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Abstract
In this work, a spin readout method using fluorescence dynamics is proposed based on
maximum likelihood estimation (MLE) for improving the pulsed spin readout accuracy of
nitrogen vacancy (NV) center. This estimation method can saturate the Cramér–Rao bound and
enhance the photon-shot-noise-limited spin readout accuracy by 20% compared with
conventional photon summation method. By employing a rate equation model of the NV center,
the exact solution for the fluorescence dynamics is obtained. Additionally, according to the rate
equation model’s relationship with fluorescence dynamics, spin, and pumping light power,
a practical MLE readout scheme is furnished, which is able to distinguish spin readout
information and classical noise. Compared with the conventional method, the classical noise
suppression capability can be improved by 300 times. It is anticipated that the MLE method will
effectively benefit sensing capability based on the NV centers even other scalable defect
complexes in solid systems.

Keywords: nitrogen vacancy center, photon shot noise, spin readout, maximum likelihood
estimation

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum sensing based on diamond nitrogen-vacancy (NV)
centers has broad prospective applications due to its excel-
lent coherence time and physical properties. Some of these
applications include magnetic field sensing [1–3], temperature
sensing [4, 5], nanometer-scale biomedical measurements
[6, 7], and microwave measurements [8, 9]. The electronic

7 Author to whom any correspondence should be addressed

spin projection readout of the NV center is the basis of
the above quantum sensing techniques, where the readout
precision determines the sensing accuracy. The most conven-
tional approach for NV center electron spin readout is util-
izing spin-dependent fluorescence [10]. In order to improve
the spin readout, a variety of techniques have been proposed.
Some of these techniques include improving light collection
efficiency [11, 12] and microwave efficiency [13, 14]. As
well, spin readout schemes have been proposed based on dif-
ferent principles such as low-temperature resonant excitation
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Figure 1. Energy structure of NV center.

readout [15], electric spin readout [16], and infrared singlet
absorption [17]. Post-processing methods have also been pro-
posed such as photon summation (PS) [18], threshold detec-
tion [10], nuclear-assisted readout [19], maximal adaptive-
decision making [20], machine learning [21], and signal
extraction using a lock-in amplifier [22, 23]. Some of these
methods are only applied to continuous-wave (CW) meas-
urement methods [22–25], while others can only be used for
spin–qubit readout [19–21]. Pulsed spin readout is primarily
based on PS method. There are two main problems with the
PS method. First, the spin readout accuracy of the pulse meas-
urement is limited by the photon shot noise which is funda-
mentally limited by Cramér–Rao bound [26]. By applying the
Cramér–Rao inequality, PS method is not the solution with
the smallest variance, nor the optimal solution. Second, for
actual experimental systems, classical noise such as laser noise
and detector noise further worsen actual spin readout accur-
acy than the theoretical limit. Therefore, it is important to pro-
pose a method that can improve the sensitivity limit and sup-
press classical sources of noise. In this work, we present a
spin readout scheme based on maximum likelihood estimation
(MLE). Subsequently, a practical MLE (pMLE) method using
multiparameter estimation is developed to suppress further the
classical noise existing in actual experimental equipment.

2. Model

A five-level model is furnished to model the optical dynamics
of the NV center [27, 28]. As shown in figure 1, at room tem-
perature, the ground state is an S = 1 spin-triplet with a zero-
field split (Zgs = 2.87 GHz) between substate |1> (ms = 0)
and substate |2> (ms = ±1). The excited state is also a spin-
triplet with two substates |3> (ms = 0) and |4 > (ms = ±1).
In the excited state, decay occurs through two paths. These
paths are (a) a radiative decay to the ground state with emis-
sion of photons at a rate of k31 = k42 = k and (b) a non-radiative
decay to the singlet state |5> with spin-dependent rates of k35
and k45 [29, 30]. The pumping rate k13 = k24 = Γ from the

ground state to the excited state is proportional to the laser
power density. Here, kp = Γ /k is introduced for simplicity.
The singlet state also spin-dependently decays to the ground
state, whose rates are denoted as k51 and k52. All relaxation rate
parameters are selected based in [31]. Between two substates
|1> and |2>, there is longitudinal relaxation time T1 and we
denote k21 = 1/T1. The decoherence time T2 affects the spin
coherent states and does not affect the spin projection result, so
T2 is not considered in the spin readout process. The rate equa-
tions could be written in terms of ρi, which represents popula-
tion of substate |i>.

