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Tao Yang, Member, IEEE

Abstract—This paper studies a cell-free MIMO (cf-MIMO)
system that consists of a central unit (CU), N distributed base
stations (BSs) and K users. The BSs are connected to CU via
N independent backhaul (BH) links of finite capacities. The BSs
are uncoordinated, i.e. each one is ignorant of the others. We
study a lattice network coding (LNC) scheme for cf-MIMO. In
the uplink, the K users encode their messages with a practical
2m-ary channel code mapped to 2m-PAM, belonging to the
ensemble of lattice codes, and transmit simultaneously. Each BS
computes independent streams of integer-combinations of the
users’ messages, referred to as network coding (NC) streams.
The NC streams are forwarded to the CU via BH. The CU
aggregates all NC streams from the N BSs, and recovers K
users’ messages. We derive the achievable symmetric rate of
the LNC scheme. Further, we solve a “bounded independent
vectors problem” (BIVP) which identifies a near-optimal set
of NC coefficient vectors. The solution maximizes the number
of correctly computed NC streams at each BS. For practical
implementation, we develop new soft detection algorithms for
LNC decoding. The per-user complexity is proved to be no
greater than O(K), suitable for cf-MIMO with a large number
of users. Our developed LNC based cf-MIMO exhibits superior
frame error rate (FER) and spectral efficiency over existing non-
LNC based schemes. Such advances are achieved with low-cost
parallel processing and efficient usage of the BH.

Index Terms—Cell-free, distributed MIMO, multi-user MI-
MO, massive access, coded modulation, lattice-codes, compute-
forward, physical-layer network coding, soft detection, NOMA

I. INTRODUCTION

In conventional cellular networks, inter-cell interference
(ICI) has been deemed as a major limiting factor. Cell-free
MIMO (cf-MIMO), also called distributed MIMO, has been
proposed to overcome the ICI [1], [2]. A generic cf-MIMO
system deploys a number of distributed base stations (BSs)
which are connected to a central unit (CU) [3]. There is no
cell boundaries in the system, where the CU and distributed
BSs jointly serve a large number users [4], [5]. It was
reported that cf-MIMO achieves a higher spectral efficiency
than centralized massive MIMO and small-cell system [6].
Several studies on cell-free networks have investigated the per-
user transmission rate [7], per-user packet delay [8], as well
as implementation issues such as pilot contamination [5] and
network backhauling [9]. Various beamforming techniques
were studied for cell-free networks. [10] proposed the use of
conjugate beamforming on the downlink and matched filtering
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on the uplink. [11] showed that partially or fully centralized
processing at the CU can achieve higher spectral efficiency.
[7] showed that a centralized implementation with optimal
minimum mean square error (MMSE) processing not only
maximizes the spectral efficiency but also largely reduces
the backhaul signaling. Existing results in the literature have
demonstrated the capabilities of cf-MIMO in meeting the
demands of future wireless systems.

Albeit the promising potentials, the design of cf-MIMO is
facing a set of new challenges, including high computation
cost, high consumption of backhaul, high latency caused by
BS coordination, and difficulty in synchronization [12], [13].
Considering the massive increase of the number of users per
unit area in 6G network, the computation complexities at
the distributed BSs and CU skyrocket [14]. Accordingly, the
consumption of backhaul also explodes, while the coordina-
tion among BSs becomes more difficult. Henceforth, advanced
architecture and processing for cf-MIMO are required.

A. Motivations

In essence, there are two inadequacies of existing tech-
niques for cf-MIMO. First, from network information theory,
a cf-MIMO is a multi-point multi-hop relay network [15],
where the network information flow (NIF) problem arises
[16] [17]. To achieve the network information capacity, each
node of the multi-hop network needs to forward a function of
the incoming messages, rather than just simply repeat them
as in conventional routing. Yet, existing coding, multi-user
detection, precoding methods are mostly developed without
considering the NIF problem, which may not attain the full ca-
pability of cf-MIMO. Second, most of the conventional ways
of treating the multiuser interference (MUI), such as those
in decode-forward and compress-forward schemes coupled
with MMSE filtering, insufficiently exploits the interference
structure of the multi-point multi-hop cf-MIMO network.

