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State Estimation for Periodic Neural Networks With
Uncertain Weight Matrices and Markovian
Jump Channel States

Yong Xu, Zhuo Wang, Deyin Yao, Renquan Lu, and Chun-Yi Su, Senior Member, IEEE

Abstract—This paper studies the state estimator design for
periodic neural networks, where stochastic weight matrices B (k)
and packet dropouts are considered. The stochastic variables,
which may influence each other, are introduced to describe
uncertainties of weight matrices. In order to model the time-
varying conditions of the communication channel, a Markov
chain is employed to study the jumping cases of the stochas-
tic properties of the packet dropouts (i.e., Bernoulli process
with jumping means and variances being used to handle the
packet dropouts). A state estimator is constructed such that the
augmented system is stochastically stable and satisfies the Ho
performance. The estimator parameters are derived by means
of the linear matrix inequalities method. Finally, a numerical
example is provided to illustrate the effectiveness of the proposed
results.

Index Terms—Markov chain, neural networks (NNs), packet
dropouts, state estimator, stochastic parameter.

I. INTRODUCTION

HE dynamical analysis of various neural networks (NNs)

has attracted widely breadth of research interests [1]-[7].
Many remarkable theoretical works have been proposed dur-
ing the past few decades, such as stability analysis for
the NNs with time delays [8], [9], performance studying
for the NNs with mixed time delays [10], synchroniza-
tion addressing for the NNs [11], and so on. For the
Markovian jump NNs with time delays, the stability and the
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performance were studied as well in the past decade [12].
More recently, artificial NNs have been used to deal with
pattern recognition, robotics control, etc. Thus, studying on
the NNs is an important practical problem, which needs more
attention.

The periodic character exists in many real systems. Thus
periodic systems have been widely studied in a number of
fields, and many influential theoretical results, including the
system analysis and synthesis [13], the optimal filter and
the optimal controller design [14], the system fault detec-
tion [15], and so on, have been published for periodic
systems. In [16], the state estimation problem for periodic
systems with transmission delays and multiplicative noise
was addressed. An efficient control design technique for the
discrete-time positive periodic systems was developed [17].
Recently, the periodic scheduling method has been intro-
duced to networked control systems to deal with the issue
of the communication capacity constraints [18]. For the NN,
the periodic property also exists, and some works have
been completed [19]. However, how to make full use of
the periodic properties of the NNs to analyze the stabil-
ity, the performance, and design the corresponding estimator
become challenging problems, which have not been fully
considered yet.

To know the full states of the NNs is required to analyze
the biological NNs and to accomplish a specified work in the
artificial NNs. Due to the technical restrictions, it is infeasi-
ble to obtain full states of the NNs directly, which motivates
researchers to design the estimator for the NNs on the basis
of the available measurements [20]-[22]. Recently, networked
control systems, which possess the advantages of reducing the
cost, facilitating the maintenance, improving the flexibility,
and so on, have attracted a lot of attention in the past two
decades [23]-[27]. How to use the imperfect measurements
obtained via the shared networks to estimate the states of the
NNs becomes a hot spot, and some related works have been
published. In [28], the asynchronous H, filter was designed
for the Markov jump NNs with multiplicative noises on the
basis of the measurement transmitted via the channel with
randomly occurred quantization. In [29], the event-triggered
method, which can be used to improve the use ratio of the
communication channels, was employed to transmit the mea-
surements of the NNs with multidelays, and the estimator was
designed using the received information. How to further study
the condition of the communication channels to improve the
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estimator performance of the NNs becomes a new challenge
problem.

Parametric uncertainties, including norm bounded uncer-
tainties, polytopic uncertainties, and stochastic uncertainties,
are the important factors which impact on the stability and
the performance of the systems. The reasons which attract
researchers to investigate the stochastic uncertain systems are
summarized as follows.

1) During the system model identification, it is too complex
to yield the precise system model, and the stochas-
tic uncertain method is generally used to simplify the
system model [30], [31].

2) The systems and the measurements are usually disturbed
by the stochastic multiplicative noises [32].

3) The stochastic channel uncertainties, like channel fading,
are unavoidable, because the communication channels
are always disturbed by the environmental noises [33].