dρ1
dt

=−kpkρ1 + kρ3 + k51ρ5 −
k21
2
ρ1 +

k21
2
ρ2

dρ2
dt

=−kpkρ2 + kρ4 + k52ρ5 −
k21
2
ρ2 +

k21
2
ρ1

dρ3
dt

= kpkρ1 − kρ3 − k35ρ3

dρ4
dt

= kpkρ2 − kρ4 − k45ρ4

dρ5
dt

= k35ρ3 + k45ρ4 − k51ρ5 − k52ρ5.

(1)

Equation (1) is written as, ρ⃗ ′ = A · ρ⃗, where ρ⃗=
(ρ1,ρ2,ρ3,ρ4,ρ5,)

T and

A=


−kpk− k21

2
k21
2 k 0 k51

k21
2 −kpk− k21

2 0 k k52

kpk 0 −k− k35 0 0

0 kpk 0 −k− k45 0

0 0 k35 k45 −k51 − k52

 .

(2)
We use E1, E2, E3, E4, and E5 to denote the eigenvalues of

A. Correspondingly, the eigenvectors of A are denoted as Ui =(
u1i ,u

2
i ,u

3
i ,u

4
i ,u

5
i

)T. And set,
w i
j =

([
U1 · · · U5

]−1
)
ij

. (3)

The vector form of the initial state is, ρ⃗(0) =

(P,1−P,0,0,0)T. Here, P is the spin projection of the ground
state, and estimating method of the parameter P is the essence
of this work. The special solution of equation (1) is,

ρj (t) = P
5∑
i=1

eEi tu jiw
i
1 +(1−P)

5∑
i=1

eEi tu jiw
i
2. (4)

We define f(P, t) as the fluorescence probability density
function of a single NV center at a certain time t, that is, the
probability of emitting photons at a certain time. It is propor-
tional to the excited state population [31]:

f(P, t) = k(ρ3 + ρ4) = kP
5∑
i=1

eEi t
(
u3i + u4i

)
wi1

+ k(1−P)
5∑
i=1

eEi t
(
u3i + u4i

)
w i
2. (5)
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The unit of f(P, t) is counts per second. In order to simplify
the subsequent derivation process, we define,

α(t) = k
5∑
i=1

eEi t
(
u3i + u4i

)(
w i
1 −w i

2

)
(6)

and,

λ(t) = k
5∑
i=1

eEi t
(
u3i + u4i

)(
w i
2

)
. (7)

In this way, equation (5) can be simplified to:

f(P, t) = α(t)P+λ(t) . (8)

µn is defined as the total number of photons collected by
the detector from time tn−1 to time tn. The subscript integer
n represents the nth time tagger, starting from 0, repres-
enting the start time of the light pulse. This time interval
tn − tn−1 remains unchanged, denoted by ∆t. According to
this definition, there is a relationship between f(P, t) and
expectation of µn:

CM
ˆ tn

tn - 1

f(P, t)dt= ⟨µn⟩ . (9)

There, C stands for collection efficiency and M stands for
the number of NV centers. A new parameter β = CM is defined
and it represents the parameters of the optical system and the
number of NV center. It can be obtained by the ratio of the
excited state steady-state solution f(tn →∞)∆t to the measured
photon number µtn→∞. According to the definition of f, dur-
ing the period from tn-1 to tn, the expectation of the number
of photons emitted by a single NV center, denoted by Fn, is
the integral of the fluorescence probability density during this
period:

Fn =
ˆ tn

tn - 1

f(P, t)dt. (10)

In order to simplify the subsequent derivation process, we
define:

αn =

´ tn
tn - 1

α(t)dt

∆t
(11)

and,

λn =

´ tn
tn - 1

λ(t)dt.

