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Abstract— Time-varying (TV) nonlinear systems widely exist in
various fields of engineering and science. Effective identification
and modeling of TV systems is a challenging problem due to
the nonstationarity and nonlinearity of the associated processes.
In this paper, a novel parametric modeling algorithm is proposed
to deal with this problem based on a TV nonlinear autoregressive
with exogenous input (TV-NARX) model. A new class of multiple
beta wavelet (MBW) basis functions is introduced to represent
the TV coefficients of the TV-NARX model to enable the tracking
of both smooth trends and sharp changes of the system behavior.
To produce a parsimonious model structure, a locally regularized
ultraorthogonal forward regression (LRUOFR) algorithm aided
by the adjustable prediction error sum of squares (APRESS)
criterion is investigated for sparse model term selection and
parameter estimation. Simulation studies and a real application
to EEG data show that the proposed MBW-LRUOFR algorithm
can effectively capture the global and local features of nonsta-
tionary systems and obtain an optimal model, even for signals
contaminated with severe colored noise.

Index Terms— EEG, locally regularized ultraorthogonal for-
ward regression (LRUOFR), multiple beta wavelet (MBW),
parametric estimation, system identification.
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I. INTRODUCTION

MOST processes in nature including biomedical sig-
nals exhibit nonstationary properties where numerous

transient components are associated with the underlying psy-
chological activities. Identification of nonstationary systems
is a challenging problem and has been attracting widespread
attention [1]–[3]. One common strategy to characterize such
nonstationary processes is to establish a TV nonlinear autore-
gressive with exogenous input (TV-NARX) model [4]. The
wide application and popularity of this model mainly stems
from its easy-to-compute parameters [5].

Many approaches have been proposed to identify TV-NARX
models, which can be broadly classified into three categories:
multimodel approach [6], adaptive estimation algorithm [7],
and basis function expansion method [8], [9]. In the first
strategy, a global system model is divided into a set of local
models by a time-shifting window; then, the local model
can be treated as a stationary process and identified by a
time-invariant modeling approach [10]. However, many non-
stationary signals, e.g., EEG, cannot simply be partitioned
into stationary time series since it is difficult to determine
the size of the window. For example, if the window is too
large, then it is not appropriate to treat the segments to be
stationary; if, however, the window is too small, the segments
turn out to be too short that the estimates may be unreliable.
In the second strategy, the TV coefficients of the model are
considered as random processes with certain stochastic model
structure [11], [12]. The main limitation of this scheme is the
possible tracking lag presented in the estimated parameters due
to the slow convergence rate, which makes these approaches
inaccurate for tracking abrupt changes of the underlying
signals [13], [14]. Recently, the third strategy combining
basis function expansion with linear regression approaches
has been proposed to identify nonlinear TV systems, where
TV parameters are approximated by a set of predefined basis
functions [14], [15]. In this way, the unknown TV parameters
can be converted into a set of constant coefficients of the basis
functions [16]. Specifically, the implementation of this strategy
can be briefly described in two steps.

Step 1: A basis function expansion approach is used to
transform the original TV model to a time-invariant regression
problem [8].
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Step 2: A model structure selection algorithm, such as the
classical orthogonal forward regression (OFR) algorithm [17]
or its variants [18], [19], is applied to obtain a parsimonious
model which includes a relatively small number of regression
terms.

In the first step, an over-complete set of basis functions,
with good presentation properties, is employed to approximate
the TV coefficients. Hence, an appropriate selection of the
basis functions is critical to guarantee the performance of
the identified model if we want the model to be sparse [16].
For instance, numerical experiments showed that the Legendre
polynomials are efficient for smoothly or slowly changing
parameters, and Walsh functions generally work well for
piecewise stationary TV parameters [20]. For a system with
sharply or rapidly changing parameters, Li et al. [19], [21]
introduced multiwavelets formed by cardinal B-splines to
approximate the TV coefficients, which has been verified in
simulations and real biological signals. Although the mul-
tiwavelets can be an appropriate choice in the expansion
process, the simple waveform structure and few variants of
cardinal B-splines limit its ability to capture local information
of TV signals [22]. To overcome this limitation, a novel class
of basis functions formed by multiple beta wavelets (MBWs) is
proposed in this paper, where the beta wavelet is a compactly
supported one-cyclic wavelet introduced in the work of De
Oliveira and De Araújo [23]. Beta wavelets have been widely
used in some fields due to the excellent flexibility and good
approximation characteristics, such as image processing and
signal compression [24], [25]. However, to the best of authors’
knowledge, not much work has been done in the existing lit-
erature on exploiting the attractive properties of beta wavelets
and applying them to TV nonlinear system identification.
In particular, considering that the beta wavelet has a waveform
similar to a neural pulse signal and possesses various variations
controlled by two characteristic parameters [23], this paper
will explore its power in capturing the local information of
the abrupt positions of TV coefficients.

The main tasks of the second step in system identification
are model structure detection and model reduction, which
aims to remove redundant regression terms and produce a
parsimonious model structure. Although the OFR algorithm
is effective and commonly applied in the process of system
identification, the determination of the optimal model structure
is still a challenging work when the system is not persistently
excited or data are severely contaminated by noise [26].
To improve the performance and accuracy of resulting model
structure, Li et al. [19] employed the advanced ultra-OFR
(UOFR) algorithm to identify significant regressors and find a
more accurate model compared to the classical OFR algorithm.
The UOFR algorithm detects the correlation among the data
points of time series and determines the model structure by
using the hidden information that is not fully explored by the
traditional least-squares type algorithms. However, the UOFR
method ignores the interference of overlapping information
among candidate regressors, resulting in the inclusion of
spurious or redundant model terms in some cases. In order
to further improve the performance of the UOFR approach
for dealing with overlapping information in signals, this paper

introduces a locally regularized UOFR (LRUOFR) algorithm
for system identification, which assigns an individual regu-
larization parameter to each candidate term and iteratively
updates the parameters to achieve optimal estimates [27], [28].
In fact, LRUOFR not only considers the interconnections
among the sample points of the signals [19] but also evaluates
an individual influence of each candidate regressor in the
OFR process [28]. As illustrated in the example presented
in Section III-A, the proposed LRUOFR approach takes into
consideration more regressor information and is capable of
selecting significant terms in the model identification process.

