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ABSTRACT ARTICLE HISTORY
Due to the different imaging modes of SAR images and optical Received 22 May 2019
images, traditional image fusion methods are no longer suitable Accepted 12 December 2019
for the fusion of the two types of images. Fused images often have

problems of spectral distortion and excessive introduction of noise.

This study proposes an improved SAR-optical images fusion algo-

rithm based on non-subsampled shearlet transform (NSST). NSST

decomposition is first performed on the two types of images. Then,

in the low-frequency sub-band of the decomposition image,

a weighted average fusion rule using the coefficient of variation

according to the different imaging characteristics of SAR images

and optical images is proposed to avoid spectral distortion. In the

high-frequency sub-band of the decomposition image, the effect of

SAR image noise on the fused image is removed by setting the

coherence coefficient threshold. The subjective visual assessment

and objective index evaluation on the experimental results both

show that the fusion results using the proposed algorithm are

significantly improved. The proposed algorithm smoothly fuses

the detailed information of the SAR image into the optical image

without the excessive introduction of noise while maintaining the

spectral information of the optical image. Meanwhile, the proposed

algorithm has a relatively simpler mathematical structure compared

to the algorithm based on sparse representation, thus reducing the

operating time and manual work.

1. Introduction

Image fusion is an important research topic in the image processing field which has
a great research potential and promising future. Image fusion technology extracts impor-
tant information from images acquired by multiple sensors or in variety of ways, and then
combines them through specific processing methods and fusion rules to obtain fused
images (Kong, Zhang, and Lei 2014). The results can provide rich and efficient information
that cannot be obtained from a single sensor. It has been widely applied to various fields,
such as multi-focus image fusion (Li et al. 2018; Haghighat, Aghagolzadeh, and Seyedarabi
2011), remote sensing image fusion (Li et al. 2017; Zhang and Zhang 2018; Ghahremani
and Ghassemian 2015; Wang et al. 2017), and medical image fusion (Zhang et al. 2016;
Bhatnagar, Wu, and Liu 2013).

CONTACT Tianyong Chu @ 13131229@buaa.edu.cn @ Department of Civil Engineering, Beihang University, Beijing,
China
© 2020 Informa UK Limited, trading as Taylor & Francis Group


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2020.1723175&domain=pdf&date_stamp=2020-03-13

INTERNATIONAL JOURNAL OF REMOTE SENSING @ 4591

In the field of remote sensing image fusion, the fusion of synthetic aperture radar (SAR)
and optical images is a hot and difficult issue. SAR and optical images have different
imaging modes and their respective advantages and disadvantages. SAR is a kind of active
remote sensing sensor. It acquires images by emitting electromagnetic waves to the
ground and receiving reflected echoes from the target. SAR images contain rich and
detailed texture information. The advantage of SAR is that it has strong penetrating power
and thus not affected by cloud or rain. Moreover, it can acquire images at night without
relying on the sunlight. But it also has drawbacks. Electromagnetic waves emitted by SAR
have only one single band. Therefore, it is impossible to visually interpret the surface
condition due to less spectral information on a single-band greyscale image (Brekke and
Solberg 2005). Optical sensor is a passive remote sensing equipment. It obtains images by
receiving reflections of sunlight from the ground objects. Optical images have abundant
spectral information but less detailed texture information. In summary, the images
captured by SAR and optical sensors provide complementary information and need to
be fused for better interpretation and analysis. The research of SAR and optical image
fusion is of great importance and has been applied in many fields, such as land use
mapping (Ban, Hu, and Rangel 2010; Wang and Glennie 2015), target extraction (Kim,
Song, and Kim 2018; Errico et al. 2015) and change detection (Ban, Hu, and Rangel 2007;
Borghys, Shimoni, and Perneel 2007).