From the literature, it is understood that the notion of
lattices and lattice codes provide a viable approach that could
address the above two issues. Base on the property that the
integer sum of lattice codewords is still a valid codeword,
integer-combinations of the users’ messages (or network cod-
ing streams) can be efficiently computed and then forwarded,
akin to the fashion of NIF [18]–[21]. Such notion was referred
to as lattice network coding (LNC) [22], physical-layer net-
work coding (PNC) [23], [24] or compute-and-forward (C&F)
[18], [25]. For a multi-antenna environment, the interference
structure in the spatial dimension is explicitly exploited via
lattice reduction techniques [26] [27] [28], as in the LNC
based integer-forcing (IF) detection and precoding [29] [30].
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Recently, LNC and IF have been extended to address time-
varying or frequency-selective fading channels [26], [31], as
well as inter-symbol-interference equalization problem with
the help of cyclic linear codes [32]. Zhu and Gastpar showed
that any rate-tuple of the 2-user Gaussian multiple-access
capacity region can be achieved using C&F [33], and we
recently generalized this result to K-user fading multiple-
access channel [24], [34].

For cf-MIMO specifically, [25] advocated using lattice
codes and quantized C&F, where a larger capacity region
was demonstrated. For the downlink, reverse C&F was stud-
ied by exploiting the uplink-downlink duality. For the case
with multi-antenna users and multi-antenna BSs, signal-space
alignment based lattice network coding methods are presented
for both the uplink and downlink cf-MIMO [12], [13]. An
advance in achievable d.o.f. was demonstrated therein. A
compute-compress-forward scheme was studied in [35] [36],
which exploited distributed source coding to further reduce
the backhaul consumption.

This paper is set to exploit lattice codes and lattice network
coding (LNC) to address the two issues raised above. Base
on the algebraic property of lattice codes, integer linear com-
binations of the users’ messages (or network coding streams)
can be efficiently computed and then forwarded, which offers
increased spectral efficiency and reduced backhaul consump-
tion relative to existing non-LNC based schemes for cf-
MIMO. Albeit the advances of LNC notion, some theoretical
and practical aspects are still under research, including the
attainable system load, FER, exact backhaul consumption and
etc.. Moreover, for a massive number of users, there lacks
algorithms for the LNC detection and identification of the
network coding coefficient matrix with realistic costs.

B. Main Results

This paper studies an uplink cf-MIMO where the BSs are
uncoordinated, i.e. each BS is ignorant of other BSs. We
study a LNC based scheme. The users encode their messages
with a practical lattice code, and transmit simultaneously with
full bandwidth. Each BS computes a number of indepen-
dent streams of integer-combinations of the users’ messages,
referred to as network coding (NC) streams. The correctly
computed NC streams are forwarded to CU via the digital BH
link, subject to the BH capacity constraint. The CU aggregates
all NC streams from all BSs, and recovers all users’ messages.
This paper contributes to this subject in the following:

1) We consider a cf-MIMO system with moderate-to-large
numbers of users and antennas at each BS. From a theoretical
perspective, we derive the achievable rate of the LNC based
cf-MIMO subject to a certain BH capacity. We also present
the outage probability and ε-outage rate [37] of the scheme.

2) Base on the rate characterization, we establish and solve
a new “bounded independent vectors problem” (BIVP) which
identifies a near-optimal set of NC coefficient vectors. The
solution maximizes the number of correctly computed NC
streams at each BS, resulting in an advance of cf-MIMO.

3) From a practical perspective, we suggest a 2m-ary
LDPC code with 2m-PAM as the underlying lattice code, to
materialize the theoretical gains of LNC. For it, we develop

new soft detection algorithms that calculate the a posteriori
probability w.r.t. a NC stream over the lattice. We prove
that our proposed soft detection algorithm has a per-user
complexity no greater than O(K). As such, the developed
algorithms are suitable for massive access in cf-MIMO.

It is demonstrated that our developed LNC based cf-MIMO
exhibits advanced frame error rate (FER) performance and
increased spectral efficiency over existing non-LNC based
cf-MIMO, such as decode-forward and compress-forward
schemes. Such advances are achieved with just parallel pro-
cessing and no more than NK single-user decoding opera-
tions. Moreover, the BH consumption is shown to have the
same order as the capacity of the air-interface, offering an
efficient usage of the BH.