In this paper, a novel MBW-LRUOFR algorithm is proposed
for the identification of TV-NARX model, where a finite
number of predefined MBW basis functions are used to
approximate the TV coefficients, and the model structure is
determined by using the LRUOFR algorithm together with
the adjustable prediction error sum of squares (APRESS)
criterion [26], [28], [29]. The MBW basis functions are
locally linearly independent and have many variations [23],
which is capable of providing a powerful tool for representing
TV signals. The local regularization-based method has been
proven to enhance the sparsity of the resulting model and
effectively avoid numerical ill-conditioned problems during
the selection of significant terms [28]. With the incorporation
of the APRESS cross-validation criterion, the model size (i.e.,
the number of model terms to be included in the final model)
can be well determined [29]. One of the main contributions
of this paper is that for the first time, the MBW basis
function is adopted to approximate TV coefficients; it adds
an effective choice to the existing basis function expansion
approach and thus enhances the capability of the existing
approach to model and track rapid changing signals. The main
advantage of the proposed MBW-LRUOFR algorithm is that
it is more efficient to select significant model terms under the
condition that data are not persistent or highly noisy. In order
to illustrate the effectiveness of this method for tracking
TV signals, the identification performance is compared to
other three methodologies: the classical recursive least-squares
(RLS) algorithm [30], the B-spline-UOFR method [19], and
the MBW-UOFR algorithm. Simulation and application results
have shown the effective identification performance of the pro-
posed method for nonstationary systems and further illustrated
that the new proposed framework is capable of tracking TV
signals.

The remainder of this paper is organized as follows.
In Section II, the identification methodology is introduced.
More specifically, Section II-A describes the construction
process of a TV-NARX model; Section II-B introduces the
properties of beta wavelets and the implementation of MBW
basis function expansion method; Section II-C elaborates
the theoretical framework of the LRUOFR algorithm with
the APRESS cross-validation criterion. In Section III, three
numerical simulations are given to illustrate the effective-
ness of the proposed method. In Section IV, an application
based on EEG signals is implemented to verify the practical-
ity of the proposed scheme for solving real data modeling
problems. Finally, the conclusion of this paper is given in
Section V.
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II. METHODOLOGY

A. Time-Varying NARX Model

A wide class of input–output nonstationary systems can be
represented by an NARX model [31], which can be expressed
by

y(t) = f (y(t − 1), . . . , y(t − ny), u(t − 1), . . . , u(t − nu))

+ e(t) (1)

where y(t) and u(t) denote the output and input sequences,
with maximum lags ny and nu , respectively; f (·) is a nonlinear
function characterizing the input and output relationship; and
e(t) denotes an error term (noise and residual) which is
assumed to be independent, bounded, and uncorrelated with
the input u(t).

The unknown nonlinear function f can be expressed in
various types of model structures, such as fuzzy logic-based
models, rational models, and neural networks. The most
common expression is the polynomial regressions, which has
been used for a wide range of nonlinear systems. The NARX
model can be further expressed in a linear-in-the-parameters
form [32]

y(t) = ϕT (t)θ + e(t) (2)

where ϕ(t) is the regression vector which contains monomials
of lagged output and input terms, θ is the associated parameter
vector, and e(t) is a zero-mean noise sequence.

When modeling a TV system, the parameter vector θ in the
NARX model can be replaced with a TV parameter vector
θ(t) to obtain a polynomial TV-NARX model

y(t) =
G∑

g=1

yg(t)+ e(t)

=
G∑

g=1

g∑

p=0

K∑

kp+q =1

ζp,q(k1, . . . , k p+q , t)

×
p∏

i=1

y(t − ki )

p+q∏

i=p+1

u(t − ki )+ e(t)

= ϕT(t)θ (t)+ e(t) (3)

where G is the degree of the nonlinearity; p and q are the num-
bers of output and input terms, respectively, which satisfy p +
q = g; and

∑K
k1,kp+q

≡ ∑K
k1=1 · · ·∑K

kp+q =1 is a simple repre-
sentation of multiple sums, with ki = 1, . . . , K ; θ(t) indicates
the TV parameter vector which can be expressed as θ(t) =
[ζ0,1(1, t), . . . , ζ0,1(K , t), ζ1,0(1, t), . . . , ζp,q(K , . . . , K , t)]T .

The model (3) may consist of a large number of candidate
terms and the number depends on the degree (G), the order
of terms (p and q), and the corresponding maximum lag (K ).
However, not all candidate terms are significant in general,
those that are redundant or make no or little contribution
can be removed from the initial model. The identification
process of model (3) includes two main tasks: the selection of
significant terms from a prespecified candidate term dictionary
and the estimation of corresponding parameters. However, the
standard sparse model identification algorithm, such as the
OFR algorithm [17], [18], [31] and principal component analy-
sis (PCA) [33], cannot directly identify a TV model due to the
assumption that the individual model parameters are constants.

Fig. 1. Beta functions with different parameters α and β. (a) α = β.
(b) α �= β.

In order to effectively estimate the change of TV parameters,
an effective identification procedure, which makes use of a
new class of MBW basis functions, is introduced in this
paper. The basic idea is that each of the TV coefficients is
approximated by using the MBW basis functions. In this way,
the identification of TV model is converted to a time-invariant
regression model problem which can be solved by means of a
conventional model structure detection algorithm, such as the
OFR algorithm or its variants.

B. Multiple Beta Wavelet Basis Functions
From the work of [23], a new continuous beta wavelet is

derived from the beta distribution by using “blur” derivatives,
which is defined as

Bα,β(t) = (t − a)α−1 · (b − t)β−1

μ(α, β)Lα+β−1 ·
(
α − 1

t − a
− β − 1

b − t

)
(4)

where μ(α, β) = �(α) · �(β)/�(α + β) is the nor-
malizing factor of beta distribution, and �(·) denotes
the generalized factorial function of Euler; [a, b] =
[−(α + β + 1)1/2/(β/α)1/2, (α + β + 1)1/2/(α/β)1/2] is the
support set of beta wavelet function; L = b − a is the length
of the support set; and α ≥ 2 and β ≥ 2 are the characteristic
parameters of the function.