However, the different imaging modes of SAR and optical sensors bring challenges to
data fusion (Joshi et al. 2016). Therefore, traditional image fusion methods like Brovey,
IHS, PCA, and SVR are no longer suitable for the fusion of these two kinds of images (Yi,
Zeng, and Yuan 2018). Researchers mostly use the multi-scale transformation method for
SAR-optical image fusion. Multi-scale transformation mainly includes wavelet transform
non-subsampled contourlet transform theory (NSCT) and non-subsampled shearlet trans-
form (NSST). In 2000, Tang (Tang, Wang, and Huang 2000) implemented wavelet trans-
form to SAR-optical images for data fusion. However, the multi-scale decomposition of
the wavelet transform is only in a few directions, making it difficult for the fusion results to
reflect good spatial edge information. In Do and Vetterli 2005, Do and Vetterli proposed
the Contourlet transform and used it for SAR-optical image fusion. Although the trans-
formation overcomes the limitation of finite directions, its multi-scale decomposition does
not have translation invariance, and the fused image is prone to Gibbs phenomenon.
After that, Cunha (Da Cunha, Zhou, and Do 2006) proposed NSCT, which was mainly
achieved by improving the Contourlet transform. Easley (Easley, Labate, and Lim 2008)
developed the NSST transformation method. Compared with NSCT, NSST can avoid the
Gibbs phenomenon while effectively maintaining the spatial texture and the details of the
image. In addition, NSST has a simpler mathematical structure which makes it more
efficient. Currently, NSST is one of the most advanced multi-scale transformation meth-
ods. In 2018, Sheng (Sheng, Yang, and Dong 2018) applied NSST to SAR and optical image
fusion. The author used sparse representation to develop fusion rules and achieved good
results. However, the SAR images the author used are simple and have less noise.
Furthermore, the algorithm based on sparse representation is relatively complex and
inefficient.

In order to make better use of the increasingly popular SAR images and reduce code-
running time, we develop a novel fusion algorithm for SAR-optical images. We first
perform NSST decomposition on the SAR images and the luminance components of the
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optical images to get low-frequency sub-band and high-frequency sub-band. Then, for
low-frequency coefficients, we design a weighted average fusion rule considering the
coefficient of variation (CV) according to the different imaging models of the SAR-optical
images. For high-frequency coefficients, we set a coherence coefficient threshold to
remove the effect of SAR image noise on the fused image. As a result, on the one hand,
the fused image maintains the spectral characteristics of the optical image well. On the
other hand, the detailed texture information of the SAR image is smoothly fused into the
fused image without the effect of SAR noise. At the same time, the proposed algorithm is
relatively simple and more efficient.

2. Methods
2.1. HSI transformation

The SAR image is a greyscale image with brightness information. The optical image is
a colour image expressed in the RGB space. For the fusion of optical images, we often
want to retain its rich spectral information. Colour models are used to segment and
extract the components of spectral information. However, in the RGB colour model, the
three basic colours are unevenly distributed in space, and they represent not only colour
information but also brightness information, which can easily cause loss or confusion of
other component information when processing one of the components. Thereby, the
SAR-optical images cannot be directly fused in the RGB space. Otherwise, it will cause
serious spectral distortion.

HSI (hue, saturation, and intensity) is a colour space created in the way human visual
systems perceive colour. The H (hue) and S (saturation) components represent the chromi-
nance information of the image, while the | (intensity) component represents the brightness
information of the image. The HSI colour model is chosen to describe the image because it
can separate the chrominance and luminance information of the image. The | component of
the optical image is used to be fused with the SAR image separately. It can maintain the
spectral information of the optical image and prevent the occurrence of spectral distortion.

2.2. Non-subsampled shearlet transform

The NSST transform is a non-orthogonal transform. Its discretization process is described
as follows: Firstly, the not sampling Pyramid (NSP) scale decomposition is performed to
obtain the low-frequency sub-band image and the high-frequency sub-band image.
Then, the high-frequency sub-band image of each stage is processed with the shear
filter (SF) to obtain the sub-band image information in different directions (Singh et al.
2015).

