR-
MCC algorithm approximately decreases proportionally
both in Gaussian noise and non-Gaussian noise environ-
ment.

3. Computational complexity
We also evaluate the computational complexity of the

DR-MCC algorithm. Since the number of additions is, in

all cases, of the same order of magnitude than the multi-
plications, we will just consider the number of multiplica-
tions.

It is well known that the LMS algorithm requires
2M + 1 multiplications[17] to calculate the output of the
filter and to update its weights (see Eq.(6)), where M

is the tap length of the adaptive filter. Comparing with
LMS algorithm, the error nonlinearity f(ek) is used in
the MCC-based algorithm (see Eq.(4)) and it steps up
the computational burden. Due to that the exponential
function can be implemented by the look-up table[18], the
MCC-based algorithm needs 3 more (2M +4) multiplica-
tions than the LMS algorithm to calculate the output.

Regarding the proposed DR-MCC algorithm, it re-
quires K(M +3)+1 multiplications to update its weights
and M more multiplications to calculate the output. Al-
though the DR-MCC algorithm is based on reusing K

input data, it only requires (K + 1)M + 3K + 1 multipli-
cations, much less than K single MCC-based algorithm.
As the data-reusing order K increases, the computational
complexity of the DR-MCC algorithm increases almost
linearly.

IV. Performance Analysis

In this section, we illustrate simulation results to con-
firm the theoretical analysis of the DR-MCC algorithm
in a system identification scenario. The unknown system
has 20 taps and is randomly generated. The adaptive fil-
ter and the unknown system are assumed to have the
same number of taps. The input signal xk is obtained by
filtering a white, zero-mean, Gaussian random sequence
through the system[13]

G(z) =
1 + 0.5z−1 + 0.81z−2

1 − 0.59z−1 + 0.4z−2
(35)

Then, a highly correlated Gaussian signal of which
the trace of the input covariance matrix is around 1227 is
generated.

1. Mean-square stability
Firstly, we evaluate the stability bounds from Eq.(17)

for DR-MCC algorithm with different data-reusing order
in Table 1.

Table 1. Mean-square stability bound

Data-reusing order
2K

Tr(RX )
μmax

K = 1 0.0016 0.0016

K = 2 0.0033 0.0033

K = 4 0.0065 0.0065

K = 8 0.013 0.013

A Gaussian noise vk is added to the output such that
the Signal-to-noise ratio (SNR) is 30 dB. The simulated
MSEs are the average of the ensemble 104 iterations,
hence it reflects both the transient and steady states. The
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stability bounds are numerically verified in Fig.1, where
the simulated MSEs of DR-MCC are plotted as a function
of the step size.

As shown in Fig.1, a higher value of K causes a lower
value of MSE. When the step sizes of the DR-MCC al-
gorithm are small, the MSEs of all values of K are low.
However, when the step sizes become large, the MSEs of
all value of K increase and a lower value of K causes a
faster ascending speed. When the step sizes approach the
theoretical stability bounds, the MSEs of all values of K

come to a large value even exceed 0dB. Though some de-
viation produced by approximation of Eqs.(14) and (17)
may exist, the simulation results are generally in agree-
ment with the theoretical analysis.

Fig. 1. Simulated MSE versus step-size μ

2. Steady-state behavior
Next, we evaluate the steady-state behavior of the DR-

MCC algorithm. Based on the same input source above,
we verify the theoretical EMSE versus the step-size and
noise variance in Gaussian noise case and non-Gaussian
noise case, respectively. The simulated EMSEs are com-
puted as an average over 100 independent Monte Carlo
simulations and in each Monte Carlo simulation, 105 it-
erations were run to ensure the algorithm to reach the
steady state, and the EMSE was obtained as the average
over the last 2 × 104 iterations. Fig.2 and Fig.3 show the
theoretical and simulated steady-state EMSEs in Gaus-
sian noise, versus the step-size and noise variance.

As shown in Fig.2 and Fig.3, a higher value of K causes
a lower value of steady-state EMSE, both in simulation
and theoretical analysis. Both the Fig.2 and Fig.3 illus-
trate that the simulated steady-state EMSEs versus the
step-size match well with those calculated by theory.

In Fig.2, as the step-size increases, the differences be-
tween the steady-state EMSEs obtained by different K

become large. When the step-size approaches to the mean-
square stability bound, the steady-state EMSE become
very large (As shown in Fig.2, when the step-size μ reach
to 0.84 in K = 1, the value of steady-state EMSE is al-
ready very high).

In Fig.3, for the same step-size, as the noise vari-

ance increases, the differences between the steady-state
EMSEs obtained by different K become small. This phe-
nomenon can be interpreted as the damaging effect of the
high power noise to the performance of the DR-MCC al-
gorithm.

Fig. 2. EMSEs versus step-size μ in Gaussian noise (σ2 = 3,

σ2
v = 5 × 10−5)

Fig. 3. EMSEs versus noise variance σ2
v in Gaussian noise

(σ2 = 3, μ = 0.001)

Table 2 presents the theoretical and simulated EMSEs
in several non-Gaussian noise sequences, where the uni-
form noise is distributed over [-1,1], binary noise is either
-1 or 1(each with probability 0.5), Laplace noise is zero-
mean with standard deviation 1, and the Cauchy noise
is distributed with PDF: p(v) = 1/π(1 + v2). Again, the
simulation results are in agreement with the theoretical
calculations.