C. Difference to Prior Works

First, the numbers of users and BS antennas under con-
sideration are moderate-to-large, while the number of BSs
is moderate. Such a setup is more relevant to existing net-
work architecture featuring multi-antenna BSs and a small-
to-moderate number of BSs. This is in contrast to [7], [10]
which considered single-antenna BSs while the number of
BSs is huge. Second, our work explicitly incorporates the
BH capacity constraint, while [7], [10] assumed infinite BH
capacity. Third, we put forth practical 2m-ary LDPC codes
for lattice coding, as well as soft detection algorithms for
decoding, whose FER is shown to agree with the rate charac-
terization. In contrast, [25], [35], [36], [38], [39] only studied
the achievable rates. Our works involves MIMO processing for
lattice decoding which is not studied in [25], [38], [39]. Lastly,
we consider an open-loop system where the coordination of
BSs are minimized, which is of particular importance for
massive access.

This paper is different from [40] in the following aspects.
First, the system model of this paper and that in [40] are
different. [40] considered an uplink multiple access scenario.
In contrast, this paper studies a cell-free MIMO network of N
distributed BSs, with rate-constrained backhaul links. The rate
analysis for the cell-free network with LNC (Theorem 2 on
Page 8) is different from that in [40] for the multiple access.
Second, the detection algorithm presented in [40] does not
apply to the scenario with K being large, and is not suitable
to the cell-free network . In this paper, we developed a new
soft detection algorithm, whose complexity is proved to be
no greater than O(K). Third, the algorithms for identifying
the LNC coefficient matric on Page 8 is different to that
in [40]. To be specific, [40] only borrows the existing LLL
algorithm, which is known to have significant loss for the
case with a large K or an overloaded case where K is
greater than the number of BS antennas. In contrast, we
formulate a new bounded integer vector problem (BIVP) and
solve it by a constraint sphere decoding (CSD) algorithm.
Our proposed CSD algorithm yields significantly increased
number of reliably computing integer combinations at the
BSs, that contributes to the overall performance enhancement
of the proposed LNC scheme for the cell-free MIMO.
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II. SYSTEM MODEL

Consider an uplink cf-MIMO system that consists of a CU,
N distributed BSs, and K users. The number of users is
moderate-to-large, e.g. K is tens to a hundred. The number of
BSs is moderate, i.e. N less than ten. Each BS is connected to
CU via a digital BH link. The BSs are not mutually connected
and are uncoordinated, i.e. each BS is ignorant of other BSs.
Following the convention in studying the uplink multi-user
communication, we consider an open-loop system. There is
no return links from a BS to a user and from CU to a BS,
for delivering channel state information (CSI) or adaptive
coding-modulation (ACM) information. Each user transmits
at a target rate R0. Frame error rate (FER) and spectral
efficiency (SE) KR0 are the performance indicators.

A. Air-interface
Consider that each user is equipped with single-antenna

while each BS is equipped with nR antennas. The extension
to multi-antenna users is straightforward [37]. Let a row vector
xTi denote the length-n coded-modulated signal sequence of
user i, i = 1, · · · ,K. For a real-valued model, the baseband
equivalent discrete signal at the receiver of BS j is

Yj =

K∑
i=1

√
ρhj,ix

T
i + Zj =

√
ρHjX + Zj , j = 1, · · · , N

(1)
where Zj denotes the additive white Gaussian noise (AWGN)
matrix whose entries are i.i.d with zero mean and unit
variance; ρ denotes the symbol energy, which is equivalent
to the per-user SNR. The column vector hj,i represents the
fading channel coefficients from user i to nR antennas of BS
j, and Hj is the channel coefficient matrix. A complex-valued
model can be represented by a real-valued model of doubled
dimension as in [18], [41]. For a better readability, this paper
presents with a real-valued model.

BS j processes the received signal Yj :

Yj
BS processing→ Uj . (2)

The resultant signal Uj is then delivered to the CU via BH.
Remark 1: For the wireless channel model in (1), we

assume no inter-symbol-interference. This paper focuses on
a flat-fading model, where the channel coefficients remain
unchanged for each coded block while differing over blocks.
Such channel model applies to scenarios where the bandwidth
of a user’s signal is within the coherence bandwidth of
the multi-path channel, e.g. in the case that each user only
occupies a smaller number of subcarriers. We consider that
the coherence time of channels is larger than a time block,
i.e., the channels remain unchanged in a block. Our developed
techniques can be extended to fast fading or frequency selec-
tive fading models by borrowing the notion of ring C&F or
multi-mode integer-forcing as treated in [26], [31]. Moreover,
in (1) we assumed that the users’ signals are synchronized at
the receiver of a BS1. This holds if the difference of arrival
time of the users’ signals are within the duration of the length
of the cyclic prefix (CP).

