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The composite hierarchical control
of multi-link multi-DOF space
manipulator based on UDE and
improved sliding mode control

ZhongYi Chu1, JianChao Li1 and Shan Lu2

Abstract

The problem of manipulating objects cooperatively for multi-link multi-degree of freedom space manipulator is very

challenging because of the multisource disturbances, including nonlinear coupling, model uncertainties, and external

disturbances. To solve this issue, a composite hierarchical control strategy is proposed, which has two layers. In inner

layer, uncertainty and disturbance estimator (UDE) is employed to estimate the composite uncertainty that comprises

the effect of multisource disturbances and compensate for it, producing the decoupled system. Furthermore, taking the

error in UDE estimation into consideration, the chattering–eliminating sliding mode control is designed to suppress it in

the outer layer. However, the obtained controller requires the measurement of joint velocities apart from joint positions.

To address this issue, a robust velocity observer that employs the UDE-estimated uncertainty is proposed. The notable

feature of the proposed design is that it requires neither accurate plant model nor any information about the uncertainty.

Also, the design requires only joint position measurements for its implementation. Finally, to demonstrate the effect-

iveness of the composite hierarchical controller, the simulations of a planar dual-arm manipulator system and the

comparisons of the proposed method with the other existing designs are presented.
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Introduction

As space exploration and exploitation expand, the
deployment of space structures and satellite launches
will increase; thus, the life extension of such systems
and the reduction of the associated costs will require
extensive inspection, assembly, capture, repair, and
maintenance capabilities in orbit. Astronaut extra
vehicular activities (EVA) can accomplish most
of the in-orbit servicing tasks; however, the cost of
human life-supported facilities, the limited time avail-
able for the maneuver, and the high risks involved
because of different hazards are some serious restric-
tions for EVA. Space manipulator becomes the best
alternative and plays a more important role in future
missions.1,2 As the missions become diversified and
complicated and the operation objects become
noncooperative, the single-arm space manipulator
systems show big disadvantages.3 To increase the
mobility of in-orbit robotic systems, multiple arms
with multi-link multi-degree of freedom (DOF) are
mounted on spacecraft. Unlike the fix-based robots,
the space manipulator has nonlinear coupling
between arms and the base body.4 Thus, issues on

manipulating objects cooperatively rise. The issues
get further severer when the system is subjected to
various model uncertainties and unmeasurable exter-
nal disturbances, such as inaccuracy of the inertial
matrix, joint nonlinear friction, and unknown
masses of objects. Hence, to meet the requirements
of coordinated manipulation, it is essential to consider
the multisource disturbances, including nonlinear
coupling, model uncertainties, and external
disturbances.5

To deal with the composite uncertainty that com-
prises the effect of all the multisource disturbances,
researchers have come up with many useful control
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methods, including designs based on proportional
derivative (PD) control6 and adaptive control,7 as
well as neural networks8 and fuzzy logic control.9

All these strategies can be used in different situations
according to their own specific features. With simple
and effective properties, the PD controller does not
require any knowledge of the system dynamics, but
it cannot follow the desired accuracy and robustness.6

Designs based on adaptive controller have a good
performance on model parametric uncertainties, but
show big disadvantages when dealing with nonpara-
metric uncertainties.10 Although strategies based on
neural networks or fuzzy logic controllers can bring
about better performance, the complicated controller
structure and the acquirement of all states cannot
meet the real-time features in engineering applica-
tions.11 Briefly, the above methods have their own
issues and could not satisfy the requirements of con-
trolling the system with multisource disturbances
absolutely.

One of the best approaches of designing controllers
for the system is to estimate the equivalent disturb-
ance acting on the system and compensate for it by
augmenting the controller designed for nominal
system. Techniques including disturbance observer12

and unknown input observer13 have been an active
topic to estimate the effect of uncertainties and dis-
turbances. The time delay control (TDC) is one such
well-known strategy used for estimation of the system
uncertainties.14 In TDC, a function representing the
effect of composite uncertainty is estimated directly
using the recent past information, and then, a control
is designed using this estimation in such a way to
cancel out the effect of the unknown dynamics and
the external disturbances. Following the line of
TDC and having addressed some issues related to it,
the uncertainty and disturbance estimator (UDE)
technique, which can overcome the issues of the
requirement of knowledge of uncertainty bound, is
proposed in Zhong and Rees.15 In Talole and
Phadke,16 the decoupled dynamics and robustification
are achieved by estimating the uncertainties and exter-
nal unmeasurable disturbances with the UDE and
compensating the same. Nevertheless, despite the
improved performance, the limitation in UDE leads
to estimating error in practice, which significantly
affects the performance of the coordinated manipula-
tion for space manipulators; the estimation error of
the system has to be dealt with.