Beta wavelets generated by the function (4) have only one
cycle which includes a positive half-cycle and a negative
half-cycle. In a sense, the waveforms of beta wavelets are
similar to the neural active shapes, which give them good
approximation characteristics and make them play a crucial
role in the adaptive capacity of capturing the nonstationary
signals [24]. The property of beta wavelets is determined by
parameters α and β. For example, if α = β, the wavelets
are centrosymmetric, and if α �= β, the wavelets are non-
symmetrical. An example of the waveform with different
parameters can be clearly observed in Fig. 1. Note that a bell-
shaped half-cycle and a smooth half-cycle gradually appear
as the difference between α and β increases. The wavelets
with a narrow bell-shaped half-cycle perform well on the
sharp or abrupt change of signals, while the wavelets with
a wide bell-shaped half-cycle or a smooth half-cycle tend to
track slow changes of signals [5]. Different variants allow
the capability to capture the overall and local information of
TV coefficients, and the combination of multiple variants can
effectively identify complex nonstationary systems. Another
attractive feature of beta wavelets is the great properties of
complete support, regularity, and orthogonality [34], which
enable the operation of the multiresolution decomposition to
be much more convenient.
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From the wavelet theory [21], a square integrable scalar
function h ∈ L2(R) can be arbitrarily approximated using
the multiresolution wavelet decomposition in the following
equation:

h(x) =
∑

l

c j0,lφ j0,l(x)+
∑

j≥ j0

∑

l

d j,lψ j,l(x) (5)

where ψ j,l(x) = 2 j/2ψ(2 j x − l) and φ j,l(x) =
2 j/2φ(2 j x − l), with j, l ∈ Z(Z is a set consisting of whole
integers), are the dilated and shifted derivations of the mother
wavelet ψ and the associated scale function φ; c j0,l and d j,l are
the wavelet decomposition coefficients; and j0 is an arbitrary
integer representing the coarsest resolution or scale level.
Simultaneously, based on the properties of multiresolution
analysis theory, any square integrable function h can be
arbitrarily approximated using the basic scale functions
φ j,l(x) by setting the resolution scale level to be sufficiently
large, which means there exists an integer j , such that

h(x) =
∑

l

c j,lφ j,l(x). (6)

As the beta wavelet function Bα,β is completely supported
and defined on the section [a, b], the set of functions φ j,l(x) =
2 j/2 Bα,β(2 j x − l), with the scale and shift indices j and l,
should satisfy a ≤ 2 j x − l ≤ b. Assume that the function
h(x) approximated with decompositions (5) or (6) is defined
within [0, 1], then the effective values for the shift index l are
restricted to the collection �α,β = {l ∈ Z|−b ≤ l ≤ 2 j − a}
for any given scale index j . We can obtain a set of basis func-
tions {φ(α,β)j,l |α, β, j ∈ Z, l ∈ �α,β} by a shifted and dilated
derivation of a beta wavelet function Bα,β(t).

The MBW basis functions {φ(α1,β1)
j,l } ∪ {φ(α2,β2)

j,l } ∪
· · · ∪ {φ(αn,βn)

j,l } composed of various groups of beta
wavelet basis functions, obtained by different parameters
{(α1, β1), (α2, β2), . . . , (αn, βn)}, can effectively track com-
plicated TV signals with both fast-varying and slowly-varying
features. For most nonlinear dynamical modeling problems,
multiple appropriate variants with a narrow bell-shaped half-
cycle, a wide bell-shaped half-cycle, and a smooth half-cycle,
such as the combination of different parameters α and β
{(3, 6), (3, 9), (9, 9)}, are capable of capturing both abrupt and
slow changes of nonstationary signals, simultaneously [34].
Therefore, the parameters α and β with {(3, 6), (3, 9), (9, 9)}
are adopted in this paper. In addition, theoretically, choosing a
higher value of scale j , more basis functions will be involved
in approximating the TV parameters, which may improve the
resolution but would increase the computational cost. As a
tradeoff, j = 3 or 4 is generally an appropriate choice for
many applications using MBW basis functions [8], [19].

Based on the wavelet theory, each TV parameter in (3)
can be expanded into the following form by the MBW basis
functions:

ζp,q(k1, . . . , k p+q , t) =
∑

n

∑

l∈�αn ,βn

cαn,βn
p,q,l (k1, . . . , k p+q)

×φ(αn,βn)
j,l

(
t

N

)
(7)

where {φ(αn,βn)
j,l } indicates a group of beta wavelet basis func-

tions controlled by characteristic parameters (αn, βn), with the
wavelet scale j and the shift indices l ∈ �αn,βn , �αn,βn =
{l ∈ Z|−b ≤ l ≤ 2 j − a}; cαn,βn

p,q,l (k1, . . . , k p+q) denotes the
associated expansion parameter which is time-invariant; N is
the number of observations of the signal.

Substituting (7) into (3) yields an expanded version of the
TV-NARX model

y(t) =
G∑

g=1

g∑

p=0

K∑

k1,kp+q =1

∑

n

∑

l∈�αn ,βn

cαn,βn
p,q,l (k1, . . . , k p+q)

×
⎛

⎝φ(αn,βn)
j,l

(
t

N

) p∏

i=1

y(t−ki)

p+q∏

i=p+1

u(t−ki)

⎞

⎠+e(t)

= �T (t)� + e(t) (8)

where �(t) is the expanded regression vector at time t , and
� = [cαn,βn

0,1,l , . . . , cαn,βn
1,0,l , . . . , cαn,βn

p,q,l , . . .]T is the correspond-
ing expanded time-invariant parameter vector.

The original TV-NARX model is now transformed into
a time-invariant regression model which is linear-in-the-
parameters. However, there might be a large number of
redundant terms in the expanded regression vector �(t),
especially when the group number of beta wavelets (n), the
maximum lag (K ), and the degree (G) of the TV-NARX
model are large. Therefore, reducing the number of terms in
the expanded model and determining a parsimonious model
structure become a crucial step in the identification of the
original nonlinear TV problem.

In this paper, we propose an LRUOFR algorithm to select
the significant terms from an over-complete dictionary of
the expanded candidate model terms and estimate the cor-
responding time-invariant parameters, so as to obtain the
desired parsimonious model. In order to achieve a tradeoff
between the model complexity and the value of model error, a
modified generalized APRESS criterion is incorporated in the
LRUOFR algorithm to determine the appropriate number of
the significant terms in the parsimonious model. The novel
algorithm to deal with this identification problem will be
introduced in Section II-C.