It should be pointed out that the step size and the
noise variance in Table 2 are chosen as small value to
guarantee the rationality of Eq.(34). However, as men-
tioned previously, when the step-size or the noise power
is large, the derived value in Eq.(34) will not accurately
enough characterize the performance of the DR-MCC al-
gorithm. This expectation is confirmed in Fig.4 and Fig.5,
where the theoretical and simulated EMSEs are plotted
in uniform noise, versus the step-size and noise variance
respectively.
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Table 2. Theoretical and simulated EMSEs in

several non-Gaussian noises (μ=0.001,σ2=3)

Distribution Data-reusing order Theory Simulation

Uniform K = 1 0.3381 0.3381 ± 0.1037

K = 2 0.1317 0.1317 ± 0.0923

K = 4 0.0593 0.0593 ± 0.0128

K = 8 0.0283 0.0283 ± 0.0021

Binary K = 1 0.6440 0.6440 ± 0.1278

K = 2 0.3758 0.3758 ± 0.0912

K = 4 0.2050 0.2050 ± 0.0638

K = 8 0.1074 0.1074 ± 0.0238

Laplace K = 1 0.6121 0.6121 ± 0.1790

K = 2 0.3396 0.3396 ± 0.0846

K = 4 0.1796 0.1796 ± 0.0283

K = 8 0.0925 0.0925 ± 0.0098

Cauchy K = 1 0.3497 0.3497 ± 0.1294

K = 2 0.1586 0.1586 ± 0.0582

K = 4 0.0453 0.0453 ± 0.0129

K = 8 0.0207 0.0207 ± 0.0079

As shown in Fig.4 and Fig.5, both the theoretical and
simulated EMSEs versus the step-size and noise variance
decrease in uniform noise as the data-reusing order K in-
creases.

Fig. 4. EMSEs versus step-size μ in uniform noise (σ2 = 3,

σ2
v = 5 × 10−5)

Fig. 5. EMSEs versus noise variance σ2
v in uniform noise

(σ2 = 3, μ = 1.5 × 10−4)

In Fig.4, when the step-size reaches to a certain value
(μ = 1.53 × 10−3, K = 1), nearly the mean-square stabil-
ity bound in Table 2, the steady-state EMSE has already

reached a very high value.
In Fig.5, due to the effect of the high power noise,

the steady-state EMSEs obtained by different K become
close to each other as the noise variance increases. These
trends are in accord with that in Gaussian noise.

However, as can be seen in Fig.4 and Fig.5, when the
value of step-size or the noise variance is low, the sim-
ulated steady-state EMSEs match the theoretical value
well. But when the value of step-size or the noise variance
becomes large, the simulated steady-state EMSEs grad-
ually deviate from the theoretical values. These results
confirm the previous analysis for Eq.(34).

3. Performance comparison
Finally, we compare the performance of the proposed

DR-MCC algorithm with that of the Normalized least
mean square (NLMS)[3], APA[9], and conventional MCC-
based Algorithm[6] in a impulsive noise environment with
the same system identification application as above.

The Mean-square-deviation (MSD) learning curves[16]

are plotted to measure the performance of the four algo-
rithms. The MSD is computed as 20log10‖4 − wk‖2

/‖4‖2

averaged 100 independent trials in each algorithm. The
weight vectors are initialized as zero vectors for all the
algorithms. The impulsive noise is generated as bkAk,
where bk is a Bernoulli process with a probability of
P [bk = 1] = 0.01. The power of Ak is σ2

A = 0.1σ2
y, where

σ2
y is the power of system output: yk = xT

k 4. The data-
reusing order K is set to 4 for the DR-MCC algorithm
and APA, and the step-size μ is set to 10−3 for all the al-
gorithms. The MSD learning curves obtained by the four
algorithms above are illustrated in Fig.6.

Fig. 6. The MSD learning curves of the four algorithms

As can be seen in Fig.6, the APA yields much better
convergence performance than the NLMS algorithm due
to the increased projection order to de-correlate the col-
ored input. The conventional MCC-based algorithm yields
better convergence speed than the two MMSE-based al-
gorithms due to the robustness of the maximum corren-
tropy criterion in the impulsive noise environment. The
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proposed DR-MCC algorithm yields both a significantly
fast convergence speed and a reduced steady-state mis-
alignment as compared to the other three competing al-
gorithms.

V. Conclusion

In this paper, a class of data-reusing MCC-based al-
gorithm, named DR-MCC algorithm, is proposed. By
reusing the last K input data, the DR-MCC algorithm
provides a more accurate gradient estimates and obtains
a much better convergence performance than the con-
ventional MCC-based algorithm. A thorough performance
analysis for the DR-MCC algorithm is addressed. Simula-
tion illustrates that experiment results are in agreement
with the theoretical calculations and analysis. And it also
shows that the proposed DR-MCC algorithm outclasses
both the MMSE-based algorithms and the conventional
MCC-based in terms of convergence speed and misadjust-
ment.
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