With the experience that the lesser the error in esti-
mation, the better the tracking performance, that the
greater the ability to suppress the error for the feed-
back controller, the better the performance of the
coordinated manipulation, and that without any of
them or with less ability for one of them, the control-
ling property will deteriorate, the UDE technique and
the feedback controller must be considered by
synthesis to satisfy the requirements in engineering
applications. In many of the feedback control

strategies, compared with the PID control, adaptive
control, and robust control, the sliding mode control
(SMC) is much more effective in suppressing the
uncertainties for highly coupled nonlinear systems.
Thus, the composite hierarchical control strategy
that combines the UDE in feedforward path and
SMC in feedback path is proposed synthetically and
realized in this paper.

Besides, attention should be paid to the issue that
the measurement of joint positions and velocities is
required for robotic manipulators. Whereas, joint
positions can be accurately measured by good preci-
sion encoders, the measurement of joint velocities is
often an issue because of the measurement noise. In
addition to this, the weight of any additional sensor
can also be heavy burdens especially for space
manipulators. The estimation of velocities from the
positions through approximate differentiation may
not be satisfactory, and to obtain the information
of velocities from an appropriate observer becomes
a better alternative. However, in the presence of
model uncertainties, observers based on exact
system dynamics suffer from robustness, which is a
remaining issue.

This paper focuses on the cooperative control of
multi-link multi-DOF space manipulators. The nov-
elty of the work is to propose a composite hierarchical
control strategy for multi-link multi-DOF space
manipulators dealing against multisource disturb-
ances with UDE and chattering–eliminating SMC,
which has two layers. The inner layer includes
UDE, which is employed to estimate the composite
uncertainty and compensator in feedforward path,
thus decoupling the system dynamics. The outer
layer takes the error in UDE estimation into
consideration and makes full use of the chattering–
eliminating SMC that is effective for nonlinear
system to suppress it in feedback path. To address
the issue that the obtained controller needs the infor-
mation of joint positions and velocities, a robust vel-
ocity observer that employs the UDE-estimated
uncertainty is proposed. The proposed design has
two notable features: first, it requires neither the accur-
ate plant model nor any information about the uncer-
tainty; second, its implementation only needs the
measurement of joint positions. To demonstrate the
effectiveness of the composite hierarchical method,
simulations of a planar dual-arm manipulator
system and comparisons with the other two designs,
SMC and PDþUDE, are carried out.

The remaining paper is organized as follows. In
Dynamics modeling of the multi-link multi-DOF
space manipulator section, the dynamics modeling
of multi-link multi-DOF space manipulator system
is presented. In The composite hierarchical controller
based on UDE and improved SMC section, the com-
posite hierarchical control strategy is introduced, and
the closed-loop stability of the overall system is stated
in Stability analysis section. The simulations of the
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dual-arm space manipulator are implemented to
verify the proposed controller, and the results are
described in Simulations and results section.
Eventually, Conclusions section concludes this work.

Dynamics modeling of the multi-link
multi-DOF space manipulator

The general configuration of a multi-link multi-DOF
space manipulator system and its essential coordin-
ates are shown in Figure 1. Regardless of the effect
of orbital dynamics, the motion of the system is con-
sidered with respect to an in-orbit inertial frame of
reference (XYZ), and the system potential energy is
taken as equal to zero.

The dynamics of the complex system can be
obtained via Lagrangian formulation17

Hðd0, hÞ€qþ C1ðd0, _d0, h, _hÞ_qþ C2ðd0, _d0, h, _hÞ

¼ Qðd0, hÞ ð1Þ

where H is an N�N mass matrix, whose elements are
given in equation (2); C1 and C2 are vectors that con-
tain all the nonlinear velocity terms in a microgravity
environment, and decided by equations (3) and (4).
Notably, the space manipulators are nonholonomic
constraint systems and the derivative of the general-
ized coordinates are not integral.
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Q is an N � 1 vector of the generalized forces
given on the assumption that all the external forces,
except the ones applied on the base body, are zero by
the following

Q ¼ JQ� ð5Þ

where � ¼ ð0fs,
0ns, �

ð1Þ
1 , . . . , �ð1ÞN1

, . . . , �ðmÞ1 , . . . , �ðmÞNm
, . . . ,

�ðnÞ1 , . . . , �ðnÞNn
Þ
T; 0fs and 0ns are the net force and

moment applied on the base body, respectively; JQ
is an N�N Jacobian matrix, which is diagonally par-
titioned. The vector of the generalized coordinate, q
can be chosen as follows

q ¼
�
qð0Þ

T

, qð1Þ
T

, . . . , qðnÞ
T�T

ð6aÞ

where

qð0Þ ¼
�
RT

C0
, dT0

�T
ð6bÞ

qðmÞ ¼ hðmÞ ¼
�
�ðmÞ1 , . . . , �ðmÞNm

�T
ð6cÞ

with hðmÞi ði ¼ 1, . . . ,NmÞ describing the mth manipula-
tor joint angles.