C. LRUOFR Algorithm Incorporating APRESS Criterion

The estimation of the parameters � in (8) can be achieved
by minimizing an ultra-least-squares (ULS) criterion [26]

JULS

=
∥∥∥∥∥∥

y −
G∑

g=1

g∑

p=0

K∑

k1,kp+q =1

∑

n

∑

l∈�αn ,βn

cαn,βn
p,q,l (k1, . . . , k p+q)x

αn,βn
p,q,l (k1, . . . , k p+q)

∥∥∥∥∥∥

2

2

+
z0∑

z=1

∥∥∥∥∥∥
ȳz −

G∑

g=1

g∑

p=0

K∑

k1,kp+q =1

∑

n
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∑

l∈�αn ,βn

cαn,βn
p,q,l (k1, . . . , k p+q)

(
x̄αn,βn

p,q,l (k1, . . . , k p+q)
)z

∥∥∥∥∥∥

2

2
(9)

where xαn,βn
p,q,l (k1, . . . , k p+q) = φ

(αn,βn)
j,l (t/N )

∏p
i=1 y(t − ki )∏p+q

i=p+1 u(t − ki ) indicates an expanded term; ȳz and

(x̄αn,βn
p,q,l )

z represent weak derivative expressions of the signal y

and model term xαn,βn
p,q,l , respectively; and z0 is the maximum

degree of the weak derivative.
The weak derivative is a generalization of the commonly

used classical derivative, which can be used to measure local
correlation among the data points. Different from the deriva-
tives defined for differentiable functions, the weak derivative
can be calculated for all integrable functions. For a given
sample data set, a discrete-time representation of the weak
derivatives ȳz and (x̄αn,βn

p,q,l )
z can be expressed as

ȳz(τ ) =
τ+τ0∑

t=τ
y(t)ω̄(z)(t − τ )

(
x̄αn,βn

p,q,l

)z
(τ ) =

τ+τ0∑

t=τ
xαn,βn

p,q,l (t)ω̄
(z)(t − τ ) (10)

where ω̄(z)(t) is the zth derivative of a normalized test func-
tion, which can be calculated as ω̄(z) = ω(z)/‖ω(z)‖2, and τ0
is the support of the test function and τ = 1, 2, . . . , N − T0.
In this paper, the spline function is used as the test func-
tion, and the sampled data are modulated by the first- and
second-order derivatives of the spline function [26].

Then, the extended model (8) can be further expressed as a
ULS system with weak derivative information

Y = � · � + E (11)

where

Y = [y(1), . . . , y(N), ȳ1(1), . . . , ȳ1(N − τ0), . . .

ȳz0(1), . . . , ȳz0(N − τ0)]T (12)

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xαn,βn
0,1,l (k1)(1) · · · xαn,βn

G,0,l (k1, . . . , kG)(1)
... · · · ...

xαn,βn
0,1,l (k1)(N) · · · xαn,βn

G,0,l (k1, . . . , kG)(N)(
x̄αn,βn

0,1,l (k1)
)1
(1) · · · (

x̄αn,βn
G,0,l (k1, . . . , kG)

)1
(1)

... . . .
...(

x̄αn,βn
0,1,l (k1)

)z0(N) · · · (
x̄αn,βn

G,0,l (k1, . . . , kG)
)z0(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

and � denotes the time-invariant parameter vector and E
represents the noise of the system.

Assume that the regression matrix � is full rank in columns
and can be orthogonally decomposed as � = W A, where W
is a matrix with M orthogonal columns, denoted by W =
[w1,w2, . . . ,wM ], which satisfy wT

i w j = 0, if i �= j ; A is

an upper triangular matrix, expressed as follows:

A =

⎡

⎢⎢⎢⎢⎣

1 a1,2 · · · a1,M

0 1
. . .

...
...

. . .
. . . aM−1,M

0 · · · 0 1

⎤

⎥⎥⎥⎥⎦
. (14)

The model (11) can alternatively be expressed as

Y = W A · � + E = W · υ + E (15)

where the orthogonal regression weight vector υ =
[υ1, υ2, . . . , υM ]T satisfies the triangular system υ = A · �,
and we can determine the time-invariant parameter vector �

if knowing υ and A.
The objective of model identification is to produce an

optimal model that can well capture the inherent dynamics
of underlying system, which can be achieved by minimizing
the square of the norm (9). However, the ULS criterion ignores
the interference of overlapping information which may lead to
an ill-conditioned problem during forward regression selection
process. Actually, there is a lot of overlapping information
among the candidate terms in model (8), which makes it
difficult to select a correct parsimonious model structure.

In order to avoid this problem, a stricter locally regularized
ultra-least-squares (LRULS) criterion is proposed in this paper,
which can be expressed as follows:

JLRULS = JULS +
M∑

i=1

λiυ
2
i = ET E + υT �υ (16)

where λ = [λ1, λ2, . . . , λM ]T is the regularization parameter
vector and � = diag{λ1, λ2, . . . , λM }. Obviously, the LRULS
criterion includes three parts: the first part is the same as
the standard least-squares criterion that emphases the overall
agreement between two time series; the second part consid-
ers the consistency of weak derivative information; and the
third part is the regularization error which associates each
candidate term with an individual regularization parameter to
avoid the ill-conditioned problem caused by the overlapping
information.

We can simplify the criterion (16) and obtain a comprehen-
sible form [28]

ET E + υT�υ

Y T Y
= 1 −

M∑

i=1

(
wT

i wi + λi
)
υ2

i

Y T Y
. (17)

In order to measure the regularization error, the regularized
error reduction ratio (RERR) is defined as

RERRi =
(
wT

i wi + λi
)
υ2

i

Y T Y
. (18)

Based on RERR, significant regressors can be selected by
a forward regression procedure. Note that in the selection
procedure, if wT

i wi is too small (near zero), this term will not
be selected. Thus, any ill-conditioning or singular situations
can automatically be avoided.