For the NNs, the weight connections between the neu-
rons are always influenced by the external disturbance, which
motivates researchers to study the uncertainties of the weight
matrices [34]. Thus, how to use the stochastic uncertain
model to describe the weight connections and design a robust
estimator is an important problem.

Motivated by the discussion made above, this paper stud-
ies the issue of state estimation for the periodic NNs with
uncertain weight matrices and unreliable communication chan-
nel. The state estimator is designed based on the imperfect
measurements. According to the linear matrix inequalities
(LMIs) methods, sufficient conditions are obtained to ensure
that the augmented system is stochastically stable and has
an H,, performance index y. Finally, the effectiveness of
the achieved results is illustrated by a numerical example.
The main contributions of this paper are summarized as
follows.

1) The stochastic periodic matrices B(k) are employed to
model the uncertain weight connections among the neu-
rons via the mean and the variance, which also can
describe the influences among different connections by
the covariance. Thus it is more general than the existing
uncertain models [35], [36].

2) A Markov chain, whose transition probability depends
both on the states of the Markov chain and the system
mode (i.e., periodic Markov chain), is introduced to
describe the communication channel states. Different
from the existing works, Bernoulli process, whose
stochastic properties depend on the channel state, is
employed to deal with the packet dropouts.

3) In order to improve the performance of the estimator, the
system mode and channel state are both introduced to
design the estimator gains (i.e., the mode and channel
state-dependent estimator is proposed for the periodic
Markov jump system).

In the following, the discrete-time NNs with uncertain
weight matrices and Markovian jump channel states are
described in Section II. In Section III, the sufficient con-
ditions of stochastic stability and Hy, performance for the
augmented system are derived by utilizing the LMI approach.
The parameters of the estimator are designed in Section IV.
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An illustrative example is presented in Section V. Finally,
Section VI concludes this paper.

Notations: The space of n-dimensional vector, the set of
m x n real matrices, and the infinite sequence of square
summable are denoted by R”, R”*" and /5[0, +00), respec-
tively. The diagonal matrix is denoted by diag{-}, 7, € R™*"
stands for the identity matrix. For a matrix, the term induced
by symmetry is represented as *. Superscript T stands for
the transposition of a matrix. For a stochastic variable ¢ (k),
its probability and expectation are denoted by P{¢(k)} and
E{¢ (k)}, respectively. The covariance of variables ¢j(k) and
$2(k) is denoted by C{¢y(k), &2 (k)}.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
A. System Description

The discrete-time periodic NNs with n neurons are
expressed as

n
xi(k+ 1) = a;g@xi(k) + Z bij.oq0 (k) gj(xj (k)
=1

+ eomwitk), i=1,2,....,n (1)

where x;(k) € R means the state variable of neuron i, w;(k)
stands for the external disturbance belonging to l» € [0, 00).
The m-periodic scalar 6(k) is defined as

0(k) = mod(k,m) +1 e N, £{1,2,...,m}.

For the periodic NNs (1), m-periodic constants a; g and
eioky are known. bj g (k) is the interconnection strength
between neurons i and j, which is a stochastic parameter with
the following properties [31]:

E{bijom R} = bijew
Clbijow. bap.ow | = Cijap.ok)- (2)

The stochastic variable can be further rewritten as
bij.o00 (k) = bijox) + sz,e(k) (k).

The neuron activation function g;(-) satisfies g;(0) = 0 and
the following condition [37]:

- gi(x1) — gi(x2) <

ll
X1 —x2

3)
where [;” and l;r are known constants.

Remark 1: Tt is difficult to obtain the accurate weight
of the connection among the neurons, the norm bounded
model [35] and the interval model [36] have been used to
deal with the uncertain weight matrix. This paper applies the
stochastic variable bjj gx) (k) to describe the uncertain weight.
According to (2), the merit of this model is that it can reflect
the interaction among the weight matrices. In addition, the
stochastic properties of the weight matrices are periodical,
which is consistent with the mode of the NNs.