The related symbols in dynamics modeling are
described as follows: P is an arbitrary point of the
system; n is the number of manipulators; K and N
are DOFs of all the manipulators and the whole
system, respectively; Nm is the DOF of the mth
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Figure 1. Multi-link multi-DOF space manipulator system.
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manipulator; q, _q, and €q are the vectors of the general-
ized coordinates, speeds, and accelerations; qi and _qi
are the ith element of the vectors of the generalized
coordinates and speeds; d0 and _d0 are the Euler angles
and speeds of the base body; I

ðmÞ
i , r

ðmÞ
i are the body-

fixed vectors that describe the position of joints i and
iþ 1 with respect to Ci, as seen in Figure 1; w0

and w
ðmÞ
k are the angular velocities of the base body

and the kth link of the mth manipulator; !0, !
ðmÞ
k are

the corresponding inertia dyad with respect to their
center of the mass; M is the total mass of the system,
and m

ðmÞ
k represents the mass of the kth link of the mth

manipulator; RC0
describes the vector of the center of

the base body mass in inertial frame; r
ðmÞ
Ck

is the center
of the mass of the kth link of the mth manipulator
with respect to the center of the base body mass.

The composite hierarchical controller
based on UDE and improved SMC

In this section, the two-layer composite hierarchical
controller is proposed. To obtain the decoupled
system dynamics, the inner layer employs UDE to
estimate the composite uncertainty and then compen-
sate for it in feedforward path. The outer layer takes

the error of UDE estimation into consideration and
makes full use of the chattering–eliminating SMC that
is effective for nonlinear system to suppress it in feed-
back path. To address the issue that the obtained con-
troller needs the information of the joint positions and
velocities, a robust velocity observer that employs the
UDE-estimated uncertainty is proposed. The symbols
interpretation of Figure 2 can be seen in Table 1.

UDE-based decoupling control

Consider the dynamics given by equation (1), because
there exists the nonlinear joint coupling and the exact
system model is rarely known in practice, it becomes
necessary to account for the nonlinear coupling, mod-
eling errors, and external disturbances. In the present
work, the inertia matrix, Hðd0, hÞ, is taken as uncer-
tain with H ¼ H0 þ�H where �H is its equivalent
uncertainty and H0 ¼

�
diagfH11 . . .Hii . . .Hnng is a pri-

marily chosen n� n constant diagonal matrix. Here,
Hii is the constant-valued nominal axis inertia term of
the ith subsystem and can be generally obtained from
the average of the diagonal elements of H during the
motion. Furthermore, the matrix C1 and C2 are
assumed to be completely unknown. In view of the

Figure 2. The structure of the composite hierarchical controller.
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considered uncertainty and inner joint coupling in H,
the dynamics of equation (1) can be rewritten as

€q ¼ �H�1ðC1 _qþ C2Þ þ ðH
�1 �H�10 ÞJQq

þH�10 JQqþ d0 þ d00 ð7Þ

where d0 and d00 represent the effect of the external
disturbances and the model nonparametric uncer-
tainty, respectively. Because C1 and C2 are assumed
as completely unknown, they form a part of the
composite uncertainty d that needs to be estimated,
and to this end, the composite uncertainty d is
defined as

d ¼ �H�1ðC1 _qþ C2Þ þ ðH
�1 �H0

�1ÞJQ� þ d0 þ d00

ð8Þ

In view of equation (8), the dynamics of equa-
tion (7) takes the form

€q ¼ dþH0
�1JQ� ð9Þ

where d ¼ ðd0, d
ð1Þ
1 , . . . , d

ð1Þ
N1
, . . . , d

ðmÞ
1 , . . . , d

ðmÞ
Nm

, . . . ,
d
ðnÞ
1 , . . . , d

ðnÞ
Nn
Þ
T; d0 is the uncertainty applied on

the base body. Noting that H0 is diagonal, it
is straightforward to verify that the dynamics of equa-
tion (9) is decoupled. In view of this, the dynamics
for the ith link of the mth manipulator can be
rewritten as