For a continuous wavelet, a two-dimensional affine system with composite dilations is
defined in Formula (1) (Easley, Labate, and Lim 2008):

Mas(®) = { Wyi(x) = [det AF2(S*Ax i) : ik € Z;i € 72) (1)

where A represents the dilation matrix, S is the shear matrix, j, k, and i denote scale,
direction, and shift parameter, respectively ¢ €L*R?). A and S are 2 x 2 invertible
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), where ‘a’ is the shearlet scale

and ‘s’ controls the shearlet direction.

Firstly, Multi-scale decomposition is performed i times to form (i+1) sub-band images,
which include one low-frequency component and i high-frequency components. All the
sub-band images are of the same size as the source image. Then, multi-directional
decomposition is applied to all the high-frequency sub-band images obtained by each
level multi-scale decomposition. The SF used for directional decomposition is obtained by
directly mapping a standard SF from pseudo-polarized grid system to Cartesian coordi-
nates system. After Fourier transform, the two-dimensional convolution operation is
realized. In this way, the subsampled step of the standard SF is avoided and the new SF
is translation invariant. In this study, the source images are processed with four-level NSST
decomposition. The numbers of shear directions are 4, 4, 8, and 8 from the low level to the
high level. For example, the process of two-level multi-scale and multi-directional decom-
position of NSST is illustrated as in Figure 1, which is modified from (Singh et al. 2015).

2.3. Fusion rules

2.3.1. Low-frequency coefficient

The low-frequency coefficients of the image preserve the primary energy and express the
body contour of the source image (Huang, Bi, and Wu 2018). Low-frequency images are
blurry and rarely contain noise. Figure 2 shows that the low-frequency sub-band images
of SAR and optical images are quite different. They have opposite polarity on some
ground objects. For example, rivers have low pixel values on SAR images but high pixel
values on optical images. This is because SAR actively emits electromagnetic waves to the
ground at a certain oblique angle. The incident wave mainly produces mirror reflection on
the surface of the river with little backscattering. Therefore, the design of the low-
frequency coefficient fusion rule plays a decisive role in the spectral preservation of
optical images. In Sheng, Yang, and Dong 2018, a sparse representation fusion rule
based on structure similarity and luminance difference was used in low-frequency fusion.

| Low-frequency
3 )

| ‘_\‘-SI‘ subband

I

| o [ SF ,. A EIIig]'m—t'requencj.-

- . NSP | subband

Source | =1 = et
| Image

- [::] : SF oAl High-frequency
: - [ subband

Figure 1. Two-level multi-scale and multi-directional decomposition of the NSST.
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Figure 2. Low-frequency sub-band images (a) The source image is the SAR image (Palsar-2); (b) The
source image is an optical image (Sentinel-2A).

The fusion results were good with little spectral distortion. But the sparse representation
fusion rule is very complex. It needs to build a training set with additional SAR and optical
images to obtain an over-complete dictionary. Furthermore, the sparse representation of
low-frequency coefficients using the dictionary requires a great amount of calculations. In
this research, a relatively simpler fusion rule, adaptive weighted averaging, is proposed in
low-frequency fusion, which saves both labour and time. In the proposed low-frequency
fusion rule, the determination of weight is the key to maintain spectral characteristics. We
use coefficient of variation (C,) to determine the weight. Formula (2) gives the calculation

of C, (Stepniak 2011):

o, VA - w) 2
u

where u is the mean of all values. C, expresses the degree of dispersion of a set of data.
Used in images, it evaluates whether the image is smooth or not. Compared to standard
deviation, C, can compare data sets with large differences. As aforementioned, the same
object may have opposite polarity in SAR and optical images. Direct fusion would cause
spectral distortion. It can be determined whether the objects in the two low-frequency
images are similar or not by comparing the 3 x 3 neighbourhood window C, of two
images, even they have opposite polarities in the two images. If the C, of the SAR image is
larger than that of the optical image, which means that the SAR image provides more
useful information, the larger weight should be given to the SAR image to introduce more
texture information. Otherwise, the larger weight should be given to the optical image to
maintain spectral information. Formula (2) indicates that small disturbance may have
a huge impact on C, when the average value (u), the denominator of the formula, is close
to zero. But during image processing, the pixels whose mean of 3 x 3 neighbourhood
window is close to zero won't provide more useful information. Therefore, the low-
frequency coefficients of the optical image are used to be the fused coefficients at
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these pixels. The specific process of the algorithm is as follows: Firstly, we calculate the C,
in the 3 x 3 neighbourhood of each pixel in the two low-frequency images to obtain the
C, matrices of the two images. Each value in the C, matrix is calculated as in Formula (3):