The periodic NNs (1) can be further expressed as

x(k+ 1) = Aoox(®) + (Bago + Bo () ) BK(K) + Eagyw(k)
)
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P(5,/8,,0(k))

P(55,,8(k)) P(S45..0(k))

P(5,/S2.6(k)) P(84/85,6(k))
P(5,/8;,6(k))
Fig. 1. Mode-dependent Markov chain with three states.
where

gx(0) = [g101 () g202K)) ... gaCen(k))]"
x(k) = [x1(k) x2(k) ... x,(k)]"
w(k) = [wi (k) wa(k) ... wa(R)]"
A@(k) = diag{al’g(k), az.6k) - -

Bogy = [bij.ow)),, e Boa (k) = [lv?ij,e(k)(k)]

Egqy = diag{erom). 2,000, - - -

o )

nxn

, en,e(k)}-

The measurement and the signal to be estimated are denoted
as follows, respectively:

y(k) = Coyx(k) + Doyw(k)
z(k) = Spryx(k) &)

where Cypy € RPX", Dy € RP*", and Spy € R?*" are
m-periodic known matrices.

Measurements obtained via the sensors are always transmit-
ted through the wireless communication channels. However,
for the wireless channels, they are easily influenced by the
transmission energy and the environment. Therefore, the chan-
nel states are time varying [38]. In this paper, Markov chain
Sky e No. & {1,2,...,s), depending on the system mode
0 (k), is used to describe the variation of the channel states, and
the transition probability matrices TT* £ {r. } are assumed
to be m-periodic and given by

7, =P8+ 1) = v|§k) = o, 0(k) = 1} 6)

where 0 < 7t < 1, Vo,v € N, and ¢ € N, and
Yook, =1, Vo € N, and 1 € NV,,,.

Remark 2: Note that the transition probability (6) of
Markov chain depends not only on the state §(k), but also
on the mode of the periodic NNs. An example of three states
of such Markov chain is shown in Fig. 1. The advantage of
using this Markov chain is that the channel states are related
to the mode of the NNs. For example, if the mode of the NNs
t € N, is important, the channel state can be enhanced by
increasing the transmission energy to improve the performance
of the NNs [18], [39].
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For wireless communication channel, packet dropouts are
unavoidable [40]. This paper uses the channel-state-dependent
Bernoulli process &5k (k) to describe the packet dropouts, that
is, the measurement y(k) received by the estimator is

Y(k) = &5 (R)y (k) (7
where Bernoulli process &5 (k) satisfies the following
stochastic properties:

E{&s a0 (0} = Esqry
Z \2
E{(ES(k) k) — &) } = &5 ®)
Remark 3: Packet dropouts have been studied by a num-
ber of researchers in the past two decades. Bernoulli process
and Markov chain are the main stochastic models to describe
packet dropouts of NCSs. This paper studies the case where
the packet dropout rate depends on the channel states, which
is more general than the existing ones [26].
B. State Estimator
For the NNs (4) and (5), the state estimator is synthesized as

X(k+1) = ApyX(k) + By g(X(k))
+ &t (DKo, (y(k) — CoaX(k))
2(k) = SoX(k) )
where X(k) € R", Z(k) € RY, and Ky sk is the state
estimator gain to be designed.
Let the estimation error be e(k) = x(k) — %(k), and Z(k) =
z(k) — z(k). Then the state error dynamic is obtained as
e(k + 1) = Agaye(k) + Bon&(x(k), X(k))
+ Boayg(x(k)) + Egyw(k)
— &5 (DKo o),5 k) (Cowye k) + Doy w(k))

z(k) = Soye(k) (10)
where g(x(k), X(k)) £ g(x(k)) — gX(k)).
Define x(k) £ [x (k) eT(k)]', and Wk =

[gT (x(k)) gT(x(k), %(k))]T. Then by combining (4) and (10),
au augmented system can be expressed as
X(k+ 1) = Ao, s00X (k) + Eso (K)Ag k), 500 ()
+ (Bowy + PBoy (k)W (k) + Egyw (k)
+ &5ty (D) Eg i 50 W(k)

7(k) = SpX(k) {an
where
Aswy.s) = [ 4o "
*),8(k) 0 Ak — EswKow.sCo
Avgosw = | y
6(k).8(k) = 10— Ko).s0Coky
[Boy (k) 07 Bow 0
Bowy (k) = | » Bow =
ok (k) | Bow(®) 0 ) 0 By
. i E9 1) }
Eoqy = :
0 (k) | Eoy — Esto Ko .s0 Dok
_ i 0
E =
0(k),5(k) | — Kok, Dok ]
Sor = [0 Sow ] Esw (K) = sy (k) — Es -
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The following definitions are recalled for the main results.