€�ðmÞi ¼ d
ðmÞ
i þ b

ðmÞ
ii �
ðmÞ
i , i ¼ 1, . . . ,Nm;m ¼ 1, . . . , n

ð10Þ

where b
ðmÞ
ii are the corresponding diagonal elements of

H0
�1JQ. To address the issue of the composite uncer-

tainty, the control takes the form as

�ðmÞi ¼
1

b
ðmÞ
ii

�
u
ðmÞ
di þ v

ðmÞ
i

�
ð11Þ

where u
ðmÞ
di is the part of the feedforward controller,

which cancels the effect of the composite uncertainty,
and v

ðmÞ
i is the output of the feedback controller.

Substituting equation (11) in equation (10) leads to

€�ðmÞi ¼ u
ðmÞ
di þ v

ðmÞ
i þ d

ðmÞ
i

ð12Þ

one obtains

d
ðmÞ
i ¼

€�ðmÞi � u
ðmÞ
di � v

ðmÞ
i ð13Þ

In view of equation (13) and following the proced-
ure given in Sun et al.,10 the estimation of d

ðmÞ
i is

obtained as

d̂
ðmÞ
i ¼ G

ðmÞ
if ðsÞð

€�ðmÞi � u
ðmÞ
di � v

ðmÞ
i Þ ð14Þ

where d̂
ðmÞ
i is the estimation of d

ðmÞ
i and G

ðmÞ
if ðsÞ is a

first-order low pass filter with a time constant of t
ðmÞ
if

to reduce the calculation complexity.

G
ðmÞ
if ðsÞ ¼

1

1þ t
ðmÞ
if s

, i ¼ 1, . . . ,Nm ð15Þ

Selecting u
ðmÞ
di ¼ �d̂

ðmÞ
i and substituting equation

(15) into equation (14) lead to

u
ðmÞ
di ¼ �G

ðmÞ
if ðsÞð

€�ðmÞi � u
ðmÞ
di � v

ðmÞ
i Þ ð16Þ

Now, solving for u
ðmÞ
di leads to

u
ðmÞ
di ¼ �d̂

ðmÞ
i ¼ �

G
ðmÞ
if ðsÞ

1� G
ðmÞ
if ðsÞ

ð €�ðmÞi � v
ðmÞ
i Þ

¼ �
1

t
ðmÞ
if s
ð €�ðmÞi � v

ðmÞ
i Þ ð17Þ

Substitution of equation (17) into equation (11)
gives the resulting controller in the time domain form

�ðmÞi ¼
1

b
ðmÞ
ii

�
�

1

t
ðmÞ
if

_�ðmÞi þ v
ðmÞ
i þ

1

t
ðmÞ
if

Z
v
ðmÞ
i dt

�
,

i ¼ 1, . . . ,Nm;m ¼ 1, . . . , n ð18Þ

Note that the more accuracy of the estimation d̂
ðmÞ
i ,

the more precise is the compensator u
ðmÞ
di ; however,

with the limitation of UDE, there always exists
error ~d

ðmÞ
i ¼ d

ðmÞ
i � d̂

ðmÞ
i in practice, and the ability to

deal with the error significantly affects the perform-
ance of the controller. Therefore, for the perfect con-
trolling performance, control strategies for space
manipulators must be designed based on both sides
previously mentioned synthetically. After the feedfor-
ward controller was obtained, the feedback controller,
which employs the SMC to cope with the error, ~d

ðmÞ
i , is

presented below.

Improved SMC-based disturbance suppression

In this subsection, considering the limitation of
UDE’s ability in estimating and the compensating in
feedforward path, the chattering–eliminating SMC is
implemented to deal with the remaining uncertainty,
~d
ðmÞ
i in feedback path.
Considering the decoupled subsystem (equa-

tion (10)) and assuming the ~d
ðmÞ
i has a bound

j ~d
ðmÞ
i j ¼ jd

ðmÞ
i � d̂

ðmÞ
i j4D

ðmÞ
i

ð19Þ

The chattering–eliminating SMC law can be
obtained18

�ðmÞi ¼ b
ðmÞ
ii

� ��1�
€�ðmÞdi � lðmÞi ð

_�ðmÞi �
_�ðmÞdi Þ
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� d̂
ðmÞ
i � k

ðmÞ
i sgnðs

ðmÞ
i Þ

�
ð20Þ

where _�ðmÞdi and €�ðmÞdi are the desired input velocity and
acceleration of the ith link of the mth manipulator;
_�ðmÞi is the actual velocity of the corresponding joint;
lðmÞi k