1The asynchrony can be addressed by cyclicly coded LNC [32].

B. Backhaul (BH) and Central Unit (CU)
This paper considers wired digital BH links with finite

capacities given by CBH1 , · · · , CBHN . This applies to existing
network where distributed units are connected to the CU with
optical fibre cables [7]. Our developed techniques also apply
to the scenario with wireless BH links. From source coding
theorem [15], Uj can be recovered by the CU if

1

n
H (Uj) < CBHj , j = 1, · · · , N, (3)

where H (·) denotes the entropy function and CBHj de-
notes the BH capacity per channel-use. The CU aggregates
U1, · · · ,UN , and then attempts to recover all K users’
messages. A frame error is declared if a recovered user’s
message sequence is not identical to the genuine one.

Problem statement: how to design transceiver architecture
and BS processing algorithms, such that cf-MIMO achieves a
low FER for a given SE, or a high SE for a target FER?

Remark 2: This paper considers that the capacities of the
air-interface and the BH are comparable, i.e., they are of
the same order of magnitude. The scenario where the air-
interface capacity and BH capacity tremendously differ is of
much less interests in both theory and practice. Since there is
no coordination among the N BSs, distributed source-coding
such as in Slepian-Wolf [15] cannot be implemented. The
extension to BS coordination with distributed source coding
[35], [36] is beyond the scope of this paper.

III. LATTICE NETWORK CODING BASED CF-MIMO
Fig. 1 shows the architecture of LNC based cf-MIMO.

A. Transmitters
Prior works on the theoretical aspects of LNC largely rely

on the existence of good nested lattice codes of infinite block
length. In this paper, we suggest a simple yet powerful lattice
code, referred to as ring-coded PAM (RC-PAM). Consider an
integer ring Zq , {0, · · · , q − 1}. For a prime q, the integer
ring Zq is a field. For a non-prime q, Zq is not a field. To
match the mainstream 2m-PAM or 22m-QAM signaling, this
paper focuses on q = 2m,m = 1, 2, · · · , where 2m is not a
prime number (except m = 1).

For user i, i = 1, · · · ,K, let bi= [b [1] , · · · , b [k]] ∈ Zk2m

denote its 2m-ary message sequence of length k. Each entry
of bi is uniformly drawn from {0, · · · , 2m − 1}. A 2m-ary
ring-code with generator matrix G is adopted to encode bi.
The encoded sequence is given by

ci = mod (Gbi,2
m) = G⊗ bi (4)

where “⊗” represents matrix multiplication modulo-2m, and
ci∈ Zn2m . Let Cn denote the codebook that collects all 2mk

codewords w.r.t. (4). The codebook is revealed to all BSs.
Each entry of ci is one-to-one mapped to a regular 2m-PAM

constellation symbol, given by

xi =
1

γ

(
ci −

2m − 1

2

)
∈ 1

γ

{
1− 2m

2
, · · · , 2m − 1

2

}n
.

(5)
Here γ normalizes the symbol energy. The rate is R = km

n
bits/symbol. The K users encode their messages with the
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Fig. 1. Block diagram of a LNC based cf-MIMO system with K users and N BSs. All users utilize the same 2m-ary code and PAM. For each BS, the
optimized coefficient matrix is identified by solving the BIVP w.r.t. the channel state information.

same2 RC-PAM, and transmit simultaneously. For a complex-
valued model, two 2m-level RC-PAM, one for the inphase and
the other for the quadrature part, form 22m-level RC-QAM.
Einstein integers are beyond the scope of this paper [22].

Remark 3: [Difference to existing code-modulation] The
presented RC-PAM is a “Construction-A” type of lattice
code [18] with a one-dimension shaping using modulo-2m

operation. It is much simpler than existing low-density lattice
codes [42] that does not apply to the mainstream 2m-PAM
modulation schemes.

Remark 4: [“Good” generator matrices G] For m =
1, RC-PAM reduces to binary channel coding with BPSK
signaling. Any state-of-the-art binary channel codes, such
as LDPC codes and polar codes in 5G NR standards, can
be utilized to execute (4) and the associated decoding. For
m = 2, 3, · · · , LDPC and irregular repeat-accumulate (IRA)
ring-codes developed in [43] are ready to use in cf-MIMO.