∆t
(12)

Then, equation (9) can be rewritten as,

βFn = β∆t
(
αnP+λn

)
= ⟨µn⟩ . (13)

From the equation (13), there is a linear relationship
between P and ⟨µn⟩. Therefore, the conventional PS method,
which is to summate the photons of the first hundreds of nano-
seconds of the detection pulse

∑n=N
n=1 µn [3], must also satisfy

a linear relationship with P, where N represents total number
of measuring points. TN = N∆tn is the total detection time. In

addition, the physical meanings of αn and λn can be reflec-
ted from equation (13). Among them, λn represents the spin-
independent part in fluorescence, and αn represents the spin-
dependent part in fluorescence. αn/λn is the contrast limit of
fluorescence spin read out.

3. MLE and pMLE method

Before proposing a new solution, we can use the established
model of the relationship between µn and P to analyze PS
method from the perspective of mathematical statistics. It is
assumed that each data point µn satisfies an independent Pois-
son distribution [3]. Then the PS method estimates P with the
following formula:

P̂PS =

∑n=N
n=1 (µn −β∆tλn)

β∆t
∑n=N

n=1 αn
. (14)

For the evaluation of the quality of the estimate, there are
two indicators, unbiasedness and variance. For the PS method,
it satisfies the unbiasedness, and its variance is:

σ2
PS =

∑n=N
n=1 Fn

β
(
∆t

∑n=N
n=1 ᾱn

)2 . (15)

Based on mathematical statistics theory, there is a lower
bound of variance for all estimation methods of spin projec-
tion P [32]. This lower bound is called Cramér–Rao bound,
which is the inverse of the Fisher information. The method
saturating the Cramér–Rao bound is called the effective estim-
ation, which is the optimal estimation. The Cramér–Rao
bound is:

σ2
bound ≈

1

β∆t2
∑n=N

n=1 ᾱ
2
n/Fn

. (16)

According to (15) and (16), σ2
PS ̸= σ2

bound. Thus, the PS
method is not the optimal estimation. By applying an under-
standing of fluorescence dynamics, an estimation method
based on MLE for P is proposed. The proposed method entails
the selection of P that maximizes the likelihood function. The
formula for this process is,

P̂MLE = argmaxL(P |µ1, µ2, · · · ,µN) . (17)

Since µn satisfies the Poisson distribution, the probability
density function and likelihood function of each measurement
point is given by,

L(P |µn ) = P(µn |P ) =

(
β∆t

(
ᾱnP+ λ̄n

))µn

µn!
e -β∆t(ᾱnP+λ̄n). (18)

The total log-likelihood function is,

L=−
N∑

n=1

β∆t
(
ᾱnP+ λ̄n

)
+

N∑
n=1

µn ln
(
β∆t

(
ᾱnP+ λ̄n

))
− const. (19)
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Figure 2. (a) Change of αn with the time tn under different pumping rate kp. (b) Change of λn with the time tn under different pumping rate
kp. (c) Two-dimensional plot of SNR as function of tN and kp. The SNR of the PS method (below) based on equation (23) and the MLE
method (upon) based on equation (24), in which β = 1. The time interval∆t here is set to 0.1 ns. In order to clearly reveal the relationship
between the SNR and (tN, kp) of the two methods, the two-dimensional plot is projected on tN to obtain (d) the optimal SNR under different
tN and on kp to obtain (e) the optimal SNR under different kp. (f) The SNR of the MLE method changes with the interval time. The blue
dotted line and the green dotted line represent the SNR of the MLE method with∆t = 0.1 ns and the PS method under the conditions of
kp = 0.1 and measurement time tN = 1 µs in (c). The red solid line represents the change of the SNR of the MLE method with the interval
time∆t under same condition.

The necessary condition to maximize L is,

∂L
∂P

= 0. (20)

It can be shown that the solution of equation (20) is also the
solution of the following formula,

−β∆t
N∑

n=1

ᾱn +

N∑
n=1

ᾱnµn

ᾱnP+ λ̄n
= 0. (21)

Equation (21) is an Nth degree equation and is mathemat-
ically prohibitive, so is the standard deviation formula of the
MLE method. However, the variance of the Gaussian distribu-
tion can be used to approximate the standard deviation of P̂MLE,
(see appendix A for the solution process)

σ 2
MLE =

1

∆t2β
∑n=N

n=1 ᾱ
2
n/Fn.