Definition 1 [41]: The augmented system (11) is stochas-
tically stable with w(k) = 0, if the following inequality holds
Vx(0), and §(0) € NV¢:

E{ Z “f‘(k) 1%0).50) Hz } < +o00.

k=0
Definition 2 [42]: Given a scalar y > 0, the augmented
system (11) is said to be stochastically stable with Hy,
performance y, if the system with w(k) = 0 is stochasti-
cally stable, and for all nonzero input w(k) € [0, +00), the
following requirement holds under zero initial condition:

E{leﬂk)b(mllz} <2 Iwm)*
k=0 k=0

The aim of this paper is to construct a state estimator of (9),
which depends on the system mode and the channel state, such
that the following two conditions are satisfied simultaneously.
1) The augmented system (11) is stochastically stable with
w(k) = 0.

2) Under zero initial condition, for all nonzero w(k) €
[>[0, +00), the augmented system (11) is stochastically
stable with Hy, performance y.

III. MAIN RESULTS

The sufficient condition of the stochastic stability and the
Hy, performance for the augmented system (11) has been
obtained, which is given as follows.

Theorem 1: Given a scalar y > 0, the augmented
system (11) 1is stochastically stable and has an Hy
performance index y, if matrices P, > 0, M > 0, and
R > 0 can be found such that the inequalities in (12) hold
Vi€ Ny, @ e N,

o1 P 0 Azw @5 ST
* [OP)) 0 B:F 0 0
b — * * — )/21 E[T D35 0 <0
* * * — Dyy 0 0
* * * * —®s55 0
* * * * * -1
(12)
where
Ly =diag{l;, Iy, ..., I, }, Ly = diag{i] ., ..., I}
M = diag{m, my, ..., m,}, R = diag{ry, ra2, ..., ry}
om0
O = _2[ 0 LIRL |~ Pio
O — | AM +LIMT 0
2= 0 LTR +LTR"
D5 = ,’,‘-}Azw, D35 =/ ;‘,ELT,G,
—2M 0 T
@y = [ 0 _ 2R} +E{%, (k)P %.(k)}
N -1
Dyy = P55 = (Z ﬂfng,v) :
v=I1
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Proof: The stochastic stability of the augmented system (11)
without noises (i.e., w(k) = 0) is considered first. The
following Lyapunov function is constructed:

V(R(k), 0(k), 8(k)) = X" (k) Py sy, 500X (k)

where Py sy > 0. Let (k) =, 0(k+1) = ¢, §(k) = @,
and §(k+ 1) = v, then the expectation of AV (X(k), 6(k), §(k))
is defined as

13)

E{AV(X(k), 1, @)}
LEVEKk+ 1), ¢, v) kb — VEK), L @)
=E{X"(k+ DPc X(k+ D} — X" (OP, o X(k). (14)

Then, substituting the augmented system (11) without noise
term into (14) yields

E{AV(R(K). 1, @)} = KT0A] , > 7t P vAL o X(K)
v=1

N
+ EXXT AT, D wh  Pe AL X(K)

v=1

s
+ 28T (AT, Y "l Peu B (k)

v=1

+ W (0)B] Y 7t Pe B (K)
v=1
+ VT (OE{ B (k)P , B, (k) } ¥ (k)
— ()P, X (k). (15)

According to (3), the nonlinear neuron activation function g;(-)
satisfies

gitxi(k)) — I xi(k) 0

xi (k) -
gi(xi(k)) — [ xi(k) 0 a6)
xi(k)
For any positive scalars m, > 0 and r, > 0, h =1,2,...,n,

we have the following inequalities:

—Zth(gh(xh(k)) — Ly (k) (g e (k) — L xn (k) = 0

h=1
(17)
and
-2 Z rn(@n e (k), 2 (k) — I en(k))
- x (8n(xn(k), 3n(k)) — I en(k)) = 0. (18)
The conditions (17) and (18) imply that
— 2(g(x(k)) — Lox(k)) "M (g(x(k)) — Lix(k)) = 0 (19)
and
—2(&(x(k), k(b)) — Lre(k)) 'R
x (g(x(k), X(k)) — Lie(k)) = 0.  (20)
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Substituting the conditions of (19) and (20) into the difference
of the Lyapunov function (15) in the mean senses, one has
E{AV(X(K), t, @)} < 0" (k)Qn(k)