Remark 5: [Necessity of ring codes] Here Z2m is not
identical to GF(2m). GF(2m) is an extension field of GF(2)

of elements
{

0, 1, β, · · ·β2m−2
}

[44]. The additive rule is
based on the primitive element of the polynomials, which is
different from the additive rule of integers Z2m . To form a
lattice code for 2m-PAM, a ring code over Z2m is required.

In practice, the implementation of lattice codes can be done
by using q-ary linear codes coupled with q-PAM modulation.
Such coded-modulation belongs to the ensemble of lattice
codes, and the required structural properties hold. For q being
a prime number, a GF(q) code with q-PAM as in [45] can be
used. Yet, it is well-known that the mainstream modulation
schemes are 2m-PAM or 2m-QAM, where q = 2m is not a
prime number. As such, a linear code over the integer ring
Z2m is necessary in LNC for the mainstream 2m -PAM or
2m-QAM modulation.

2The extension to asymmetric rate is straightforward. A low rate user’
message are zero-padded to form a length k message sequence. Then, the
same channel code encoder can be utilize to encode all users’ messages.

Albeit our developed techniques can be extended to asym-
metric rate setup, to make this article highly focused on
presenting the notion and mechanisms, this work studies
the symmetric rate case, where each user transmits at the
same target rate R0 [37]. The symmetric rate is widely
acknowledged as a key indicator of the performance of the
uplink multi-user communication scheme for the open-loop
model. We note that our developed techniques can be extended
to the asymmetric rate case by introducing the nesting of
linear codes as in [24]. A mother code of a high rate is used
for a high rate user. Then, the code for a low rate user is
given by strategically zero-padding the messages [24]. In such
a way, the treatment of lattice network coding applies to the
asymmetric rate setup.

B. LNC Processing at BSs
Assume local CSI is acquired at each BS. Recall the re-

ceived signals at the BSs given in (1). BS j attempts to directly
compute Lj , Lj ≤ K, streams of integer-combinations of the
K users’ messages over Z2m , written as

uTj,l, a
T

j,l⊗B, l = 1, · · · , Lj , (6)

where B = [b1, · · · ,bK ]
T . We refer to uj,l as the lth network

coding (NC) stream, and aj,l ∈ ZK×1 as the NC coefficient
vector. Note that uj,l, l = 1, · · · , Lj are digital streams.

Let Uj =
[
uj,1, · · · ,uj,Lj

]T
denote the Lj NC streams

obtained at BS j. Let Aj=
[
aj,1, · · · ,aj,Lj

]T
denote the

Lj NC coefficient vectors, referred to as the NC coefficient
matrix. Then

Uj= Aj⊗B. (7)

Remark 6: [Mechanism of LNC] In cf-MIMO, even if BS j
is not able to decode all K users’ messages B, it would still
be possible to compute uj,1, · · · ,uj,Lj

thanks to the structural
property of the underlying lattice code [18]. Intuitively, LNC
is set to remove a “partial entropy” H (Uj) < H (B) for
Lj < K. This task is “easier” than removing the full entropy
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H (B), and is more likely to be accomplished. Section IV
will develop practical algorithms for LNC in detail.

Remark 7: [Choice of Aj] The choice of coefficient matrix
Aj largely affects the performance. A well-chosen Aj maxi-
mizes the number of correctly computed NC streams Lj . This
leads to the maximized number of aggregated NC streams
N∑
j=1

Lj at the CU. Section V will develop efficient algorithms

for acquiring the optimized Aj in detail.
The correctly computed Uj and the associated Aj are

forwarded to the CU via its BH link, which are digital streams.
The BH consumption per channel-use is

H (Uj)

n
= R0Lj bits. (8)

As Aj is chosen once per block, the BH consumption of
delivering Aj is minor for large n.

C. CU’s Processing

The CU collects all LCU ,
N∑
j=1

Lj NC streams from

the N BSs, forming the aggregated NC streams U =[
UT

1 , · · · ,UT
N

]T
. Also, the CU forms the aggregated NC

coefficient matrix ACU,
[
AT

1 , · · · ,AT
N

]T
, which is of size

LCU -by-K. If ACU is of full rank K in Z2m , it has a unique
inverse A−1

CU , i.e., A−1
CU⊗ACU = IK . Then, CU can correctly

recover all K users’ messages by implementing

B = A−1
CU⊗U. (9)

If LCU < K, or LCU ≥ K but ACU is not full rank, some
users’ messages cannot be recovered.