(22)

The variance of the MLE scheme is equal to the lower
bound, so it is the optimal estimation. The reason why
the MLE method has a smaller variance than the PS
method is explained as follows: as can be seen from
equations (18)–(22), the difference between the MLE method
and the conventional PS method is that MLE distinguishes the
importance of data at different positions by the coefficient ᾱ2

n

and Fn. A commonly used index in anymetrology is the signal-
to-noise ratio (SNR). Therefore, SNR is examined. SNR is
defined as SNR=

|Sp=1−Sp=0|
σ

which is the ratio of the range of

spin readout signal to the standard deviation of the signal. The
SNR of PS method is

SNRPS =∆t

√√√√√β

(∑n=N
n=1 ᾱn

)2

∑n=N
n=1 Fn

. (23)

The SNR of MLE method is,

SNRMLE =∆t

√
β
∑n=N

n=1

ᾱ2
n

Fn
. (24)

According to equations (23) and (24), we can conduct a
comparative analysis of MLE and PS schemes. For the para-
meters required by MLE, αn and λn, as shown in figures 2(a)
and (b), we observe the changes of αn and λn with time under
the conditions of three different optical pumping rates kp = 10,
1, 0.1. It can be seen that αn has a peak at about 100 ns and
gradually tends to 0 as time increases, and λn tends to stabilize
with time.

Different values of kp and tN are chosen to determine the
optimal spin-readout SNR for bothmethods, and the results are
shown in figures 2(c)–(e). For N, the SNR of the PSmethod has
a peak at approximately 200 ns and then drops rapidly. This is
due to the fact that µn later in time only contains noise inside
of the spin information. For the MLE method, the µn later in
time, through regulation of the small value of αn, has little
contribution to the estimation result. Therefore, long-term
integration does not reduce the SNR. For the optical pumping
rate, increasing the value of kp is beneficial to improve the SNR

4
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for bothmethods. kp is limited to amaximum value of 10 due to
the limited laser power density in practical situation. As shown
in figure 2(d), the SNR of the MLE method is increased by
approximate 20% compared to the PSmethod.We also studied
the effect of time interval on the SNR, as shown in figure 2(f).
It can be seen that the time interval ∆t of less than 10 ns
will not substantially reduce SNR of the MLE method, but
a time interval of more than 10 ns will obviously reduce
the SNR. This could be explained as follows: the essence
of the advantages of the MLE method over the PS method
is the more efficient usage of information in µn. According
to equation (19), for the MLE method, µn with a large ᾱn/λ̄n

ratio contributes more to the estimation result. For the PS
method, all data contributes the same to the result. There-
fore, the MLE method is better than the PS method. Increas-
ing the time interval will lead to a decrease in the effective
information. When the time interval ∆t is as long as the total
measurement time tN, the MLE method degenerates into the
PS method.

Since equation (21) is not easy to solve, a numerical solu-
tion algorithm for the solution of P is proposed, and the
details are shown in appendix B. The algorithm solves f(P, t)
and calculates the corresponding likelihood function, and then
searches P̂MLE by a combination of rough global violent search
and local dynamic programming search to achieve a faster
search for the solution of P̂MLE and eliminate the quantization
noise caused by the discretization. Since kp determines the val-
ues of αn and λn, the estimation method requires the value of kp
in advance. To accomplish this, a fittingmethod for calculating
kp is proposed in appendix C.

Apart from photon shot noise, there are many sources of
noise in the actual experimental process. These other sources
of noise can cause the actual system to be unable to reach the
photon shot noise sensitivity limit. For practical experimental
systems, noise mainly include laser noise, detection noise, and
noise in the light path. In this work, they are all considered as
classic noise. The noise suppression method of PSmainly sup-
presses the common-mode noise of the system by using a dif-
ferential method [33], which cannot completely suppress laser
noise [34]. Moreover, in the summationmethod, β defaults to a
fixed value, which means the detection noise cannot be effect-
ively suppressed. To address this problem, a pMLE method
is proposed here to improve the robustness of the estimation
subject to classical sources of noise. The idea of pMLE is to
estimate kp, P, and β simultaneously. By using this approach,
the system noise related term kp and β can be separated from
the spin-estimated signal. In order to achieve a simultaneous
estimation of kp, P, and β, a two-step estimation approach is
proposed. In the first step, all possible (P, kp) pairs are obtained.
Next, the optimal β for each (P, kp) pair is estimated as
follows,