The Bayesian evidence procedure is a practical choice
to optimize the regularization parameters [28]. From the
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Bayesian viewpoint, the following error criterion is equivalent
to the criterion (16):

JB(υ, ε,) =  ET E +
M∑

i=1

εiυ
2
i =  ET E + υT Hυ

(19)

where  is the noise parameter (estimate of the inverse of
noise variance), ε = [ε1, ε2, . . . , εM ]T is the hyperparame-
ter vector, and H = diag{ε1, ε2, . . . , εM }. The relationship
between a regularization parameter and its corresponding
hyperparameter is obviously given by

λi = εi


. (20)

Following the Bayesian inference principle [35], it can be
shown that the log evidence for ε and  is:

Lev =
M∑

i=1

1

2
log(εi)− M

2
log(π)− NULS

2
log(2π)

+ NULS

2
log()−

M∑

i=1

1

2
εiυ

2
i − 1

2
 ET E

− 1

2
log(det(BH ))+ M

2
log(2π) (21)

where NULS denotes the length of the ULS system signal, and
B H represents the Hessian matrix which is diagonal and can
be expressed as follows:

BH = H +W T W

= diag
{
ε1 +wT

1 w1, . . . , εM +wT
MwM

}
. (22)

Setting the derivatives of Lev with respect to ε and  to
zeroes yields the updating formulas for ε and  , respectively.
Substituting these updating formulas into (20) results in the
updating formulas for the regularization parameters

λnew
i = γ old

i

NULS − γ old

ET E

υ2
i

, 1 ≤ i ≤ M (23)

where γi and γ can be calculated by γi = wT
i wi/(λi + wT

i wi )

and γ = ∑M
i=1 γi , respectively. If λ remains sufficiently

unchanged in two successive iterations or a preset maximum
iteration number is reached, this update can be stopped.

Based on the above explanation, the implementation process
of the LRUOFR algorithm is specifically presented in the
Appendix, where the test set IC is used to avoid any
ill-conditioning or singular problem. After this selection
process, Mex expanded model terms and the corresponding
time-invariant parameters can be obtained. These parameters
are then used to reconstruct the TV coefficients and recover
the selected terms from the model (3). To avoid overfitting
and ameliorate the effectiveness of the LRUOFR algorithm,
a modified leave-one out (LOO)-type cross-validation crite-
rion, APRESS, can be employed to determine the optimal
number of selected terms.

The APRESS statistic [29] expressed as follows can be used:

J [ns] = p[ns]MSE[ns] = MSE[ns ]
(1 − C(ns , σ ))2

(24)

where C(ns , σ ) = nsσ/N , with the adjustable
parameter σ ≥ 1, is the complexity cost function,
p[ns] = 1/[1 − C(ns , σ )]2 is the penalty function,
MSE[ns ] = (1/N)

∑N
i=1 [y(i)− ŷ(i)]2 indicates the mean

squared errors (residuals) calculated from the associated
ns -term model, and {ŷ(i)}N

i=1 is the one-step-ahead prediction
sequence from the identified model of ns model terms.

The criterion (24) consists of two parts: the mean squared
error of the fit to the data and the penalty. The optimal number
Moptimal of reconstructed terms for the desired model can be
determined by minimizing the APRESS values

Moptimal = arg min
1≤ns≤Mre

{J [ns]} (25)

where Mre is the number of recovered model terms.
Practically, a distinct point of the APRESS statistic with

respect to the model length can be easily found especially
when computed by using several adjustable parameters σ (see
Section III-A).

The new proposed algorithm for TV-NARX identification
can be summarized as follows.

1) Set up the TV-NARX model (1) to be identified and
expand all TV coefficients of model terms by using
MBW basis functions to obtain the model (8).

2) Based on the ULS criterion, construct a new model (11)
according to (10) by using a normalized test function ω̄
to modulate the output vector and the regression matrix
in the model (8).

3) Perform the local regularization-based OFR process with
the output Y and regression matrix � of model (11), and
iteratively update the regularization parameter vector λ

using (23).
4) Reselect significant expanded terms by returning to the

OFR process with the updated λ and estimate cor-
responding time-invariant parameters according to the
relationship � = A−1 · υ obtained by (15).

5) Reconstruct the estimation of the TV coefficients
using (7) and list the selected terms in order of the RERR
values.

6) Determine the number Moptimal of parsimonious model
terms by using the APRESS criterion (24) and achieve
the identification result of a nonstationary system.

III. SIMULATION EXAMPLES

In this section, three numerical simulations are given to
illustrate the efficiency of the proposed MBW-LRUOFR algo-
rithm. Furthermore, we compare this approach with three
other methodologies: a classical adaptive method (the RLS
algorithm), a latest parameter expansion method (the B-spline-
UOFR algorithm), and a hybrid method (the MBW-UOFR
algorithm) [19], [30], [36].

All of the following examples are performed via Monte
Carlo simulations involving 100 realizations, and the results
are given in terms of mean values. The first example presents
a nonlinear TV system disturbed by severe colored noise. The
second example is a discrete-time nonstationary system with
noncontinuously changing TV coefficients and aims to verify
the effectiveness of the MBW basis functions for capturing
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the local information around the abrupt change positions.
Furthermore, the third example considers a more complex
second-order TV nonlinear system with both smoothly and
abruptly changing coefficients. Simultaneously, the identifica-
tion accuracy of the TV coefficients at different noise levels
(in term of SNRs) is given to verify the robustness and
generalization property of the proposed approach.

A. Example 1: Detection of the Model Structure

Consider a TV nonlinear system of the form

y(t) = ζ1,0(t)y(t − 2)+ ζ0,1(t)u(t − 1)+ ζ2,0(t)y
2(t − 1)

+ ζ0,2(t)u
2(t − 2)+ 1

1 − 0.5z−1 ε(t) (26)

where ε(t) ∼ N(0, 0.052), and the input signal is generated
by an autoregressive process

u(t) = 0.25

1 − 0.4z−1 + 0.16z−2 v(t) (27)

where v(t) is a Gaussian distributed noise v(t) ∼ N(0, 1).
The TV coefficients in (26) are given as follows:

ζ1,0(t) = −0.1 + 0.4 cos(4π t/1000), 1 ≤ t ≤ 1000

ζ0,1(t) =

⎧
⎪⎨

⎪⎩

−0.6, 1 ≤ t ≤ 300

0.5, 300 < t ≤ 700

−0.7, 700 < t ≤ 1000

ζ2,0(t) =
{

−0.8, 1 ≤ t ≤ 500

0.4, 500 < t ≤ 1000

ζ0,2(t) =

⎧
⎪⎨

⎪⎩

0.6, 1 ≤ t ≤ 200

−0.3, 200 < t ≤ 800

0.4, 800 < t ≤ 1000.