Example 1: Consider a system of K = 4 users and N = 2
BSs. Each BS has nR = 2 antennas. Consider a 4-ary ring
code and 4-PAM are utilized. The channel realization of BSs
1 and 2 are

H1 =

[
1.02 1.96 0.03 0.12
0.17 1.05 0.97 1.01

]
, (10)

H2 =

[
0.95 1.03 0.03 0.15
0.08 1.08 2.02 1.04

]
. (11)

BS 1 selects

A1 =

[
1 2 0 0
0 1 1 1

]
(12)

and computes 2 NC streams

uT1,1, aT
1,1⊗B =b

T

1
⊕2bT2 , uT1,2,aT1,2⊗B = bT2 ⊕bT3 ⊕bT4 .

The decisions on uT1,1,uT1,2, together with A1, are forwarded
to CU. Meanwhile, BS 2 selects

A2 =

[
1 1 0 0
0 1 2 1

]
,

and computes 2 NC streams

uT2,1, b
T

1 ⊕ bT2 , uT2,2, b
T

2 ⊕ 2bT3 ⊕ bT4 .

The CU aggregates 4 NC streams uT1,1,u
T
1,2,u

T
2,1 and uT2,2,

as well as ACU,
[
AT

1 ,A
T
2

]T
. In this example, ACU is of

full rank 4, and has a unique inverse given by

A−1
CU =

 3 0 2 0
1 0 3 0
0 3 0 1
3 2 1 3

 . (13)

The CU recover’s all 4 users’ messages by implementing (9).

IV. PRACTICAL SOFT DETECTION AND DECODING FOR
LNC

In this section, we develop new soft detection algorithms for
LNC. This section considers that Aj is given. The optimized
Aj will be presented in Section V.

A. Parallel Computation Rule of LNC
BS j aims to compute NC streams Uj =[

uj,1, · · · ,uj,Lj

]T
. The optimal rule requires the jointly

computing of p
(
uj,1, · · · ,uj,Lj

|Yj

)
. This is well-known to

be highly conceptual and is intangible to implement. This
paper relies on a parallel rule [29]

p (uj,l|Yj) , l = 1, · · · , Lj . (14)

Such parallel rule has low-cost implementation, low-latency,
tractable analysis and competitive performance. The extension
to successive computation can be done as in [24].

We next present how to implement (14). Let
C = [c1, · · · , cK ]

T stack up all users’ coded sequences
generated by the 2m-ary ring-code in (4). Define

vTj,l , mod

(
K∑
i=1

ajl,ic
T
i , 2

m

)
= aTj,l⊗C, (15)

referred to as a codeword-level NC stream. The following
properties of RC-PAM will be utilized.

Property 1: For any K codewords c1, c2, · · · , cK ∈ Cn,
RC-PAM satisfies

mod

(
K∑
i=1

aici, 2
m

)
∈ Cn (16)

for any integers a1, · · · , aK , i.e. the integer-sum of K code-
words modulo-2m is a valid codeword.

Property 2: With the generator matrix G in (4), we have

vj,l = G⊗ uj,l. (17)

That is, the codeword-level NC stream and the message-level
NC stream are also related by G.
Proof. The codeword-level NC stream can be written as

vTjl , mod(

K∑
i=1

ajl,ic
T
i , 2

m) = mod

(
K∑
i=1

ajl,iG⊗ bi, 2
m

)
(18)

(a)
= mod

(
G

K∑
i=1

ajl,i⊗bi, 2
m

)
= G⊗ uj,l

where “
(a)
= ” utilizes the associative law for the summation and

the modulo-2m operation.
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In conventional channel-code decoding, the a posteriori
probabilities (APPs) of the coded-sequence c, denoted by
p (c [t] |y [t]) , t = 1, · · · , n, is first calculated. The decoder
takes in the APPs the exploits the structure of G, and outputs
the probabilities on the message sequence b. Prop. 2 suggests
that in LNC, the symbol-wise APPs of the codeword-level NC
stream vj,l is first calculated. The ring code decoder takes in
such APPs and outputs the probabilities on the message-level
NC stream uj,l. As such, the practical implementation of (14)
is carried out via:

a) A soft LNC detector calculates the APPs
w.r.t. the codeword-level NC stream vj,l, written as
p (vj,l [t] |yj [t]) , t = 1, · · · , n. (Here vj,l [t] and yj [t] denote
the t-th column of vj,l and Yj .)

b) A 2m-ary ring-code decoder takes the APPs as input
and outputs the probabilities of the message-level NC stream
uj,l, written as p(uj,l[t]), t = 1, · · · , k. The hard-decision is
then made.

