
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 10, OCTOBER 2016 3171

Adaptive Model Predictive Control for Unconstrained
Discrete-Time Linear Systems With Parametric Uncertainties

Bing Zhu and Xiaohua Xia, Fellow, IEEE

Abstract—In this technical note, an adaptive model predictive
control (MPC) is proposed for unconstrained discrete-time linear
systems with parametric uncertainties. The control objective is
reference tracking. The adaptive MPC is designed by combining
an adaptive updating law for estimated parameters and a con-
strained MPC for an estimated system. It is proved theoretically
that, with the proposed adaptive MPC, the closed-loop system
is capable of tracking time-varying reference signals with ulti-
mately bounded tracking errors, and the estimated parameters are
bounded. Moreover, if the reference signals are constant, tracking
errors of the closed-loop system can be stabilized asymptotically.
Performances of the closed-loop system are demonstrated by a
simulation example.

Index Terms—Adaptive control, discrete-time systems, linear
systems, model predictive control.

I. INTRODUCTION

Model predictive control (MPC) is regarded as an effective approach
to address process control problems (with or without constraints). For
an overview on MPC, please refer to the survey paper [1]. The core
content of MPC is to solve an optimization problem with respect to the
control inputs at every sampling time. The leading factor that MPC can
be widely applied is that its superior robustness with respect to external
disturbances [2]. In MPC design, system outputs at the next several
sampling times are predicted by using the system state equation, and
are fed-back for calculating controls for the next sampling time. That
is to say, the relative long term effect of disturbances are considered
in control design, contributing to the superior robustness of MPC.
Variations of classical MPC technique are developed in recent years.
For example, MPC with disturbance feedback [3], MPC for switched
nonlinear systems [4], and time-varying MPC [5]. Applications of
MPC to various areas include energy generation [6], resource alloca-
tion [7], chemical process [8], flight control [9], and so on.

Although the inborn robustness of MPC with respect to external
disturbances is usually satisfactory, its reactions to parametric uncer-
tainties remains an open topic (at least theoretically). The reason is
that, parametric uncertainties would lead to difficulties in predicting
future states of the plant. An intuitive solution to the problem of
MPC design with parametric uncertainties is to introduce adaptive
schemes. Some representative researches include adaptive MPC based
on persistent excitation [10], adaptive strategy for single loop MPC
[11], adaptive MPC by using comparison model [12], [13], and adap-
tive MPC for continuous-time nonlinear system [14]. Recently, neural
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networks are introduced in adaptive MPC design to solve problems of
system identification [15] and time-delay [16].

In this technical note, a new simple adaptive MPC is proposed
for unconstrained discrete-time linear systems with parametric un-
certainties. The proposed adaptive MPC is developed by combining
an adaptive updating law for estimated parameters and a constrained
MPC. The main contribution is that, by applying the adaptive updating
law, the unconstrained MPC design with parametric uncertainties can
be transformed into a constrained MPC design without parametric
uncertainties. It can be proved theoretically that, with the proposed
adaptive MPC, the tracking errors of the closed-loop system are ulti-
mately bounded, and the estimated parameters are bounded. Moreover,
the tracking errors can be stabilized asymptotically, if the reference
signals are constant. An initial application of the proposed adaptive
MPC to a hybrid energy system can be referred to [17].

The configuration of this technical note is arranged as following.
Some mathematical preliminaries are provided in Section II. Main
results of the adaptive MPC for unconstrained discrete-time linear
system are proposed in Section III. A simulation example of the
closed-loop system with the proposed adaptive MPC is presented in
Section IV. Concluding remarks are given in the final section.

II. PRELIMINARIES

Some mathematical preliminaries are necessary to facilitate the
presentation of the main results.

Definition 1: Partial differentiation of a scalar multi-variable func-
tion with respect to a matrix is defined by

∂f(x,Θ)

∂Θ
∆
=

[
∂f(x,Θ)

∂θji

]

n×m

=

⎡

⎢⎢⎢⎢⎢⎣

∂f
∂θ11

∂f
∂θ21

· · · ∂f
∂θm1

∂f
∂θ12

. . .
...