j+1 k+1 —\2
Va0 S (o )
CV;j;k = X (3)

Secondly, we subtract the optical C, matrix from the SAR C, matrix and the result is matrix
Cya- The values less than zero in the C,q matrix is set to zero. Finally, a 2% linear stretch
normalization is performed on the C,q matrix. The resultant matrix is the weight matrix of
SAR low-frequency coefficients.

2.3.2. High-frequency coefficient

The high-frequency coefficients of the images contain the detailed texture information
(Cheng, Jin, and Li 2018). In Sheng, Yang, and Dong 2018, Sum of Modified Laplacian
fusion rule was used in high-frequency fusion. Noise of SAR images was not considered in
Sheng, Yang, and Dong 2018 because the SAR images used had little noise. However, it is
very common for SAR images to exhibit noise as echoes from targets interfere with each
other and may cause the appearance of salt-and-pepper known as speckle (Goodman
1976). Residential areas, in particular, display more noise because angular reflections
would occur at buildings. Figure 3 shows the noise in residential areas of an SAR image.
If the energy rule in Sheng, Yang, and Dong 2018 is used directly in residential areas, it will
lead to the excessive introduction of SAR image noise. However, these areas have high
coherence coefficient when doing the D-INSAR process. Therefore, in this research, we
innovatively introduce a coherence coefficient threshold to reduce the introduction of
SAR noise. If the coherence coefficient of a certain pixel is above the threshold, the high-
frequency coefficient of the optical image will be used as the fused coefficient. Otherwise,
the coefficient whose region energy in 3 x 3 neighbourhood is larger will be selected to
be the fused coefficient.

3. Experiments
3.1. Study area and data

The study area is the Badong section of the Three Gorges Reservoir in the Yangtze River in
Badong county, Hubei province, China. Its geographical coordinate range is from 31°
1'39"N to 31°4'26"”N and from 110°19'55"E to 110°23'11"E. The image size is 6 x 6 km
(2000 x 2000 pixels). The study area has complicated geological conditions with moun-
tains, rivers, and residential areas. Experiments in this complicated region can prove the
universality of our proposed algorithm.

In our experiments, the SAR image is PalSAR-2 in L-band with 3 m ground resolution.
The optical image is Sentinel-2A with 10 m resolution. Two pairs of images acquired at
different times are used in our experiments to avoid contingency. The first pair contains
a PalSAR-2 SAR image and a Sentinel-2A optical image obtained on 15 August 2016 and
14 August 2016, respectively. The second pair contains a PalSAR-2 SAR image and
a Sentinel-2A optical image captured on 5 June 2017 and 20 June 2017, respectively.
The SAR images are pre-processed using filtering and geocoding. The optical images are
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Figure 3. The noise in residential areas of an SAR image. (a), (b), and (c) are enlarged images of
corresponding areas in (A).

pre-processed with radiometric calibration and atmospheric correction. All the images
have been registered. Figure 4 shows the images after pre-processing. The above proces-
sing procedures are completed in ENVI software package.

3.2. Experiment procedure

We fuse each pair of images, respectively (Experiment 1 and Experiment 2). For each pair,
the procedure of the fusion experiment is illustrated in Figure 5.

First, we perform HSI transformation on the optical image to obtain the | component of
it. Second, the histogram of the SAR image is matched to that of the | component. Third,
NSST decomposition is implemented to the SAR and | images to get the high- and low-
frequency coefficients, respectively.