B. Soft LNC Detection

Since symbol-by-symbol detection is utilized, we omit the
index “t” for simplicity. Moreover, since the processing of the
N BSs follows the same procedures, we omit the BS index
j. Recall the bijective mapping between xi and ci in (5), the
received signal (1) can be written as

y =

√
ρ

γ

K∑
i=1

hici + z− κ =

√
ρ

γ
Hc + z + κ. (19)

where κ = −
√
ρ

γ

∑K
i=1 hi

2m−1
2 can be straightforwardly

compensated. Recall that each user’s coded symbol ci belongs
to Z2m = {0, · · · , 2m − 1}. For BS’s received signal, the
superposition of the K users’ symbols, denoted by s =∑K
i=1 hici = Hc, forms a “super-constellation” of 2mK

candidates in a nR dimension space. Let all the candidate
vectors s of the super-constellation be collected by the set

S =
{
s = Hc,∀c ∈ZK2m

}
. (20)

For a NC stream, the 2mK candidates are partitioned in to
2m “bins”. Those candidates with identical (non-identical) NC
value vl , aTl ⊗ c = θ, belong to the same (different) bin.
This is referred to as “algebraic binning” [18], aTl determines
the rule of the partition.

The soft LNC detector computes the APPs of the bin-
indices θ. Using the Baye’s rule, for θ = 0, · · · , 2m − 1,

p (vl = θ|y) =
1

η

∑
c:aT

l ⊗c=θ

exp

−
∥∥∥y − √ργ Hc− κ

∥∥∥2

2

 .

(21)

The scalar η is to ensure the APPs w.r.t. θ = 0, · · · , 2m−1 add
up to 1. The APP calculation is performed in a nR-dimension
space, which is different from that in the IF methodology.

The complexity of directly executing (21) has order
O
(
2mK

)
. For a large K, alternative soft detection algorithms

are required, which is studied below.

C. Efficient Linear Soft LNC Detection

A linear filtering is first utilized to transform the nR-
dimension received signal into L (L ≤ K) streams of
single-dimension signals. Then, each signal stream is used
to compute one NC stream.

1) Derivation of APP: Denote by W a size L-by-nR linear
filtering matrix of real-valued entries. Let wT

l denote the lth
row of W, ‖wl‖ = 1. The lth filtered signal stream is

yl = wT
l y =

√
ρ

γ

K∑
i=1

ψl,ici + zl + κl (22)

where ψl,i = wT
l hi denotes the “effective gain” w.r.t. user

i after the filtering, the noise zl has a unit variance, and the
term κl = wT

l κ can be straightforwardly compensated.
Let Il , {i : al,i 6= 0} collects the positions of non-zero

entries of al, and Icl be the complementary set. Let ω (al) ,
|Il|. Then, yl is re-arranged into

yl =

√
ρ

γ

∑
i∈Il

ψl,ici +

√
ρ

γ

∑
i∈Icl

ψl,ici + zl + κl

=

√
ρ

γ

∑
i∈Il

ψl,ici + ξl + κ′l. (23)

The term
∑
i∈Il

√
ρψl,ici is the superposition of the signals of

the ω (al) users whose NC coefficients are non-zero, which is
the useful signal part. The term

∑
i∈Icl

ψl,ici contains the signals

of the remaining K −ω (al) users whose NC coefficients are
zero. This term is statistically independent from

∑
i∈Il

ψl,ici,

and is regarded as irrelevant w.r.t. the computation of the NC
stream. The term ξl =

∑
i∈Icl

√
ρψl,ixi+zl is the effective noise,

which is uncorrelated with the useful signal part.
For a sufficiently large K, |Icl | is sufficiently large to

apply Central Limit Theorem. As such, ξl follows a Gaussian
distribution with zero mean and variance σ2

l = ρ
∑
i∈Icl

ψ2
l,i+1.