(28)

Driven by the input signal (27), the system was simulated
and a total of 1000 input–output data points were sampled.
Note that the signal-to-noise ratio for the observed signal is
SNR = 10 dB.

To increase the difficulty of system structure identifica-
tion, the candidate model inputs are purposely chosen in an
incorrect maximum lag of 7, which is much larger than the
correct maximum lag 2. There are totally 120 candidate model
terms included in the term dictionary when the nonlinear
degree of the polynomial model is 2. As mentioned above,
the parameters α and β are chosen to be {(3, 6), (3, 9), (9, 9)}.
The scale index involved in the beta wavelet (4) is j = 3. With
these choices, the resulting MBW basis functions are used to
expand TV coefficients. As a comparison, the B-spline-UOFR
algorithm and the MBW-UOFR algorithm are also employed
to identify the model structure, where B-spline functions of
order 2 to 5 are adopted to generate basis functions.

All the significant model terms selected in the OFR process
are reconstructed via (8) and listed in order of the RERR
values in each Monte Carlo realization. For example, the
reconstructed result produced by the MBW-LRUOFR algo-
rithm in one simulation is presented in Table I. Note that there
still are numerous redundant terms. The APRESS criterion is
then used to determine the optimal number of model terms by

TABLE I

RECONSTRUCTED RESULTS PRODUCED BY THE MBW-LRUOFR
ALGORITHM IN ONE SIMULATION FOR EXAMPLE 1

Fig. 2. APRESS statistic versus the model length: the lines from bottom to
the top correspond to σ = 1, 3, 5, 7, and 9.

TABLE II

PERCENTAGES OF CORRECT TERMS SELECTED BY DIFFERENT

ALGORITHMS FOR EXAMPLE 1

setting the adjustable parameter σ = 1, 3, . . . , 9, respectively.
The corresponding curves of the statistic are shown in Fig. 2,
where a distinct turning point suggests that 4 is the optimal
model length. The model structure for this simulation can be
determined as the first four terms given in Table I, which are
highlighted in bold.

The percentage of the correctly selected model terms in
each Monte Carlo realization is recorded, and the mean
values for the three different algorithms are given in Table II.
Obviously, the MBW-LRUOFR method with regularization
parameters works better than the two other methods in deter-
mining the model structure from the given noisy simulation
data. Compared to the UOFR-based methods, the proposed
MBW-LRUOFR algorithm allocates an updated regularization
parameter to each candidate regressor; this can effectively
avoid the interference of overlapping information and assist
the orthogonal regression process to produce a more accurate
model structure.
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Fig. 3. Identification results of the TV coefficients using different approaches
in example 2.

B. Example 2: Estimation of Noncontinuously Changing
Time-Varying Coefficients

Consider the following TV-NARX model:

y(t) = ζ0,1(t)u(t − 1)+ ζ1,0(t)y(t − 2)

+ ζ1,1(t)y(t − 2)u(t − 2)+ 1

1 − 0.32z−1 ε(t) (29)

where ε(t) ∼ N(0, 0.022) which makes the SNR to be
around 30 dB; the input signal u(t) is a pseudorandom binary
sequence (PRBS), which is a frequency rich signal; and the
TV coefficients are designed to change in an abruptly varying
manner as

ζ0,1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.3, 1 ≤ t ≤ 200

−0.7, 200 < t ≤ 400

0.2, 400 < t ≤ 600

−0.3, 600 < t ≤ 800

0.6, 800 < t ≤ 1000

ζ1,0(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−0.4, 1 ≤ t ≤ 300

0.6, 300 < t ≤ 500

−0.7, 500 < t ≤ 800

0.2, 800 < t ≤ 1000

ζ1,1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5, 1 ≤ t ≤ 200

−0.3, 200 < t ≤ 500

0.7, 500 < t ≤ 700

−0.6, 700 < t ≤ 1000.

(30)

The system was simulated and a total of 1000 input–
output data points were sampled. Similar to Example 1,
the parameters α and β are {(3, 6), (3, 9), (9, 9)}, the scale
index j equals 3; with these choices, the resulting MBW
basis functions are used to expand the TV coefficients. All
significant terms selected by the LRUOFR algorithm are listed
in order of the RERR values, and the APRESS criterion is
similarly used to determine the optimal number of model
terms.

To illustrate the ability of the MBW basis functions
in capturing the local information around the abrupt
change positions, a comparison of the TV coefficients

TABLE III

COMPARISON OF THE ESTIMATED RESULTS FOR EXAMPLE 2

estimated by methods such as RLS (forgetting factor
μ = 0.98), B-spline-UOFR, MBW-UOFR, and
MBW-LRUOFR is shown in Fig. 3. It can be observed
that although the estimates produced by RLS algorithm
can represent the actual TV coefficients to some extent,
the approach cannot capture the transient properties of the
jumps due to the limitation of the convergence speed. The
B-spline-UOFR algorithm can estimate TV coefficients with
a relatively higher accuracy than the RLS method, but the
local information of the step position is missing. In contrast,
the LRUOFR algorithm and UOFR algorithm, based on the
MBW basis function expansion method, can not only recover
the global features of the TV system but also well capture the
local information of the abrupt position of TV coefficients.
In fact, Fig. 3 only shows those estimated results of the cases
where all the model terms are correctly selected, so that the
MBW-UOFR method can achieve a performance similar to
the MBW-LRUOFR algorithm despite the difference between
UOFR and LRUOFR. Fig. 3 shows that the MBW basis
functions outperform these existing parametric modeling
approaches for charactering local features of TV coefficients
with sharp changes or jumps.

In order to further compare the identification accuracy
of the above four algorithms, two error assessment criteria,
namely mean absolute error (MAE) and normalized root-
mean-squared error (RMSE), are used to measure the TV
coefficient estimation performance. MAE and RMSE are,
respectively, defined as

MAE = 1

N

N∑

i=1

|ζ̂ (i)− ζ(i)| (31)

RMSE =
√√√√ 1

N

N∑

i=1

[ζ̂ (i)− ζ(i)]2

ζ(i)2
(32)

where ζ̂ represents the estimates of TV coefficients ζ in
the TV-NARX model, and N indicates the maximum sample
index.