Before the high-frequency fusion, we obtain the coherence coefficients by doing
D-InSAR process on the SAR image. As mentioned above, a coherence coefficient
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Figure 4. Images used in fusion experiments. (a) PalSAR-2 SAR image acquired on 15 August 2016; (b)

Sentinel-2A optical image acquired on 14 August 2016; (c) PalSAR-2 SAR image acquired on
5 June 2017; and (d) Sentinel-2A optical image acquired on 20 June 2017.

Figure 5. Flow chart of fusion experiment.
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threshold needs to be determined to limit the excessive introduction of SAR image noise.
We randomly select 5,000 pixels in the residential area, river, and forest, respectively, and
count the coherence of each class to obtain their coherence histograms (Figure 6). The
mode of the coherence coefficient of the residential area is selected to be the threshold,
which is about 0.8. This value is almost greater than all the coherence values of the river
and forest. It means that this threshold wouldn't limit the introduction of other useful
information in the river and forest.

Then, high-frequency coefficients of the SAR and | images are fused using the high-
frequency fusion rules, while low-frequency coefficients are fused using the proposed
low-frequency fusion rules. After that, all the fused sub-band coefficients are processed
with inverse NSST to get the new | component. Finally, the new | component is processed
with inverse HSI transformation together with the H and S components obtained before,
resulting in the final fused image.

4. Results and discussion
4.1. Subjective evaluation

The original images of Experiment 1 are the PalSAR-2 image and the Sentinel-2A image
acquired on 15 August 2016 and 14 August 2016, respectively. The resultant images
fused with NSCT, NSST, the algorithm in Sheng, Yang, and Dong 2018 and our proposed
algorithm are shown in Figure 7. The original images of Experiment 2 are the PalSAR-2
image and the Sentinel-2A image captured on 5 June 2017 and 20 June 2017,

Figure 6. Coherence coefficient histograms of the residential area, river, and forest.
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respectively. And the resultant images using the above four different algorithms are
shown in Figure 8.

Figure 7 and Figure 8 show that the NSCT algorithm results are blurred and the details
are not prominent. The images are dark overall and certain spectral distortion can be
discerned. There is also some excessive introduction of noise in residential areas.

The NSST results are sharper than the NSCT results and contain more detailed informa-
tion. But they still exhibit spectral distortion. Especially in Experiment 2, severe spectral
distortion occurs in some places which are dark in the original image such as the area in
red rectangle in Figure 8. This is because that the | component pixel values in dark areas
are close to zero, which means there is almost no spectral information here. If SAR
information is introduced, the spectral distortion would inevitably occur. The NSST results
also display more severe SAR noise than the NSCT results in residential areas. Because
NSST has excellent high-frequency detail-capturing capability, SAR noise in residential
areas is introduced in large quantities in the high-frequency part.

The algorithm in Sheng, Yang, and Dong 2018 produces quite good visual effect in the
results. However, much noise appears in residential areas due to the no consideration of
speckle in the SAR image.

The results fused with our proposed algorithm show accurate spectral information
similar to that of the original optical image. It is because that CV is used to determine the
weight of the two images in low-frequency fusion. The SAR image does not interfere with
the spectral information of the optical image in areas which have opposite polarity in the
two images. As described above, the coefficient of the optical image is directly used to be
the fused coefficient to maintain spectral information when the average pixel value in 3 x
3 neighbourhood is close to zero. Therefore, severe spectral distortion doesn’t occur in
dark areas. In addition, very little SAR noise is introduced in residential areas because of
the implementation of the coherence coefficient threshold in high-frequency fusion.
A coherence coefficient threshold, 0.8, is set to limit the introduction of noise in residential
areas which have high coherence coefficients.