β̂(P,kp) = argmaxL(β |P,kp,µn ) =
Fn
µ̄n

. (25)

In the second step, the likelihood function of each (P, kp)
pair is obtained by using the previously determined β̂(P,kp).
The corresponding optimal (P, kp) pair is then obtained using

Figure 3. Results of the probability density function of the pMLE
method obtained by Monte Carlo simulation with 3000 sample
times. The blue curve represents MLE with kp known in advance.
The histogram represents the pMLE’s probability density.

a second MLE. The estimated formula is as follows:

(
P̂, k̂p

)
MLE

= argmaxL
(
P,kp

∣∣∣β̂(P,kp),µn ) . (26)

The equation is solved using the numerical solution
algorithm shown in appendix B. From equations (25) and
(26), it can be seen that the pMLE method, with the excep-
tion of the dynamic model of the NV center, does not depend
on any prior information and only µn is necessary. However,
since a set of data estimates the three parameters simultan-
eously, the accuracy of the P estimation is reduced, which
is shown in figure 3. The estimation was performed using a
fluorescence waveform corresponding to (P = 0.8, kp = 0.2).
The results in figure 3 show that the accuracy degradation
of the pMLE is 30.5% compared with the MLE method for
P estimation. This shows that the SNR of pMLE is very
close to the conventional PS shot noise limit. In order to
further suppress the noise, a differential pMLE is proposed
here by combining the differential PS method and pMLE
method, in which P of the reference pulse is estimated simul-
taneously with P of the signal pulse, and then the difference is
calculated.

4. Evaluation of MLE and pMLE

4.1. Simulation

Simulation is performed to analyze the pMLE method’s clas-
sical noise suppression capability. The method of the simu-
lation is to add noise of a specific frequency ω, and a spe-
cific root mean square (RMS) ∆/

√
2 to the detection noise

related factor, β (t) = β (1+∆sin(ωt)), or the laser power noise

5
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Figure 4. The suppression of different frequency noise using different spin readout schemes at kp = 0.2. The vertical axis is the RMSE of
the spin readout signal. The total sequence duration is 10 µs, corresponding to the sequence frequency ωp = 105 Hz. (a) The added classical
noise is the detection noise. (b) The added classic noise is the laser noise. (c) The RMSE of the pMLE and MLE methods for different
classical noise amplitudes is shown. Noise is generated by a white noise passing through a RC low-pass filter with a cutoff frequency of
10 kHz.

Figure 5. (a) Histogram of experimental spin readout results for differential PS method and pMLE method and tN = 2 µs f or both
methods. (b) SNR results of experiment verification. Both pulse lengths are 5 µs and the interval between the two pulses is also 2 µs.
(c) The spin detection sequence, the first pulse is the signal pulse, and the second pulse is the reference pulse for differential detection. This
ensures that the singlet completely relaxes to the ground state. In order to simulate the actual application scenario, the spin control section is
added, and the total sequence pulse time is 14 µs. (d) Experiment setup schematic diagram.

related factor, kp (t) = kp (1+∆sin(ωt)). Subsequently, the root
mean square error (RMSE) of the output result is found.
Namely, the noise suppression capability is observed at dif-
ferent frequencies. The results are shown in figures 4(a)
and (b). The pMLE method has a similar ability for redu-
cing the laser noise and detection noise. The results show
that the PS method mainly suppresses the noise with a fre-
quency higher than sequence frequency ωp. ωp is the recip-
rocal of the total time of one measurement pulse. Noise
with a frequency much lower than ωp can be suppressed by
the differential PS method. However, noise with a frequency

close to ωp cannot be effectively suppressed. The present
results show that the pMLE method can achieve effective
noise suppression throughout the full frequency band. Com-
pared with the PS method, the pMLE method improves the
noise suppression near ωp by nearly 300 times. For low-
frequency noise, the pMLE method improves noise sup-
pression by approximately 19 times compared with dif-
ferential PS method at 100 Hz. Additionally, at this fre-
quency, the differential pMLE can further improve the noise
suppression by 55 times compared to that of the differential
PS method.