ðmÞ
i are the positive controlling parameters; and

s
ðmÞ
i is the distance from a sliding surface. Substituting
the SMC law (equation (20)) into equation (10) results
in the following

€�ðmÞi ¼
€�ðmÞdi � lðmÞi ð

_�ðmÞi �
_�ðmÞdi Þ � k

ðmÞ
i sgnðs

ðmÞ
i Þ ð21Þ

Now, defining the output of the SMC as

v
ðmÞ
i ¼

€�ðmÞdi � lðmÞi

�
_�ðmÞi �

_�ðmÞdi

�
� k
ðmÞ
i sgn

�
s
ðmÞ
i

�
ð22Þ

1

2

d

dt
s
ðmÞ
i 4� �ðmÞi js

ðmÞ
i j, �ðmÞi 4 0 ð23Þ

where �ðmÞi is a factor that indicates the speed of
the corresponding state in approaching its sliding
surface. In equation (22), k

ðmÞ
i is a positive value

that must be determined to satisfy the sliding mode
condition (equation (23)), and k

ðmÞ
i can be obtained

using the Filippov’s construction of equivalent
dynamics19 by calculating _s

ðmÞ
i ¼ 0, which yields the

following

k
ðmÞ
i ¼ D

ðmÞ
i þ �

ðmÞ
i

ð24Þ

If �ðmÞi can be determined in such a way that is
based on the absolute value of the distance from the
sliding surface, the speed of the corresponding state
becomes lower and reaches zero on the surface;
then, the performance will be as desired, and chatter-
ing will be substantially alleviated. As a result, �ðmÞi

is chosen

�ðmÞi ðtÞ ¼ �
ðmÞ
0i

��1� e�js
ðmÞ
i
j
�� ð25Þ

The above equation (22) is the final sliding mode
controller, and choosing a proper �ðmÞ0i in equation
(25) will avoid the chattering. Thus, the composite
hierarchical controller based on UDE and SMC
is given by equations (18) and (22); however, the
implementation of the controller requires measure-
ment of joint velocities and positions. The estimation
of velocities is obtained by a robust velocity
observer.

The robust velocity observer

As is obvious from equation (10), the dynamics are
decoupled, and hence, the observer design for the ith
link of the mth manipulator is presented. To this end,
defining x

ðmÞ
i1 ¼ �

ðmÞ
i and x

ðmÞ
i2 ¼

_�ðmÞi , the dynamics of
equation (10) can be rewritten in a phase variable

state–space model form as

_x
ðmÞ
i1 ¼ x

ðmÞ
i2

x
ðmÞ
i2 ¼ b

ðmÞ
ii �
ðmÞ
i þ d

ðmÞ
i

y
ðmÞ
i ¼ x

ðmÞ
i1

8>><
>>: ð26Þ

Defining the state vector as
x
ðmÞ
ip ¼ ½ x

ðmÞ
i1 x

ðmÞ
i2
�
T
¼ ½ �ðmÞi

_�ðmÞi
�
T, the system of

equation (26) can be rewritten as

_x
ðmÞ
ip ¼ A

ðmÞ
ip x

ðmÞ
ip þ B

ðmÞ
ip �
ðmÞ
i þ B

ðmÞ
id d

ðmÞ
i

y
ðmÞ
ip ¼ C

ðmÞ
ip x

ðmÞ
ip

(
ð27Þ

where

A
ðmÞ
ip ¼

0 1

0 0

� �
; B

ðmÞ
ip ¼

0

b
ðmÞ
ii

� �
; B

ðmÞ
id ¼

0

1

� �
;

C
ðmÞ
ip ¼ 1 0

	 

ð28Þ

It may be noted that a conventional Luenberger
observer will not be able to provide accurate state
estimation for the plant of equation (27), owing to
the presence of the uncertainty. In view of this, a
Luenberger-like observer of the following form is pro-
posed as

_̂x
ðmÞ

ip ¼ A
ðmÞ
ip x̂

ðmÞ
ip þ B

ðmÞ
ip �
ðmÞ
i þ B

ðmÞ
id d̂

ðmÞ
i

þL
ðmÞ
i ð y

ðmÞ
ip � ŷ

ðmÞ
ip Þ

ŷ
ðmÞ
ip ¼ C

ðmÞ
ip x̂

ðmÞ
ip

8>>><
>>>:

ð29Þ

where L
ðmÞ
i ¼

	
�ðmÞi1 �ðmÞi2


T
is the observer gain vector

and x̂
ðmÞ
ip ¼ ½ x̂

ðmÞ
i1 x̂

ðmÞ
i2
�
T
¼ ½ �̂ðmÞi

_̂
�
ðmÞ

i
�
T. Because the

uncertainty is the same as present in equation (10),
the UDE-estimated uncertainty is also used in the
observer (equation (29)). It may be noted that the
proposed velocity observer does not need an accurate
plant model and is robust.