...
∂f

∂θ1n
· · · ∂f

∂θmn

⎤

⎥⎥⎥⎥⎥⎦
(1)

where f(x,Θ) ∈ R, Θ = [θij ]m×n ∈ Rm×n.
Lemma 1: For a scalar function f(x, y,Θ) = xTΘy, its partial

differentiation with respect to Θ could be calculated by

∂f(x, y,Θ)

∂Θ
= yxT (2)

where x ∈ Rm and y ∈ Rn are column vectors, and Θ = [θij ]m×n ∈
Rm×n.

Proof: Rewrite f into the form of sum

f =
n∑

j

m∑

i

θijxiyj .
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According to Definition 1

∂f(x, y,Θ)

∂Θ
=

⎡

⎢⎢⎢⎢⎣

x1y1 x2y1 · · · xmy1

x1y2

. . .
...

...
x1yn · · · xmyn

⎤

⎥⎥⎥⎥⎦
= yxT

which proves the result given by (2). ♦
Some properties [18] of trace of matrix are necessary.
Property 1: For matrix A and B, and vectors x and y, all with

proper dimensions, the following properties hold:
1) tr(AB) = tr(BA);
2) tr(A + B) = tr(A) + tr(B);
3) tr(yxT ) = xT y.

Definition 2: For vectors a
∆
= [a1, . . . , an]T and b

∆
= [b1,

. . . , bn]T , the inequity a < b (or a ≤ b) indicates that ai < bi (or
ai ≤ bi) for all i = 1, . . . , n.

III. ADAPTIVE MPC FOR UNCONSTRAINED DISCRETE-TIME

LINEAR SYSTEMS

In this technical note, the plant to be controlled is an unconstrained
discrete-time linear system expressed by

{
xp(k + 1) = Apxp(k) + Bpup(k)

yp(k) = Cpxp(k)
(3)

where xp(k) ∈ Rn, up(k) ∈ Rm and yp(k) ∈ Rl are system state,
input and output, respectively; Ap ∈ Rn×n and Bp ∈ Rn×m are un-
certain constant matrices. In this technical note, it is supposed that
the pair (Ap, Bp) is controllable. The control objective is reference
tracking

yp(k) → rs(k), as k → +∞

where the reference signal is supposed to be bounded by ∥rs∥ ≤ r̄s.
In this technical note, we consider only the state feedback problem.

The system state xp(k) is fully available, and Cp ∈ Rl×n is known
accurately. Output feedback is beyond the scope of this research.

According to classical linear MPC design [2], the original system
(3) can be transformed into an incremental form

{
x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k)
(4)

where x(k)
∆
=[∆xp(k)T , yp(k)T ]

T , ∆xp(k)
∆
=xp(k) − xp(k − 1),

∆u(k)
∆
= up(k) − up(k − 1), and y(k) = yp(k); and

A =

[
Ap 0n×l

CpAp Il×l

]
, B =

[
Bp

CpBp

]
, C =

[
0l×n Il×l

]
.

Consequently, in the incremental system (4), matrices A and B can be
regarded as uncertain constant parameters, and C is a known constant
matrix. Controllability of (A, B) can be induced by controllability of
(Ap, Bp).

Assumption 1: Denote Θ
∆
= [A,B]. There exists a conservative

bound for the uncertain constant parameters: ∥Θ∥ ≤ Θ̄.

A. Adaptive Updating Law for Uncertain Parameters

Design an estimated system

x̂(k + 1) = Â(k)x(k) + B̂(k)∆u(k) (5)

where Â(k) and B̂(k) are time-varying estimated parameters for
uncertain constant matrices A and B; x̂(k) is the estimated state for
the system state x(k).

The system state and the estimated system state can be rewritten into
more compact forms

x(k + 1) =ΘX(k)

x̂(k + 1) = Θ̂(k)X(k)

where Θ̂(k)
∆
= [Â(k), B̂(k)], and X(k)

∆
= [x(k)T ,∆u(k)T ]

T . Sub-
tracting the above two equations yields

x̃(k + 1) = Θ̃(k)X(k)

where Θ̃
∆
= Θ− Θ̂, and x̃

∆
= x − x̂.

Define a cost function for the estimated error x̃

Jx
∆
= x̃(k + 1)T x̃(k + 1)

=
(
x(k + 1) − Θ̂(k)X(k)

)T (
x(k + 1) − Θ̂(k)X(k)

)
.