with

k) =[xk ¥k, Q= [Q,,fl g;ﬂ

s
~T . ~
Q“ = At,w anvps‘,VAl,lD'

v=1

N
+ 5;ALTw antvvps',v‘ahw

v=1
LTML 0
_2[ “0 1 LgRLl}_P"w

s
Q= A;rw Znévvps‘svét
v=1
T TasT
n LM+LiM . 0 -
0 LR+ LR

N
Q= Bl Y 7l PeoB, + E{B] k)P, B,(k)}
v=1
M 0

- 2[ ; R}.
By using the Schur complement lemma to (12), the inequality
E{AV(X(k), 0(k), w)} < O holds. Thus, we can derive the
augmented system (11) is stochastically stable on the basis of
the method proposed in [43].

Next, we begin to study the Hy, performance of the
augmented system (11) with disturbance w(k). We have

E{AV(X(k), 1, @)}
=E{X"(k+ DPc Xk + 1)} — X' (K)P, X (k)

s
=X (DA, Y 7l Pe AL X(K)

v=1

N
+ EEXT VAT, Dl Pe Ao X(K)

v=1

s
+ 2K AT, > "l PV Ew (k)

v=1

S
+ 265XT (AT, Y "l P Ey oy W(k)

v=I

N
+ 28T (AT, Y il Pe B (k)

v=1

s
+ 2wl (k)ET Z wl Pe BV (k)

v=1

S
+ VT B Y " xl, Pe B (k)
v=I1

+ VT OE[B] (k)Pc., B,k | W (k)

S
+ EEWIOE! ;> 7 PevEL o w(k)

v=1
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s
+ WHROET Y wt Pe Ewk) — X ()P, o X(K).
v=1

2D

Define the following index J(00):

J(00) = ZE{iT(k)i(k) - ysz(k)w(k)}
k=0

= Y E{7" 0k - v W lowk) + AVER®K), L )
k=0

— E{V(X(0), 6(0), 8(c0)) } + V(X(0), 6(0), §(0)).

(22)

Considering the fact E{V(x(00),0(c0),5(c0))} > 0, the
zero initial condition, and the inequalities of the non-
linearities (19) and (20), the following condition holds

from (12) and (22):

J(o0) < Y E{n"()Pnk)} <0
k=0

(23)

where
nt (k)2 [Tk Tk wik].

Thus we obtain that the augmented system (11) has H
performance y. |

In order to facilitate the estimator gain design, a new
theorem is obtained.

Theorem 2: Given a scalar y > 0, the augmented
system (11) is stochastically stable and has an Hy
performance index y, if there exist matrices P, o > 0, M > 0,
R > 0, and W, 45 such that the inequalities in (24) hold
Vi€ Ny, @ e N

P P2 0 Iy Tys ST
L)) 0 'y 0 0
2
* * —yl T34 TI'zs 0
* * * I'ye O 0 <0 24
* * * * I'ss O
* * * * x* =1

where

Mg = AIwWLTw’ 5=y zj—(;A:rwW;Fw
Iy = BZFWT [34 = E;FWLTZU

Lw>

S
T
Ty =Tss =) 7 Pow = Wow = Wiy

v=1
_ Jex T T
F35 - wEt,wWL,w'

Proof: For any matrices W, , Vi € Ny, and Yoo € N, the
following inequality holds:

S S 71
(z n P w) (z P)
v=1 v=1
s T
X (Z TpyPev — Wl,w> >0

v=1
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which implies

—1
S
—Wm<2ﬁ%fw> W

v=1

N
<Y mh Pey = Wow — W (29)
v=1
Hence, based on (25), we derive the following inequalities

hold Vi € N,, and @ € N, from (24):

P11 Pypp 0 My Iis ST
* [O5)) 0 My 0 0
2
* * —y T3q Tias 0
* * * Agg O 0 <0 @6
* * * *  Ass 0
* * * * * —1
where
s -1
Asg=Ass =W, (Z n;mPg,v) W,
v=1
Performing a congruence transformation using
diag{l, I, 1, W;l Lw,l} yields (12), that is, the stochas-

tic stability and the Hy performance of the augmented
system (11) are ensured. u

IV. ESTIMATOR DESIGN

What we have to point out is that the inequalities (24) in
Theorem 2 are not LMIs. Therefore, the result of Theorem 2
is going to be transformed by using linearization technique.
The parameters of the state estimator in (9) can be designed
in the following theorem.