6



J. Phys. D: Appl. Phys. 53 (2020) 455305 J Zhang et al

From the above analysis, it can be found that the pMLE
method is suitable for usage under classical noise conditions.
As well, the MLE method is suitable for conditions where the
photon shot noise is dominant. Thus, the conditions of usage
for the various methods are analyzed. The results are shown in
figure 4(c). When the amplitude of the classical noise’s RMS
is 4.5% of the photon shot noise or less, the MLE estimation
accuracy is higher. Conversely, if the system noise is larger
than 0.45% of the photon shot noise, the pMLE estimation
accuracy is improved.

4.2. Experiment

In order to verify the present theory, an experimental veri-
fication was conducted. The experimental setup is shown
in figure 5(d). The diamond sample used in this work was
a high-pressure high-temperature type-Ib diamond (Element
Six) under 5 × 1017 ea cm−2 with 10 MeV electron irradi-
ation and 2 h annealing at 800 ◦C. The initial substitutional
nitrogen concentration in the diamond was less than 200 ppm
[35]. A homemade confocal experimental system was used for
NV spin readout. The laser model was an Oxxius lcx-532
l-500, which has a maximum power of 500 mW and RMSE
of approximately 0.2%. The objective lens is 60× /0.8NA and
0.17 mm working distance. An avalanche photodiode (Thor-
labs APD120A2/M), which RMSE is less than 0.015%, was
used for fluorescence detection. Under the experimental con-
ditions, the steady-state voltage of the APD output was about
0.5 V, and the parameter β ≈ 500 was calculated. The relative
RMS of the photon shot noise was about 1%. The ratio of the
classical noise to the quantum noise is larger than the criterion
discussed in figure 4(c). Therefore, the pMLE method is used
instead of the MLE method for the spin readout. For an actual
NV ensemble system, considering the existence of NV0, we
add a fluorescence term proportional to kp in the MLE solu-
tion algorithm to eliminate the effect of the spin estimation
of NV0 fluorescence. For the charge states transition dynam-
ics between NV0 and NV-, we assume that the microwave
manipulation duration on the order of microseconds is much
shorter than the transition dynamics which is on the order of
milliseconds [36, 37]. Therefore, in the spin readout process,
the charge states dynamics is in equilibrium and the model
does not need to add additional dynamic analysis of charge
states dynamics. For comparison, a spin readout experiment
was also performed using the differential PS method whose
scheme is shown in figure 5(c). The experiment results are
shown in figures 5(a) and (b) under the condition of kp = 0.195.
It can be seen from the experimental results that SNR of the
PS method are consistent with the theoretical SNR. The the-
oretical SNR in figure 5(b) is lower than that in figures 2(c)
and (d). This is because we have considered the laser gradient
during the actual experiment. The gradient of the light spot
excitation results in different pumping rates for the NV cen-
ters at different locations, which thereby reduces the accuracy
of the estimation. See appendix D for the specific process of
correcting the effect of laser spot gradient on SNR.

5. Conclusion

In summary, by solving the rate equation model, a method
of spin readout based on the MLE of the fluorescence wave-
form was proposed. Compared with the PS method, the MLE
method has a theoretical SNR limit that is 20% higher than
the PS method. To account for the classical noise existing
in practical applications such as quantum sensing, a pMLE
method was proposed in order to separate optical noise and
detection noise from the spin signal. Through simulation tests,
this method was shown to increase the classical noise sup-
pression capability by up to 300 times compared to the dif-
ferential PS method. Using the pMLE method, the accuracy
of the final estimation is close to the photon shot noise limit
in the presence of ambient noise. The effectiveness of this
method was verified experimentally. The present work shows
that this method can improve spin detection accuracy and can
be applied to pulse-based NV center sensing applications to
achieve better sensitivity. In addition to improving the per-
formance of the pulsed NV center spin readout, it is meaning-
ful for improving the performance of general sense of pulsed
spin readout.
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Appendix A. Solution process of the MLE method