The gradient of Jx with respect to Θ̂ can be obtained by

∇Jx(Θ̂) =
∂Jx

∂Θ̂
= −X(k)

(
x(k + 1) − Θ̂(k)X(k)

)T

= −X(k)x̃(k + 1)T

where the result of Lemma 1 can be used to calculate the partial dif-
ferentiation. The gradient method [18] is employed herein to minimize
the cost function

Θ̂(k + 1) = Θ̂(k) − λ∇JT
x

= Θ̂(k) + λ
(
x(k + 1) − Θ̂(k)X(k)

)
X(k)T

= Θ̂(k) + λx̃(k + 1)X(k)T (6)

where λ > 0 is the updating rate to be assigned.
Theorem 1: Consider the discrete-time linear system (3) with

uncertain parameters Ap and Bp. Suppose that there exists a feasible
control up(k) (or ∆u(k)) satisfying that

X(k)T X(k) ≤ 2 − α

λ
(7)

where 0 < α < 2 and λ > 0. Then, with the adaptive updating law (6),
the following statements hold:

1) estimated parameter error Θ̃ is ultimately bounded;
2) estimated state error x̃ is asymptotically stable.

Proof: Select a Lyapunov candidate Vθ(k) = tr(Θ̃(k)T Θ̃(k)),
where tr(·) denotes the trace for matrix. It follows that:

Vθ(k + 1)= tr
(
Θ̃(k + 1)T Θ̃(k + 1)

)

=tr
(
ΘTΘ− 2ΘT Θ̂(k+1)+Θ̂(k+1)T Θ̂(k+1)

)
(8)

where the results in Property 1 are used. On the right side of the above
equation, there are three terms. The first term is tr(ΘTΘ); the second
term can be calculated by

tr
(
−2ΘT Θ̂(k + 1)

)
= tr

(
−2ΘT Θ̂(k) + 2λΘT∇JT

x

)

and the third term can be calculated by

tr
(
Θ̂(k + 1)T Θ̂(k + 1)

)

= tr
(
Θ̂(k)T Θ̂(k) − 2λΘ̂(k)T∇JT

x + λ2∇Jx∇JT
x

)
.

It then follows from (8) that:

Vθ(k+1)= tr
(
Θ̃(k)T Θ̃(k)+2λΘ̃(k)T∇JT

x +λ2∇Jx∇JT
x

)

=Vθ(k) + tr
(
2λΘ̃(k)T∇JT

x + λ2∇Jx∇JT
x

)
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where the second term on the right side can be calculated by

tr
(
2λΘ̃(k)T∇JT

x + λ2∇Jx∇JT
x

)

= λtr
(
−2Θ̃(k)T x̃(k + 1)XT (k)

+ λX(k)x̃T (k + 1)x̃(k + 1)X(k)T
)

= λ
(
−2XT (k)Θ̃(k)T x̃(k + 1)

+ λX(k)T X(k)x̃T (k + 1)x̃(k + 1)
)

= λ
(
−2x̃(k + 1)T x̃(k + 1)

+ λX(k)T X(k)x̃T (k + 1)x̃(k + 1)
)

= λ
(
−2 + λX(k)T X(k)

)
x̃T (k + 1)x̃(k + 1)

≤ −λαx̃T (k + 1)x̃(k + 1).

Consequently

Vθ(k + 1) ≤ Vθ(k) − λαx̃T (k + 1)x̃(k + 1) (9)

implying that Vθ(k) decreases as k increases. It is obvious that
Vθ(k) > 0; therefore, limk→+∞ Vθ(k) exists, and Θ̃(k) is ultimately
bounded (but not necessarily converges to 0), which proves 1).

It follows from (9) that:

Vθ(1) ≤Vθ(0) − λαx̃T (1)x̃(1)

Vθ(2) ≤Vθ(1) − λαx̃T (2)x̃(2)
...

Vθ(k + 1) ≤Vθ(k) − λαx̃T (k + 1)x̃(k + 1)

indicating that

Vθ(k + 1) ≤ Vθ(0) − λα
k+1∑

i=1

x̃T (i)x̃(i).

Consequently

λα
+∞∑

i=1

x̃T (i)x̃(i) ≤ Vθ(0) − lim
k→+∞

Vθ(k)

implying that the infinite series
∑+∞

i=1 x̃T (i)x̃(i) converges; hence
x̃ → 0. This proves 2). ♦

Remark 1: A small enough λ can always be found such that (7) is
satisfied with finite X(k).

Remark 2: It is indicated from Theorem 1 that our next step is to
find a model predictive control ∆u(k) satisfying the constraint (7).