Stability analysis

From the above analysis, the control from equation
(11) can be rewritten as

�ðmÞi ¼ b
ðmÞ
ii

� ��1�
€�ðmÞdi � lðmÞi ð

_̂
�
ðmÞ

i �
_�ðmÞdi Þ

� k
ðmÞ
i sgnðs

ðmÞ
i Þ � d̂

ðmÞ
i

�
ð30Þ

Defining the reference state vector

R
ðmÞ
i ¼ ½ �̂

ðmÞ
di

_̂
�
ðmÞ

di
�
T and the state feedback gain

vector K
ðmÞ
ip ¼ ½ 0

lðmÞ
i

b
ðmÞ
ii

�, the control (equation (30)) is
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rewritten as

�ðmÞi ¼ �K
ðmÞ
ip x̂

ðmÞ
ip þ K

ðmÞ
ip R

ðmÞ
i þ

1

b
ðmÞ
ii

€�ðmÞdi

�
k
ðmÞ
i

b
ðmÞ
ii

sgnðs
ðmÞ
i Þ �

1

b
ðmÞ
ii

d̂
ðmÞ
i ð31Þ

It is obviously to show that the dynamics of refer-
ence state vector, R

ðmÞ
i , can be rewritten as

_R
ðmÞ

i ¼ A
ðmÞ
ip R

ðmÞ
i þ B

ðmÞ
id

€�ðmÞdi ð32Þ

Defining the state tracking error e
ðmÞ
ic ¼ R

ðmÞ
i � x

ðmÞ
ip

and from equations (24), (25), (30)–(32), the state
tracking error dynamics can be deduced as

_e
ðmÞ
ic ¼ ðA

ðmÞ
ip � B

ðmÞ
ip K

ðmÞ
ip Þe

ðmÞ
ic � B

ðmÞ
ip K

ðmÞ
ip e
ðmÞ
io

� B
ðmÞ
id ðD

ðmÞ
i sgnðs

ðmÞ
i Þ �

~d
ðmÞ
i Þ þ B

ðmÞ
id �

ðmÞ
0i j1

� e�js
ðmÞ
i
jjsgnðs

ðmÞ
i Þ ð33Þ

where ~d
ðmÞ
i ¼ d

ðmÞ
i � d̂

ðmÞ
i is the uncertainty estimation

error and e
ðmÞ
io ¼ x

ðmÞ
ip � x̂

ðmÞ
ip is the observer state esti-

mation error vector. The observer error dynamics can
be obtained by subtracting equation (29) from equa-
tion (27) as

_e
ðmÞ
io ¼ ðA

ðmÞ
ip � L

ðmÞ
i C

ðmÞ
ip Þe

ðmÞ
io þ B

ðmÞ
id

~d
ðmÞ
i ð34Þ

From equations (13) and (14), the estimation of the
uncertainty, d

ðmÞ
i , is given as

d̂
ðmÞ
i ¼ G

ðmÞ
if ðsÞd

ðmÞ
i ð35Þ

and by processing equation (13), the uncertainty esti-
mation error dynamics is obtained

_~d
ðmÞ

i ¼ �
1

tif
~d
ðmÞ
i þ

_d
ðmÞ
i ð36Þ

Combining equations (33), (34), and (36) yields the
following error dynamics for the closed-loop subsys-
tem of the ith link of the mth manipulator

_e
ðmÞ
ic

_e
ðmÞ
io

_~d
ðmÞ

i

2
664

3
775

¼

ðA
ðmÞ
ip � B

ðmÞ
ip K

ðmÞ
ip Þ �ðB

ðmÞ
ip K

ðmÞ
ip Þ 0

0 ðA
ðmÞ
ip � L

ðmÞ
i C

ðmÞ
ip Þ B

ðmÞ
id

0 0 � 1
tif

2
664

3
775

�

e
ðmÞ
ic

e
ðmÞ
io

~d
ðmÞ
i

2
664

3
775þ

0

0

1

2
64

3
75 _d
ðmÞ
i

þ

B
ðmÞ
id

0

0

2
64

3
75 D

ðmÞ
i sgnðs

ðmÞ
i Þ �

~d
ðmÞ
i

� ��

þ�ðmÞ0i j1� e�js
ðmÞ
i
jjsgnðs

ðmÞ
i Þ

�
ð37Þ

Figure 3. The planar dual-arm manipulator system.