Theorem 3: Given a scalar y > 0, the augmented
system (11) is stochastically stable and has an Hy
performance index y, if there exist matrices

|:P[1‘w P§W:| -0, [W; Wéw

x P, W, W,

Kol

], M=>0 R>0

and K, 5 such that the inequalities in (27) hold Vi € N,
w e N,

Ty Yo 0 Y JEETs ST
* T 0 Y24 0 0
o | x ok =V M s 00
* * * Y44 0 0
* * * * Ts5 0
* * * * * —
(27)
where
o — [—P!  —2LIML, P,
T * — P, —201RL,
rrT TysT
Y = LM+ LiM 0
i 0 LR+ L{RT
- z T
T — WzlwAt Wtz,wAL - ‘ijw’ct,wcz
H _WEwAL WEWAL - éw’cz,wct
- T T
Yis = 0 - ICL,ZD'CL Yas — _’CL,ZITDL
5= _O -KxC |~ 3= —K\,. =D,
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[ o Q0
Tzz—[ 0 —2R}+[O o}

0 =23 Y e (PL),

v=1 j=1 i=1

+2222”mv91rjm( )

v=l j=1 i=1

E Y Y (L),

v=1 j=1 i=1

thzert WLZZD'BL !
Yo =| o5 3
W =B W =B
= T
Yo — [(Wl +W2,) E — g;,/cl,wz)t]
(Wtz,w + W3 ) - E:;"CL,WDL
_ _ ZS vaé v Wzl,w - th,jz;r
Tyq = Ys5 = [ .
Zf) 17-[1271)P2IJ_VV2 _Wéiw]
s .
Zv: évv S, W - Wt,w

Then, the parameters of the state estimator in (9) are given as

-1
Kt,w = (wa)

Ko
Proof: Define the partition matrices of P, 5 and W,
in (24) as

pl, P’
le_[ g’w}v
* P

Lo

(28)

Then we have
N ) F O
v=1

where

{BT(k)an LB (k)}

+ 2E{BT(I<) > wb PLLB, (k)}

v=1

+ E{BT(k) an 3B (k)}

v=1

Since the matrix multiplication is not commutable, every entry
of the matrix has to be computed. First, the (r, o)’ entry of
the matrix BLT(k)Plgm is

(srorL,)

=Y (Bw), (L),

m=1

Furthermore, we obtain that

(Brwrt o)

-3 (Bw), (1), (),
m=1

e ), (), (),

m=1

(30)
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Since (lvi(k)),-j, (Plg’v)aﬁ (i,j,a, 8 =1,2,...,n) are scalars,
they are multiplication commutable. According to the proper-
ties in (2), we have

«:{(Bm/o)ij, (Bw). ﬂ} = Oju.
It follows from (30) and (31) that

€2V

n
E{BI0PLBW0| =Y (Pl
i=1

ro
n
. P! ) )
+ + zgtma,t( <,V in
=
Then, we obtain that
N n n
T 1 7 1
E{BL (k)Pg,UB[(k)]m = Zzn,;,ug,-,jg,l(f’w)ij. (32)
v=1 j=1 i=1
Similarly, we can achieve that

K n n
BBl 0P BM] =33 o (PL)

v=1 j=1 i=1

K n n
BBl 0P BW} =3 e (P),

v=1 j=1 i=1 Y

i
. (33)

Considering the partition matrices P, o, W, » in (29), and
the conditions (32) and (33) of the stochastic terms, the
inequalities in (27) guarantee that the conditions in (24) hold
by defining K, 4 ES WEthw, that is the conditions (27) guar-
antee that the augmented system (11) is stochastically stable
with Hy, performance y. |

Remark 4: The MATLAB tool box does not restrict the
number of the decision variables for the LMIs, that is, the
LMIs can contain thousands of decision variables as long as
the computer capacity can support them. The number of the
decision variable of (27) is 5smn® + (sm + 2)n. Therefore,
the estimator can be designed based on Theorem 3, if the
dimension of the NNs is not too large.