B. MPC Design for the Estimated System

In this part, ∆u(k) is designed for the estimated system (5)
subject to the constraint (7). Predictive equations of the estimated
system (5) can be given by

x̂(k + 1|k) = Â(k)x(k) + B̂(k)∆u(k)

x̂(k + 2|k) = Â(k)x̂(k + 1|k) + B̂(k)∆u(k + 1|k)
...

x̂(k+Nc|k) = Â(k)x̂(k+Nc−1|k)+B̂(k)∆u(k+Nc−1|k)
...

x̂(k+Np|k) = Â(k)x̂(k+Np−1|k)+B̂(k)∆u(k+Nc−1|k).

Suppose that the output of the estimated system is given by

ŷ(k) = Cx̂(k). (10)

According to classical MPC design, the predictive equations for (5)
can be written into a compact form

Ŷ (k) = F̂ (k)x(k) + Φ̂(k)∆U

where Ŷ (k)
∆
=[ŷT (k+1|k), ŷT (k+2|k), . . . , ŷT (k +Np|k)]

T , and

∆U
∆
= [∆uT (k),∆uT (k +1|k), . . . ,∆uT (k +Nc −1|k)]T ; predic-

tive matrices are given by

F̂ (k) =

⎡

⎢⎢⎢⎢⎣

CÂ
CÂ2

...
CÂNp

⎤

⎥⎥⎥⎥⎦
(11)

Φ̂(k) =

⎡

⎢⎢⎢⎢⎣

CB̂ 0 · · · 0
CÂB̂ CB̂ · · · 0

...
...

CÂNp−1B̂ CÂNp−2B̂ · · · CÂNp−NcB̂

⎤

⎥⎥⎥⎥⎦
.

(12)

The predictive reference signals are given by

Rs(k) =
[
rT

s (k + 1), rT
s (k + 2), . . . , rT

s (k + Np)
]T

and the cost function is designed by

Jy =
(
Ŷ (k) − Rs(k)

)T (
Ŷ (k) − Rs(k)

)
+∆UT (k)R̄∆U(k)

(13)

where R̄ = diag(r̄)Nc×Nc is a diagonal weight matrix with r̄ > 0.
To formulate the optimization problem, the cost function is further
calculated by

Jy =(F̂ x + Φ̂∆U − Rs)
T (F̂ x + Φ̂∆U − Rs)

+ ∆UT (k)R̄∆U(k)

= (F̂ x − Rs)
T (F̂ x − Rs) + 2∆UT Φ̂T (F̂ x − Rs)

+ ∆UT (Φ̂T Φ̂ + R̄)∆U

where the first term on the right-hand side is independent on ∆U . It
then follows that:

min
∆U

Jy ⇒ min
∆U

Ĵy

where

Ĵy =2∆UT Φ̂T (F̂ x − Rs) + ∆UT (Φ̂T Φ̂ + R̄)∆U

=2∆UT Ĥ(k) + ∆UT Ê(k)∆U (14)

and Ĥ
∆
= Φ̂T (F̂x − Rs), Ê

∆
= Φ̂T Φ̂ + R̄.

Constraint (7) can be re-formulated as follows:

X(k)T X(k) <
2 − α

λ

⇔ x(k)T x(k) + ∆uT (k)∆u(k) <
2 − α

λ

⇔ ∆uT (k)∆u(k) <
2 − α

λ
− x(k)T x(k)

⇔ ∥∆u(k)∥ <

√
2 − α

λ
− x(k)T x(k)

⇐

⎧
⎨

⎩
[Im×m, 0, . . . , 0]∆U <

√
m( 2−α

λ −x(k)T x(k))
m 1m

[−Im×m, 0, . . . , 0]∆U <

√
m( 2−α

λ −x(k)T x(k))
m 1m

which can be written into a compact form

M∆U ≤ γ (15)
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where

M =

[
Im×m 0 · · · 0
−Im×m 0 · · · 0

]

γ =

√
m

(
2−α
λ − x(k)T x(k)

)

m

[
1m

1m

]

1m
∆
= [1, . . . , 1]T ∈ Rm.

To guarantee the stability of the closed-loop estimated system, we
introduce a terminal constraint

ŷ(k + Nc|k) = rs(k + Nc) (16)

or equivalently, with respect to ∆U

Me∆U = γe (17)

where Me =C[ÂNc−1B̂, ÂNc−2B̂, . . . , B̂], and γe =rs(k + Nc) −
CÂNcx(k).