The mean values of MAE and RMSE for the three TV
coefficients in Monte Carlo simulations are presented in
Table III. It is obvious that the MAE and RMSE values for
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the two MBW-based methods are smaller than that for the
B-spline-UOFR and RLS methods; this is consistent with the
visual comparison shown in Fig. 3. This statistically indicates
that even though the B-spline-based method possesses higher
identification accuracy than RLS method, it still cannot achieve
the performance of the MBW-based method. The comparison
between B-spline-UOFR method and MBW-based methods
further confirms that the MBW expansion method shows more
attractive approximation characteristics than B-spline in track-
ing rapidly changing TV coefficients. Given the advantage
of the LRUOFR algorithm in determining model structures,
the proposed MBW-LRUOFR algorithm is more adaptive and
performs better for identifying model structures and capturing
local information of TV signals in the presence of colored
noise.

C. Example 3: Identification of a Second-Order TV
Nonlinear System

The third example is designed to test the performance of
the proposed algorithm for dealing with a system with both
smooth and sharp changes in system model parameters. The
system is described by the model

y(t) = ζ1,0(t)y(t − 2)+ ζ0,1(t)u(t − 1)

+ ζ2,0(t)y(t − 1)y(t − 2)

+ ζ0,2(t)u(t − 1)u(t − 2)+ ε(t)

1 − 0.25z−1 (33)

where ε(t) ∼ N(0, 0.082) is zero-mean Gaussian white
noise; the input u(t) is a PRBS; and ζ1,0(t), ζ0,1(t), ζ2,0(t),
and ζ0,2(t) are TV coefficients of this system, expressed as
follows:

ζ1,0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.32 cos(1.5 − cos(4π t/N + π))

1 ≤ t ≤ N/4

0.32 cos(3 − cos(4π t/N + π/2))

N/4 + 1 ≤ t ≤ 3N/4

0.32 cos(1.5 − cos(4π t/N + π))

3N/4 + 1 ≤ t ≤ N

ζ0,1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.54, 1 ≤ t ≤ N/4

−0.65, N/4 + 1 ≤ t ≤ N/2

0.54, N/2 + 1 ≤ t ≤ 3N/4

−0.65, 3N/4 + 1 ≤ t ≤ N

ζ2,0(t) = 0.43 cos(4π t/N ), 1 ≤ t ≤ N

ζ0,2(t) = 0.5, 1 ≤ t ≤ N (34)

where N = 512 is the length of sampled data.
The parameters of MBW are the same as in Exam-

ple 1. The LRUOFR algorithm is applied to select signifi-
cant model terms from the candidate terms expanded by the
MBW basis functions, and the APRESS criterion is simi-
larly employed to determine the number of optimal model
terms.

For a comparison, the four model coefficients reconstructed
by the following four methods are shown in Fig. 4: RLS with
forgetting factor μ = 0.95 (purple curve), B-spline-UOFR

Fig. 4. Identification results of the TV coefficients using different approaches
in example 3.

(blue curve), MBW-UOFR (green curve), and MBW-LRUOFR
(red curve). Note that the estimated results are compared based
on the premise of all the model terms are correctly selected,
so that the MBW-UOFR algorithm can achieve a similar
performance with the proposed MBW-LRUOFR algorithm.
Based on this premise, it can be seen that the proposed
MBW-LRUOFR algorithm performs better than the other
methods in tracking the variations of the TV coefficients,
especially in the abrupt positions. These results show that
MBW-LRUOFR can effectively track the variation of different
waveforms: the constant value, smooth changes, and abrupt
changes.

In order to verify the robustness and noise immunity of the
proposed scheme, colored noise of the following three cases
are added to the original system by adjusting the standard
deviation of ε(t), where the SNR is 20, 15, and 10 dB, respec-
tively. The mean values of MAE and RMSE for estimated TV
coefficients are given in Table IV, where it can be noted that the
MAE and RMSE values given by MBW-LRUOFR are smaller
than those by the RLS method and the B-spline-UOFR method
for all the three cases. Specifically, the MBW-LRUOFR algo-
rithm based on the local regularization method can effectively
capture the major and local information of the TV coefficients
when the noise level increases. These numerical results show
that the MBW-LRUOFR method has a better performance for
noise immunity.

IV. APPLICATION TO EEG DATA

In this section, the proposed MBW-LRUOFR algorithm is
applied to scalp EEG data to illustrate its ability for solving
real-world TV modeling problem. In fact, the brain is a com-
plicated black box system where the true model structure is
unknown; thus it is necessary to identify a parsimonious model
from available experimental data and produce an accurate
description of recording regions during brain activity [16]. The
central objective of this section is to propose an effective data-
based model for single-channel EEG recordings by using the
MBW-LRUOFR algorithm.

The EEG recordings used in this paper are available from
Physionet [37] and created by the BCI2000 instrumentation
system [38]. We choose two snapshots of EEG recordings
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TABLE IV

COMPARISON OF THE ESTIMATED RESULTS IN DIFFERENT CASES FOR EXAMPLE 3 (SNR = 20, 15, AND 10 dB)

Fig. 5. EEG signals recorded during 4 s with a sampling rate of 160 Hz.
(a) EEG from a hand-moving MI task. (b) EEG from an eyes-closed resting
state.

sampled from the same channel of the same subject at different
states, as shown in Fig. 5, where EEG1 [Fig. 5(a)] was
recorded during a hand-moving motor imagery (MI) task and
EEG2 [Fig. 5(b)] was recorded during an eyes-closed resting
state. A second-order TV-NARX model without exogenous
inputs is constructed with the maximum lag K = 10, which is
sufficient to reveal the underlying changes of EEG signals [19].
Thus, totally 66 candidate model terms are involved in the
initial full model

y(t) =
10∑

k1=1

10∑

k2=1

ζ2,0(k1, k2, t)y(t − k1)y(t − k2)

+
10∑

k1=1

ζ1,0(k1, t)y(t − k1)+ ζ0,0 + e(t). (35)

To obtain a compact model structure, the MBW-LRUOFR
algorithm is used to select significant terms and estimate

Fig. 6. Estimated TV coefficients of NARX model (36) for EEG1.

corresponding TV coefficients. The scale index of MBW
function is chosen to be 3, and the APRESS criterion is
adapted to determine the number of model terms. With the
estimated TV coefficients presented in Fig. 6, the parsimonious
model of EEG1 can be described as follows:

y(t) =
3∑

k1=1

ζ1,0(k1, t)y(t − k1)+ ζ2,0(1, 1, t)y2(t − 1)

+ ζ2,0(2, 2, t)y2(t − 2)+ e(t). (36)

Similarly, with the estimated TV coefficients presented in
Fig. 7, the identified model of EEG2 can be described as
follows:

y(t) =
5∑

k1=1

ζ1,0(k1, t)y(t − k1)+ e(t). (37)

Note that the identified model (36) obtained from the MI
EEG recordings is more complex than model (37) which



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: MBW-BASED LRUOFR ALGORITHM FOR TIME-VARYING SYSTEM IDENTIFICATION 11

Fig. 7. Estimated TV coefficients of NARX model (37) for EEG2.