Table 1. Symbols interpretation of Figure 2.

K The joint number of the multi-arm

multi-link space manipulator

�di, _�di, €�di

i ¼ 1, . . . , K

The desired position, speeds, and

acceleration of the ith joint,

separately

�̂i,
_̂
�i, i ¼ 1, . . . , K The estimation of position, �i, and

speed, _�i of the ith joint, separately

vi, i ¼ 1, . . . , K The output of the feedback controller

�i, i ¼ 1, . . . , K The designed control force

uid, i ¼ 1, . . . , K The part of the feedforward controller,

which cancels the effect of the

composite uncertainty

�di, i ¼ 1, . . . , K The external disturbance of the ith joint

Table 2. Control parameters of SMCþUDE.

Parameters Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

k 7.0 6.5 6.5 8.0 7.0 7.0

Z0 0.1 0.1 0.1 0.1 0.1 0.1

Poles 45.90 15.50 20.55 30.70 20.65 20.65

D 0.005 0.005 0.005 0.005 0.005 0.005

Note: SMC, sliding mode control; UDE, uncertainty and disturbance

estimator.
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For convenient analysis, define l
ðmÞ
i ¼

ðD
ðmÞ
i sgnðs

ðmÞ
i Þ �

~d
ðmÞ
i Þ þ �

ðmÞ
0i j1� e�js

ðmÞ
i
jjsgnðs

ðmÞ
i Þ. With

the corresponding state arriving its sliding surface
and choosing the proper upper bound D

ðmÞ
i , l

ðmÞ
i

becomes an infinitesimal, and equation (37) can be
rewritten as

_e
ðmÞ
ic

_e
ðmÞ
io

_~d
ðmÞ

i

2
664

3
775

¼

ðA
ðmÞ
ip � B

ðmÞ
ip K

ðmÞ
ip Þ �ðB

ðmÞ
ip K

ðmÞ
ip Þ 0

0 ðA
ðmÞ
ip � L

ðmÞ
i C

ðmÞ
ip Þ B

ðmÞ
id

0 0 � 1
tif

2
664

3
775

�

e
ðmÞ
ic

e
ðmÞ
io

~d
ðmÞ
i

2
664

3
775

þ

0

0

1

2
64

3
75 _d
ðmÞ
i þ

�ðmÞi

0

0

2
64

3
75 ð38Þ

where �ðmÞi is also an infinitesimal. From equation (38),
the subsystem matrix being in a block triangular form,
it can be easily verified that the eigenvalues of the
subsystem matrix are given by

��sI� ðAðmÞip � B
ðmÞ
ip K

ðmÞ
ip Þ

����sI� �AðmÞip � L
ðmÞ
i C

ðmÞ
ip

���
�

����s�
�
�

1

tif

����� ¼ 0 ð39Þ

Noting that the pair ðA
ðmÞ
ip ,B

ðmÞ
ip Þ is controllable and

the pair ðA
ðmÞ
ip ,C

ðmÞ
ip Þ is observable, the controller gain,

K
ðmÞ
ip , and the observer gain, L

ðmÞ
i , can be chosen appro-

priately with tif 4 0 to ensure state ability for error
dynamics. As the error dynamics is driven by _d

ðmÞ
i , it

is obvious that, for bounded j _d
ðmÞ
i j, bounded input

bounded output stability is assured. If the rate of chan-
ged of uncertainty _d

ðmÞ
i � 0, then the error dynamics for

subsystem of the ith link of the mth manipulator is
asymptotically stable. With the error dynamics of all
the subsystems being asymptotically stable, the overall
control system is asymptotically stable.

Simulations and results

In this section, the planar dual-arm manipulator
system, shown in Figure 3, which works in free-float-
ing mode, is implemented to verify the effect of the
proposed controller, and the results are presented.
The configuration parameters of the system used
in the simulation are obtained from Guo and
Chen.20 The controller gains required in equation
(22) are listed in Table 2, values of t

ðmÞ
if are all

chosen as 0.05 s and the observer gains, L
ðmÞ
i , are

obtained by placing the observer poles as shown in
Table 2. The initial conditions for the observer are
taken as zero. In simulations, uncertainty is intro-
duced by considering m