The optimization in MPC can be formulated by

∆U∗(k) = arg min
∆U

(2∆UT Ĥ + ∆UT Ê∆U) (18)

subject to (5), (10), (15), and (17). The proposed adaptive MPC is then
implemented by using receding horizon scheme

∆u(k) = [Im×m, 0, . . . , 0]∆U∗(k). (19)

Remark 3: In the above control algorithm, ∆u(k) should be
calculated before the update of adaptive estimated parameter Θ̂(k) at
each sampling time.

Remark 4: To guarantee that the optimization is always feasible
with the constraint (15), a strategy to determine λ can be suggested as
follows.

1) Process the optimization (18) subject to (5), (10), and (17), but
without the constraint (15).

2) Select an α satisfying 0 < α < 2. Calculate

λ0 = min

[
2 − α

X(i|0)T X(i|0) ,
(2 − α)Θ̄

r̄s

]

where r̄s is the bound for the reference signal, and Θ̄ is the
conservative bound given by Assumption 1.

3) Select a positive λ such that (2 − α)/λ ≫ (2 − α)/λ0.
Tracking performances of the estimated system (5) can be described

by the following theorem.
Theorem 2: Consider the estimated system (5), with the system

output defined by (10), and the adaptive updating law given by (6). The
predictive horizon and the control horizon satisfy that Np = Nc = N .
Suppose that, the optimization (18) with constraints (15) and (17) is
feasible at the initial time. Then, with the receding horizon control
(19), tracking errors of the closed-loop estimated system are ultimately
bounded. Moreover, if the reference signals are constant, the tracking
errors can be stabilized asymptotically.

Proof: Suppose that, at sampling time k, the optimization (18) is
feasible; or equivalently, there exists ∆U∗(k) satisfying (15) and (17),
such that the cost function (13) reaches its optimal value J∗

y

J∗
y (k)=

N∑

i=0

(
∥ŷ∗(k+i|k)−rs(k+i)∥2+r̄ ∥∆u∗(k+i|k)∥2) .

The above cost function can be used as the Lyapunov candidate for the
estimated system, and it satisfies that

Jy(k)∗ ≥α1

(
∥ŷ(k) − rs(k)∥2 + r̄ ∥∆u(k)∥2)

Jy(k)∗ ≤α2

(
∥ŷ(k) − rs(k)∥2 + r̄ ∥∆u(k)∥2) (20)

where existence of α1 and α2 can be proved by using the approach
given in [19].

At sampling time k + 1, a feasible control series satisfying con-
straints (15) and (17) can be selected by

∆U(k + 1)
∆
= [∆u(k + 1|k + 1), . . . ,∆u(k + N |k + 1)]T

= [∆u∗(k + 1|k), . . . ,∆u∗(k + N − 1|k),

∆u(k + N |k + 1)]T

where appropriate ∆u(k + N |k + 1) always exists for an uncon-
strained controllable linear system to satisfy

ŷ (k + Nc + 1|k + 1) = rs(k + Nc + 1) (21)

indicating that the constraint (17) can be satisfied at time k + 1.
The constraint (15) can be guaranteed by the strategy introduced in
Remark 4. Consequently, the optimization (18) is feasible at time k + 1
if it is feasible at time k.

It follows that, at sampling time k + 1:

ŷ(k + 1|k + 1) = ŷ∗(k + 1|k)+c0 (x̂∗(k+1|k),∆Θ(k+1))
ŷ(k + 2|k + 1) = ŷ∗(k + 2|k)+c1 (x̂∗(k+1|k),∆Θ(k+1))

...
ŷ(k + N |k +1)= ŷ∗(k+N |k)+cN−1(x̂

∗(k+1|k),∆Θ(k+1))

ŷ(k + 1 + N |k + 1) = rT
s (k + 1 + N)

where ∆Θ(k+1)
∆
=Θ̂(k+1)−Θ̂(k). For simplicity, ci(x̂∗(k +

1|k),∆Θ(k + 1)) is rewritten as ci(k + 1) in the following deriva-
tions. The explicit expressions for ci (i = 1, 2, . . . ,N − 1) can be
calculated by

ci(k + 1) = C
(
Â(k + 1)i − Â(k)i

)
x̂∗(k + 1|k)

+ C
i∑

j=1

(
Â(k+1)j−1B̂(k+1)−Â(k)j−1B̂(k)