4.2. Objective evaluation

The quantitative evaluation of the results is conducted after subjective visual evaluation.
We calculate four quantitative evaluation indicators for all the results obtained with
different algorithms including standard deviation, information entropy, mean gradient,
and correlation coefficient. The meaning of each indicator is as follows:

o Standard deviation describes the degree of dispersion of pixel values, which mea-
sures the degree of contrast of the image. The larger the standard deviation, the
higher the contrast ratio.

¢ Information entropy is the most intuitive standard for reflecting the amount of image
information, which represents the amount of information contained in the fused
image.

e Mean gradient represents the detail-describing ability of the image.

e Correlation coefficient indicates the degree of correlation between two images. It
can be used to measure the spectral-holding degree of the fused image.
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Table 1. Evaluation results of the four algorithms in the two experiments.

Experiment Method  Standard deviation  Information entropy ~ Mean gradient ~ Correlation coefficient
Experiment 1 NSCT 32.9050 6.8013 3.6839 0.8479

NSST 453914 6.8839 9.2850 0.7811

Sheng 58.5516 7.4782 134331 0.8184

Proposed 59.3896 7.3434 12.3883 0.9006
Experiment 2 NSCT 35.3117 6.9844 2.5905 0.8534

NSST 47.9846 7.0803 10.4592 0.6957

Sheng 57.6290 7.5650 14.1942 0.7800

Proposed 59.7153 7.4780 12.3850 0.9029

Table 1 lists the calculated indicators of the fused images in the two experiments. NSCT
has the lowest standard deviation while the proposed algorithm has the highest. It means
that NSST is better than NSCT in contrast and visual quality. The proposed algorithm has
significant improvement on the basis of NSST and is slightly better than the algorithm in
Sheng, Yang, and Dong 2018. For information entropy, NSST is close to NSCT, and the
proposed algorithm is better than both of them. It reflects that the fused results with the
proposed algorithm contain more information. The algorithm in Sheng, Yang, and Dong
2018 is slightly higher than the proposed algorithm because the results of the algorithm
in Sheng, Yang, and Dong 2018 have more noise. As to mean gradient, NSCT is extremely
low, and the proposed algorithm is higher than NSCT and NSST, but slightly lower than
the algorithm in Sheng, Yang, and Dong 2018. It shows that the proposed algorithm has
a better detail-describing ability. In terms of the correlation coefficient, the spectral
retention of NSST is slightly weaker than NSCT. But this ability of NSST is improved by
our proposed algorithm, which is also better than the algorithm in Sheng, Yang, and Dong
2018.

According to the analysis, compared with NSCT and NSST results, the proposed
algorithm in the two experiments has better performance than NSCT and NSST on all
the four evaluation indicators. It indicates that the proposed algorithm produces the
biggest contrast ratio, the largest amount of information, the most detailed texture, and
the most outstanding spectral information preservation in its resultant images. Although
the proposed algorithm has a similar effect on the fused images to the algorithm in
Sheng, Yang, and Dong 2018, it costs less operating time and introduces less noise.

5. Conclusions

Two major problems in the fusion of SAR and optical images are spectral distortion and
excessive introduction of SAR noise. Traditional image fusion technology can’t solve the
problems. This paper proposes an efficient and novel algorithm based on NSST. To avoid
spectral distortion, adaptive weighted averaging based on CV is proposed in low-
frequency fusion rule. Thus, the objects which have opposite polarity in the two original
images such as rivers maintain their spectral properties well. In addition, this proposed
low-frequency fusion rule has a relatively simpler mathematical structure than the algo-
rithm used in Sheng, Yang, and Dong 2018, requiring less operating time and manual
work. To deal with the SAR noise problem, a coherence coefficient threshold is set
innovatively in high-frequency fusion rule to limit the excessive introduction of SAR
noise in residential areas. While this problem was not considered in Sheng, Yang, and
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Dong 2018. In the two fusion experiments, the overall quality of the resultant images
fused with the proposed algorithms is significantly higher than the other algorithms
according to both the visual and the quantitative evaluations. The proposed algorithm
proves to be a feasible, useful, innovative, and consistent method for SAR-optical image
fusion.
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