ðmÞ
i ’s uncertainty by þ20% of

their respective nominal values. Actuator saturation
limits of the �ðmÞi are �10N, and a load disturbance
torque of þ5% of the maximum input torques is con-
sidered. Furthermore, the model nonparametric
uncertainty is taken as

d00 ¼ 0:01½3 sinð20�q1Þ; sinð20�q2Þ; 0:3 sinð20�q3Þ;

3 sinð20�q4Þ; sinð20�q5Þ; 0:3 sinð20�q6Þ�

ð40Þ

The desired position trajectories are taken as sinus-
oids and cosinsoids, shown in Figure 4. The values of
b
ðmÞ
ii can be obtained from equation (10). Parameters
of SMC and PDþUDE are listed in Tables 3 and 4.
Observer poles in PDþUDE are the same as those of
SMCþUDE. With these data, simulations are car-
ried out, and the comparisons are presented in
Figure 5. For simple description, SMC, PDþUDE,
and SMCþUDE are numbered as 1, 2, and 3,
respectively.

Figure 4. The desired input signals of joints 1–6.

Table 3. Control parameters of SMC.

Parameters Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

k 25.0 25.0 30.0 25.0 25.0 20.0

Z0 1.5 1.5 1.5 1.5 1.5 1.5

Note: SMC, sliding mode control.

Table 4. Control parameters of PDþUDE.

Parameters Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

kp 12 13 13 13 12 13

kd 15 15 15 15 15 15

Note: PD, proportional derivative; UDE, uncertainty and disturbance

estimator.
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From Figure 5, it can be seen that the tracking
error is nonzero because of the nonconstant reference
input, which results in _d

ðmÞ
i 6¼ 0 in equation (38). Also,

it can be obviously observed that controller 1 often
has steady-state error in position tracking; however,
controllers 2 and 3 have resulted in better tracking
performance without steady-state error. To assess per-
formances in dynamic trajectory tracking, the ratios
of the absolute value of the maximum magnitude of
tracking error to the amplitude of the reference signal
for all the three designs are presented in Table 5.
It can be noticed that the values of ratios for control-
ler 1 are higher compared with that of controller 3,
while the values of ratios for controller 2 are also

Figure 5. The performance comparison of SMCþUDE and the other two.

Table 5. Comparative performance of SMC, SMCþUDE,

and PDþUDE in dynamic trajectory tracking.

Controller Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

1. SMC 2.10% 0.87% 0.96% 4.10% 2.62% 3.14%

2. PDþUDE 1.75% 1.92% 5.50% 4.71% 2.23% 2.10%

3. SMCþ

UDE

0.70% 0.35% 0.44% 2.27% 0.35% 0.23%

Note: PD, proportional derivative; SMC, sliding mode control; UDE,

uncertainty and disturbance estimator.
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higher than that of controller 3. To be more specific,
on one hand, the introduction of UDE brings about
much better performance with zero steady-state error
and smaller ratio, which can be inferred from the
comparison of controllers 1 and 3. On the other
hand, in the comparison of controllers 2 and 3,
taking the error of UDE into consideration produces
smaller trajectory tracking error. In a word, the pro-
posed composite hierarchical controller achieves
highly satisfactory performance and can be used to
manipulate objects cooperatively for multi-link
multi-DOF space manipulator.

Besides, the proposed composite hierarchical con-
troller offers certain distinct advantages. First, with
the UDE technique, the proposed method does not

need knowledge of accurate bounds of uncertainties,
because all the uncertainties and disturbances are esti-
mated using UDE technique, as shown in Figure 6.
Note that with the sudden stop of all the joints, the
momentary impacts appear naturally in Figure 6(a)
to (f). Second, as seen from Figure 7, the information
of joint velocities can be obtained by a robust velocity
observer, and the implementation of controller 3
needs joint position only.

Conclusions

In this paper, to meet the requirements in coordinated
manipulation for space manipulator, a composite
hierarchical control approach is proposed. To deal

Figure 6. The performance of uncertainty and disturbance estimation.
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with the composite uncertainty that comprises the
effect of all the multisource disturbances, the control
strategy is designed with two layers: the inner layer
includes UDE and compensator in feedforward path,
and the outer layer includes the chattering–eliminat-
ing SMC in feedback path, having considered the
error in UDE estimation. As the resulting controller
requires joint velocities apart from joint positions, a
robust velocity observer is proposed to provide the
estimation of joint velocities. The notable feature of
the proposed design is that it requires neither the
accurate plant model nor any information about the
uncertainty. The simulations of a planar dual-arm
manipulator system are implemented to verify the
effectiveness of the proposed method, and the

comparisons of its performance with SMC and
PDþUDE are presented.
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