)
∆u∗(k + j|k)

indicating that

lim
∆Θ(k+1)→0

ci (x̂∗(k + 1|k),∆Θ(k + 1)) = 0. (22)

Consider the Lyapunov candidate at sampling time k + 1

Jy(k + 1) =
N∑

i=0

(
∥ŷ(k + 1 + i|k + 1) − rs(k + 1 + i)∥2

+ r̄ ∥∆u(k + i + 1|k + 1)∥2)

=
N−1∑

i=0

(
∥ŷ(k + 1 + i|k + 1) − rs(k + 1 + i)∥2

+ r̄ ∥∆u(k + i + 1|k + 1)∥2)

+ ∥ŷ(k + 1 + N |k + 1) − rs(k + 1 + N)∥2

+ r̄ ∥∆u(k + N + 1|k + 1)∥2 .
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It follows from (21) that:

Jy(k + 1) =
N−1∑

i=0

(
∥ŷ(k + 1 + i|k + 1) − rs(k + 1 + i)∥2

+ r̄ ∥∆u(k + i + 1|k + 1)∥2)

+ r̄ ∥∆u(k + N + 1|k + 1)∥2

=
N∑

i=1

(
∥ŷ∗(k + i|k) + ci−1(k + 1) − rs(k+i)∥2

+ r̄ ∥∆u(k + i|k)∥2)

+ r̄ ∥∆u(k + N + 1|k + 1)∥2

≤
N∑

i=0

(
∥ŷ∗(k + i|k) − rs(k + i)∥2

+ r̄ ∥∆u∗(k + i|k)∥2)

+ 2
N∑

i=1

ci−1(k + 1) ∥ŷ∗(k + i|k) − rs(k + i)∥

+
N∑

i=1

ci−1(k + 1)2 − ∥ŷ∗(k) − rs(k)∥2

− r̄ ∥∆u(k)∥2 + r̄ ∥∆u(k + N + 1|k + 1)∥2 . (23)

Notice that ∆Θ(k) converges to zero asymptotically, because of (6)
and Theorem 1. It follows from (22) that ci(k + 1) converges to zero.

Since the system (4) is linear, and control u(k) is bounded, there
is no finite escaping time. Consequently, after finite time, ci(k + 1)
becomes extremely small, and it follows from (23) that:

J∗
y (k + 1) − J∗

y (k) ≤Jy(k + 1) − J∗
y (k)

≤ −∥ŷ∗(k) − rs(k)∥2 − r̄ ∥∆u(k)∥2

+ r̄ ∥∆u(k + N + 1|k + 1)∥2 . (24)

It can be implied from (20) and (24) that tracking errors of the
estimated system are ultimately bounded.

Moreover, for constant reference tracking, it holds that ∆u(k +
N + 1|k + 1) = 0, indicating that tracking errors of the estimated
system are asymptotically stable. ♦

C. Analysis on the Closed-Loop System

The proposed adaptive MPC can be summarized as follows.

Algorithm 1:

1. Run the algorithm given by Remark 4 to determine λ;
2. Calculate the constrained MPC ∆u(k) through (19), where ∆U

is obtained by solving optimization problem (18) subject to (5),
(10), (15) and (16);

3. Execute ∆u(k) to the system (4), and measure x(k + 1);
4. Update the estimated parameters Â(k + 1) and B̂(k + 1) with

the adaptive updating law (6), where ∆u(k) is obtained in
Step 1, and x(k + 1) can be measured;

5. Let k = k + 1, and go to Step 2.

The stability result of the closed-loop system can be given by the
following theorem.

Theorem 3: Consider the discrete-time linear system (3) with
uncertain constant matrices Ap and Bp. With the proposed model
predictive control summarized in Algorithm 1, tracking errors of the
closed-loop system are ultimately bounded. If the reference signals are
constant, then tracking errors of the closed-loop system are asymptot-
ically stable.

Fig. 1. Tracking constant reference signals: the tracking errors are asymptoti-
cally stable.

Proof: According to Theorem 1, with the adaptive updating law
(6), the estimated parameters are bounded, and the estimated state
error x̃ decreases exactly. It follows that the system state x tracks x̂
asymptotically.