V. NUMERICAL EXAMPLE

An example is employed to demonstrate the developed
results for the stochastic NNs with uncertain weight matri-
ces and packet dropouts. The following two-periodic NNs are
considered:

08 0 0] 075 0 0
Ar=]0 075 0 [[Aa=| 0 07 0
0 0 08] 0 0 075
02 03 0.23] 0.12 02 0.1
Bi=|01 01 022{,B,=| 0 02 0.1
(02 02 0.1 | 03 02 0.1
Bi@ () = diag{0.0201(k), 0.0201(k), 0.0392(k)}
By (k) = diag{0.0301(k), 0.0391(k), 0.0202(k))

110 110
Cl:[o 1 1}’ sz[o 1 1]
015 0 0 0.1 01 0
D‘Z[o 0.1 0.1}’D2=[0 0 0.15}
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k

Fig. 2. Trajectories of xj (k) and its estimation.

01 0 0 01 0 0
Et=|0 01 0 |[,Eb=|0 008 0
0 0 005 0 0 0.1

Si=[05 05 05],$%=[0.5 05 05]

where ¥;(k) and (k) are two correlated Gaussian white
noises with expectation E{6;(k)} = E{6.(k)} = 0, the vari-
ance C{0;(k)} = 1 and C{#>(k)} = 0.5, and their covariance
C{o1(k), O2(k)} = 1.

Assume §(k) € {1, 2}, which means that §(k) is subjected
to two states Markov chain with the transition probability
matrices being the following forms:

0.6 04 0.5 0.5

1 _ 2 _

m = |:0.2 0.8i|’ = |:0.3 O.7i|'

The neuron activation functions are, respectively, supposed
to be

g1(x1(k)) = tanh(0.2x; (k))
g2(x2(k)) = tanh(—0.15x2(k))
83(x3(k)) = tanh(0.2x3(k))

which means
Ly = diag{0, —0.15, 0}, L, = diag{0.2, 0, 0.3}.

Based on Theorem 3, the gains of the estimators are

[ 04366  —0.1756]
Kip = | —0.0478  0.1935

| —0.1073 03683 |

[ 04165  —0.0287]
Kip=| 01307 00171

| —0.0239 03800 |

[ 0.6614  —0.2896]
Ka = | —0.2713  0.5006

| —0.0237 03932 |

[ 0.0607  0.1084 ]
Kn=| 0188 —0.1770

| 04751 0.7955 |

and the optimal Hy, performance is ypyin = 0.3814.
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Fig. 3. Trajectories of x5 (k) and its estimation.
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Fig. 4. Trajectories of x3(k) and its estimation.
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Fig. 5. Channel states and the packet dropouts.

Now, assume that the external disturbance w(k) is
exp(—0.06k) sin(0.5k)

exp(—0.07k) sin(0.5k)
exp(—0.08k) sin(0.5k)

w(k) =

and initial conditions are x(0) = [0 0 O]T, and %X(0) =
[0 0 O]T, respectively. The packet dropout rate is & = 0.8,
and & = 0.7. Figs. 2-7 show the simulation results. The states
of the NNs and their estimations are shown in Figs. 2—4.
Fig. 5 depicts channel state §(k) and the packer dropouts

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 11, NOVEMBER 2018

)
0,(k)

2}

Fig. 6. Stochastic variables ¥ (k) and ¥ (k).

0151 —
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Fig. 7. Estimation error of the output z(k).

&(k). Fig. 6 plots the noises of (k) and v (k), respec-
tively. The estimation error of the output z(k) is shown
in Fig. 7. According to the noises w(k) and Fig. 7, we

have /Y 20 1Z(K)[?> = 04814 < y /Y o llwk)|? =

1.2609, which implies that the Hy performance is
satisfied.

VI. CONCLUSION

The state estimator design issue has been studied for the
periodic NNs with uncertain weight matrices, Markovian
jump channel states, and packet dropouts. The stochastic
parameter variables have been applied to characterize the
random fluctuations of the connections to make the NNs
more close to the practical model, and a Markov chain
has been applied to describe the variation phenomenon of
the channel states. By using the Lyapunov-like theory, a
state estimator has been constructed such that the stochas-
tic stability and the Hs, performance of the augmented
system are ensured. Finally, an example has been imple-
mented to illustrate the validity of the proposed results. How
to design the state estimator for the NNs with quantizer,
event triggering mechanism, or unreliable sensors based on
the Markov jump system analysis technique are our future
works [44]-[47].
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