The Poisson distribution can be approximated by a Gaus-
sian distribution when the number of photons is large
[38]. Therefore, the standard deviation of the Poisson dis-
tribution can be approximated from the standard devi-
ation of the Gaussian distribution, The maximum likeli-
hood estimation result of the Gaussian distribution is solved
as follows: First, the likelihood function of each data
point is,

L(P |µn )gauss = P(µn |P )gauss

= exp
(
−

1
2σ2

n

(
β∆t

(
ᾱnP+ λ̄n

)
−µn

)2)
. (A1)

Thus, the sum of the log-likelihood functions of all points
is,

Lgauss =−
n=N∑
n=1

1
2σ2

n

(
β∆t

(
ᾱnP+ λ̄n

)
−µn

)2
. (A2)
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Figure A1. (a) MLE and pMLE solution algorithm flow chart. (b) The confidence interval of the method obtained by Monte Carlo
simulation with 3000 sample times. The simulation conditions are pumping rates kp = 0.2 and β = 104. The green line is the theoretical
spin projection probability density distribution of MLE (a). The standard deviations are 0.0025. The histogram is the probability density
distribution of the simulation of MLE method. The standard deviations are 0.0025.

Figure A2. Relationship between kp and eigenvalues.

From the principle of maximum likelihood, the spin projec-
tion value is given by the value corresponding to the maximum
likelihood function,

(
P̂
)
gauss

= argmaxL(P |µn )gauss. (A3)

In order to find the maximum, a derivative of 0 is selected
as equation (A2). The above formula is equivalent to,

n=N∑
n=1

αn

σ2
n

(
β∆t

(
αnP+λn

)
−µn

)
= 0. (A4)

Subsequently, the solution of the maximum likelihood
obtained by equation (A3) is given by,

Figure A3. (a) Measurement sequence diagram. The lower half is
the sequence, and the upper half is the simulated fluorescence
response. (b) Experimental results.

(
P̂
)
gauss

=

∑n=N
n=1 µnαn/σ

2
n −β∆t

∑n=N
n=1 λnᾱn/σ

2
n

β∆t
∑n=N

n=1 αn
2/σ2

n

. (A5)

The standard deviation of each measurement is:

σ2
n = ⟨µn⟩= Fnβ. (A6)

The standard deviation of the Gaussion distribution is
obtained as follows,

8
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Figure A4. (a) Picture of laser spot distribution before the objective lens, which is obtained by a CCD camera. Because the experiment is a
confocal scheme, the distribution of the spot before the objective lens is the same as that in diamond. In addition, the volume excited by the
laser is mainly concentrated in a very thin layer, so only the lateral distribution needs to be considered. The laser spot follows a Gaussian
distribution. Since the light spot is circularly symmetric, it is divided into 6 parts from the center to the periphery according to the laser
power, as shown in the histogram. (b) Six SNR curves (PS method) of light green and six SNR curves (MLE method) of light blue
correspond to six kp values in figure A4(a). Dark blue curve and dark green curve represent modified SNR results of MLE and PS method,
respectively.

σMLE =
1√

β∆t2
∑n=N

n=1 ᾱ
2
n/Fn

(A7)

Appendix B. Fast estimation result search
algorithm

For the estimation of the spin projection and the optical pump-
ing rate, the estimation range of the spin projection P is 0–1,
and the estimated range of the optical pumping rate kp is 0–
1. Assuming that the estimated resolution is 10−8, the number
of calculations required for a full brute force search is about
1016. This large number of calculations is far beyond the com-
puting power of a personal computer. Therefore, a dynamic
planningmethod is adopted in order to reduce the overall num-
ber of calculations as shown in figure A1(a). First, a global
brute force search algorithm with an accuracy of 1/100 is used
to determine the initial optimal range. Second, based on this
range, the confidence interval is divided into three segments,
and the optimal interval is solved. The process is then cycled,
and the initial interval of each cycle is set as the optimal inter-
val obtained from the last time step until the estimated resolu-
tion requirement is reached. Using this approach, a resolution
of 10−8 is only required to be cycled 13 times. In this case, the
total number of calculations was 3.9 × 105 times, which can
be solved by the personal computer less than one second. The
reason for the division into three segments is because the num-
ber of segments that minimize the number of calculations can
be obtained using the natural logarithm and yields a nearest
integer of 3.