Fig. 8. Comparison of the recovered signals and the original EEG recordings.
(a) EEG from a hand-moving MI task. (b) EEG from an eyes-closed resting
state. For a clear visualization, only the data points in the period of 2.5–3.5
s are displayed.

contains only linear terms. In fact, the model structure and
TV coefficients identified by the proposed MBW-LRUOFR
algorithm are generally different for different MI data; thus
an optimal model can be produced to describe the associated
EEG recordings.

From the estimated TV coefficients depicted in
Figs. 6 and 7, some interesting observations of the underlying
changing behavior of EEG1 and EEG2 signals can be obtained.
For example, during the MI task of EEG1, the coefficients
corresponding to the first-order model terms change relatively
smoothly, while the coefficients of the second-order model
terms change relatively more violently, especially in the
period of 1–3 s. In addition, a significant turning point occurs
around 2.5 s in the estimated TV coefficients, which can be
understood as the characteristic change of the sampled signal.
However, all the TV coefficients of model (37) estimated
from EEG2 recordings are smooth during this experimental
time, which is consistent with the fact that the subject was in
a resting state.

Furthermore, the recovered signals obtained by model (36)
and model (37) are compared with the original EEG recordings
(see Fig. 8), to verify the effectiveness of the identified
models. For a clear visualization, only the data points in the
period of 2.5–3.5 s are displayed. By comparing the estimated
signals with the real signals, it can be seen that the models
constructed by the proposed method can well follow the
changing process of the scalp EEG signal. The identification
performance indicates that the MBW-LRUOFR algorithm is
effective for modeling the real EEG data.

Algorithm 1 Pseudocode for LRUOFR Algorithm
Input:

ULS system output Y = [
y (1) , . . . , ȳz0 (N − τ0)

]T

regression matrix � = [�1,�2, . . . ,�M ]
Initialize:

predetermined thresholds χ = 10−10, ρ = 10−3

initial regularization parameters{
λi = 10−3 |1 ≤ i ≤ M

}

Local regularization-based OFR process:
Let Y (1) = Y ; �(1) = �;
For κ = 1 to M

�(κ) =
[
w1, . . . ,wκ−1,�

(κ)
κ , . . . ,�

(κ)
M

]
;

Y (κ) = Y (κ1) − wT
κ−1Y (κ−1)

wT
κ−1wκ−1+λκ−1

wκ−1;

IC =
{

i

∣∣∣∣
(
�
(κ−1)
i

)T
�
(κ−1)
i < χ , κ ≤ i ≤ M

}
;

For i = κ to M

aκ,i =
(
�
(κ)
κ

)T
�
(κ)
i

(
�
(κ)
κ

)T
�
(κ)
κ

; υ(κ)i =
(
�
(κ)
i

)T
Y (κ)

(
�
(κ)
i

)T
�
(κ)
i +λi

;

rerri =
(
υ
(κ)
i

)2
[(

�
(κ)
i

)T
�
(κ)
i +λi

]

Y T Y
;

end for
ικ = arg max {rerri |κ ≤ i ≤ M and i /∈ IC };
RE RRκ = rerrικ ; wκ = �

(κ)
ικ ; �

(κ)
ικ = �

(κ)
κ ;

�
(κ+1)
i = �

(κ)
i − aκ,iwκ , κ + 1 ≤ i ≤ M;

sum =
κ∑

i=1
RE RRi ;

If 1 − sum < ρ
Mex = κ ; break;

end if
end for

Update regularization parameters λ

λnew
i = γ old

i
NU L S−γ old

ET E
υ2

i
; Dev =

∑∣∣λnew
i −λold

i

∣∣/λnew
i

Mex
;

If Dev ≤ 0.1 (for example)
stop updating;

else
return to the OFR process with updated λ;

end if
Estimate time-invariant parameters:

� = A−1 · υ;
Output:

time-invariant parameters: �

selected model terms: ϒ = [
�ι1,�ι2, . . . ,�ιMex

]

V. CONCLUSION

A novel MBW-LRUOFR algorithm incorporating the mod-
ified generalized APRESS criterion has been proposed for the
identification of nonstationary systems, where time-dependent
coefficients of a TV-NARX model were approximated by
a set of MBW basis functions. Three numerical simulation
examples have been used to test the performance of the
proposed scheme. Many typical TV coefficients, including
both smooth and abrupt changes, were considered in the three
simulation case studies. The identification results indicated that
the proposed method can effectively determine the optimal
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model structure and accurately estimate the TV coefficients.
Furthermore, an application to scalp EEG data showed that
the proposed scheme performed well in tracking quickly
changing nonstationary systems and revealing the underlying
mechanism of EEG signals.

An advantage of the MBW-LRUOFR algorithm over the
previous methods is that it can effectively capture the overall
and local information of a nonstationary system. However, the
computational load of the proposed method is much higher
than existing functional series expansion methods due to the
existence of an iterative process of regularization parameters.
Actually, the number of regressors decreases dramatically
within the first few iterations, and typically about ten iterations
in total suffice to construct desired parsimonious model [28].
So that compared to the improvement of identification accu-
racy, this computational issue becomes less critical when a
high-performance PC is available.

A major application of the proposed method in this study is
to investigate the TV model of nonstationary systems, includ-
ing EEG signals. Actually, the works of Li et al. [30] and [39]
have shown that an effective model can assist reveal the
underlying mechanisms of biological signals, for example, the
studies of the causality between signals in different channels.
Thus, a promising research direction is the further applications
in time–frequency distribution and causality detection of bio-
medical signals. These work will be presented in our future
separate publication.

APPENDIX

See Algorithm 1.
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