In another aspect, the MPC (19) guarantees bounded tracking
of the estimated system (5), as can be shown by Theorem 2. As
a result, with the proposed adaptive MPC given in Algorithm 1,
the system (4) [or equivalently, the original system (3)] is capable of
tracking its reference signals with bounded tracking errors. If the refer-
ence signals are constant, tracking errors of the closed-loop system are
asymptotically stable. ♦

IV. SIMULATION EXAMPLE

A simulation example is presented herein to illustrate the proposed
theoretical results. The plant to be controlled is an MIMO linear
system with two control inputs u = [u1, u2]T and two outputs y =
[y1, y2]T . Its uncertain system matrix and input matrix are given by

Ap =

⎡

⎣
0.8 0.4 1.1
0.6 1.5 −0.1
0.1 −0.2 1.8

⎤

⎦ , Bp =

⎡

⎣
0.7 0
1.2 0
−0.6 1.4

⎤

⎦ .

The output matrix is known, and it is given by

Cp =

[
1 0 0
0 0 1

]
.

The sampling interval is given by h = 0.02 s.
Suppose that, though Ap and Bp are uncertain, their nominal values

are known

Ap0 =

⎡

⎣
1 0.5 1

0.5 1.5 0
0 0 2

⎤

⎦ , Bp0 =

⎡

⎣
0.5 0
1 0

−0.5 1.5

⎤

⎦

which are used as initial values of the estimated parameters.
In this example, the initial value of the system state x is given

by x(0) = [0.15, 0.1,−0.2, 0, 0]T , The initial value of the estimated
state x̂ is set to x̂(0) = [0, 0, 0, 0, 0]T . The predictive horizon and
the control horizon are given by Np = Nc = 10, respectively. The
parameter λ is calculated by using the algorithm given in Remark 4.
In this simulation case, λ = 0.2 and R̄ = diag(0.1) are assigned. The
adaptive MPC is designed through Algorithm 1 in Section III-C.

The constant reference signals to be tracked are given by rs =
[−0.5, 1]T . Simulation results of the closed-loop system are displayed
in Figs. 1–4. As can be seen from Fig. 1, the closed-loop system
is capable of tracking the constant reference signal asymptotically.
The transient performance is satisfactory, though the overshoot and
vibration are relatively large. The reason for the large overshoot and
vibration might be that the estimated parameters were vibrating before
reaching their steady values. It is shown in Fig. 2 that the estimated
output errors defined by ỹ

∆
= y − ŷ converge to zeros, as are predicted
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Fig. 2. Estimated output errors: they converge to zeros.

Fig. 3. Control inputs: they are within corresponding constraints.

Fig. 4. Norm of estimation errors: it is bounded (upper). The variation of
estimated parameters: it becomes zero (lower).

Fig. 5. Tracking bounded time-varying reference signals: the tracking errors
are ultimately bounded.

by Theorem 1. The rates of control signals are displayed in Fig. 3,
where they are within corresponding constraints. It can be seen from
Fig. 4 that, the norm of estimation errors is ultimately bounded, and
the variation of estimated parameters becomes zero.

To better illustrate the performances of the closed-loop system, the
tracking result with respect to bounded time-varying reference signals
is presented. The time-varying reference signals are given by rs(k) =
[0.4 cos(8hk), 1]T . Control parameters are assigned as those in the
constant tracking case. The simulation result is displayed in Fig. 5. As
can be seen, with the proposed adaptive MPC, the tracking errors with
respect to the time-varying reference signals are ultimately bounded.
This result is in well accordance with Theorem 3.

V. CONCLUSION

In this technical note, an adaptive model predictive control is pro-
posed for unconstrained discrete-time linear systems with parametric
uncertainties. The control objective is reference tracking. Parametric
uncertainties are estimated online by adaptive estimated parameters
with a simple adaptive updating law, such that the prediction in MPC
can be processed in case of parametric uncertainties. The proposed
adaptive strategy transforms the MPC design for the unconstrained
system with parametric uncertainties into a constrained MPC design
for the estimated system. An MPC is then designed for the estimated
system, such that bounded tracking of the closed-loop system can be
guaranteed. Furthermore, if the reference signals are constant, tracking
errors of the closed-loop system can be proved to be asymptotically
stable. Performances of the closed-loop system are substantiated by
both theoretical proofs and simulation results.

Future topics of this research may include: 1) some less conservative
strategies to determine the updating rate, 2) finite-time approaching
of the estimated system, 3) extension of this research to constrained
adaptive MPC design, and 4) nonlinear adaptive MPC.
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