The above operation ensures that the quantization noise due
to the infinitely small resolution is lower than the photon shot

noise limit. Therefore, when estimating spin projection only,
the standard deviation of themethod is consistent with calcula-
tion using the theoretical formula.Monte Carlo simulationwas
used to verify the validity of the present numerical method.
The results are shown in the figure A1(b). The experimental
results demonstrate that the present numerical approach can
effectively achieve the same standard deviation as the theoret-
ical approach.

Appendix C. Optical pumping rate fitting

Although the spin projection is to be estimated, the optical
pumping rate kp is also an important parameter for the ana-
lysis presented in this work. The algorithm of the analysis
method in the present work is to find the optimal solution
using a global violent search and local dynamic programming
search algorithm. However, the time requirement of such an
algorithm is high. The main reason for this is that the time
required to perform a global search is high. Therefore, if the
value of kp can be confirmed in advance, the local greedy
algorithm search can be performed directly and the complexity
of the algorithm can be greatly reduced. Therefore, a method
for measuring the optical pumping rate is proposed here.

The measurement idea is as follows. According to the ana-
lysis in Model, the optical pumping rate kp and the relaxation
rates kij jointly determine the eigenvalues of the characteristic
matrix, A. Therefore, if the eigenvalues Ei can be found through
experimental measurements, kp can be found using the rela-
tionship between Ei and kp. A measurement of only one of the
five eigenvalues is necessary to fit for kp. It can be calculated
from A that E1 is always 0 and that the value of E3, E4 and E5 are
much greater than kpk, as shown in figure A2. The changes in
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kp have little or no effect on E1, E3, E4 and E5. Thus, the eigen-
value E2 is the most suitable for this scheme as it is of a similar
scale compared to the other eigenvalues. The relationship g(kp)
between E2 and kp can be obtained by solving the eigenvalues
of matrix A, but the solution is not suitable for fitting. We use
a fourth-order polynomial fitting and kp can be obtained from
the following relation,

kp = g−1 (E2) = 0.003197E4
2 − 0.01498E3

2 + 0.03238E2
2

+ 0.02298E1
2 + 0.003072. (A8)

In order to experimentally measure the E2 related exponen-
tial process, the sequence shown in figureA3(a) is used. First, a
single laser pulse is inserted by a short microwave pulse, which
is considered as an impulse. The laser before the microwave
is long enough such that a steady-state is reached. At t0, the
microwave is applied while the laser is still activated. The
microwave disrupts the steady-state of the ground state ρ1 and
ρ2 but leaves the other three states steady. As a result, at t0 after
microwave pulse, the system reverts to an approximate steady-
state polarization under the action of the laser, which is an E2

related exponential process. The experimental results in figure
A3(b) show a good linear relationship between the measured
pumping rate and optical power, which is consistent with the
theory.

Compared to the existing method for pumping rate meas-
urement, which uses the saturation curve for analysis [39], the
proposed method exhibits a higher accuracy at low pumping
rates, which is a common operating condition of the laser.

Appendix D. Correction of laser spot gradient effect

In the theoretical derivation in MLE and pMLE method, kp
is considered to be a fixed value, which means that all NV
centers are irradiated with laser light of the same intensity.
In fact, due to the Gaussian distribution of laser light intens-
ity, the participating NV centers cannot all be irradiated with
laser light of the same intensity, that is, kp is a distribution,
not a constant value. As a result, the actual SNR is incon-
sistent with the theoretical SNR. To correct this deviation, we
measured the spatial distribution of the laser spot as shown in
figure A4(a). A simulation was performed on the distribution
of kp. In the simulation, we divided the light intensity into six
values. As shown in the gray histogram shown in figure A4(a).
The six light intensity values correspond to the SNR curves
of light green (PS method) and light blue (MLE method) in
figure A4(b), respectively. Summing the SNR corresponding
to all kp according to the weights gives a theoretical SNR that
is in line with the actual situation, which is in good agreement
with the actual situation, as shown by the dark green curve (PS
method) and dark blue curve (MLE method) in figure A4(b).
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