Let cl consist of only the entries {ci, i ∈ Il}. The APP
w.r.t. the lth NC stream is given by

p (vl = θ|yl) =
1

η

∑
cl:aT

l ⊗cl=θ

p

(
yl|
∑
i∈Il

ψl,ici

)

=
1

η

∑
cl:aT

l ⊗cl=θ

exp

− ∣∣∣∣∣yl −
√
ρ

γ

∑
i∈Il

ψl,ici − κ′l

∣∣∣∣∣
2

/2σ2
l

 ,

(24)

where η is the normalization factor. The APP p (vl = θ|yl) is
equal to the sum of the likelihood functions of the 2m(ω(al)−1)

candidates whose underlying NC is equal to θ. Here we
abused the notation of aTl ⊗ cl by considering the multiplica-
tion with the non-zeros entries of aTl only.
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2) Gaussian Approximation: A direct execution of (24)
needs to evaluate the Euclidean distances of 2mω(al) candi-
dates. The following theorem shows that for a sufficiently
large K, the APP (24) can be efficiently computed using a
Gaussian approximation. Define ωH (al) ,

∑
i∈Il

|al,i| as the

“weight” of al.
Theorem 1: As K →∞, the APP in (24) can be computed

with a complexity of order

O (ωH (al) (2m − 1) + 1) (25)

Proof. For convenience, we consider that the term κ′l is com-
pensated. Note that there is a many-to-one mapping between
aTl c and aTl ⊗c. Specifically, all events

{
aTl c =θ ± β · 2m

}
with various values θ = θ± β · 2m have an identical value of
aTl ⊗c =θ after the modulo-2m operation. As such, using the
Total Probability Rule, the APP is written as

p (vl = θ|yl) =
1

η

∑
θ:mod(θ,2m)=θ

p
(
yl|aTl c = θ

)
p
(
θ
)
.

(26)
Let Ωl

(
θ
)

=
{
c : aTl c = θ

}
collect the candidates c with

aTl c equal to θ. The conditional mean is

µl
(
θ
)

= Ec

(
yl|aTl c = θ

)
= Ec

(√
ρ

γ

∑
i∈Il

ψl,ici + ξl|aTl c = θ

)

=
1∣∣Ωl (θ)∣∣

∑
c∈Ωl(θ)

∑
i∈Il

√
ρ

γ
ψl,ici. (27)

The conditional variance is

σ2
l

(
θ
)

= Ec

∣∣∣∣∣∑
i∈Il

√
ρ

γ
ψl,ici + ξl − µl

(
θ
)∣∣∣∣∣

2


=
1∣∣Ωl (θ)∣∣

∑
c∈Ωl(θ)

(∑
i∈Il

√
ρ

γ
ψl,ici

)2

− µ2
l

(
θ
)

+ σ2
l . (28)

As K → ∞, ωH (al) also tends to be large. Then, yl is
of a conditional Gaussian distribution for all values of θ in
probability. The APP is then calculated as

p (vl = θ|yl) =
1

η

∑
θ:mod(θ,2m)=θ

exp

(
−
(
yl − µl

(
θ
))2

2σ2
l

(
θ
) )

p
(
θ
)
.

(29)
Here, θ ∈ {

∑
i:al,i<0

al,i (2m − 1) , · · · ,
∑

i:al,i>0

al,i (2m − 1)}.

The cardinality of the set for θ is ωH (al) (2m − 1) + 1. In
other words, there are ωH (al) (2m−1)+1 Euclidean distances
needs to be calculated in (29). This completes the proof.

Remark 8: Note that if K is not approaching infinity, the
order of complexity of the proposed soft detection algorithm
is still given by (25), which is no greater than O(2mK).
However, when K is relatively small, i.e. the central limit
theorem is not very effective, the APP computed via our
proposed soft detection based on Gaussian approximation is
not identical to that computed via the direct execution of (24).

Empirically, the loss is about 0.2 dB in FER performance for
K being less than 4. As K becomes sufficiently large, the
loss becomes unnoticeable.

Remark 9: For a wide range of cf-MIMO configurations,
ωH (al) is just a (small) fraction of K. In particular if the
lattice basis vectors are already short and near-orthogonal, al
tends to be sparse for K being large.

3) Details on the statistics: The computation of APP
presented above requires a) the a priori probability p

(
θ
)
, b)

the conditional mean µl
(
θ
)

and c) conditional variance σ2
l

(
θ
)

(29), to be detailed below. Since these statistics are required
to be calculated once per-block, the cost is minor compared
to that in (29) which are computed n times per-block. For
notational simplify, the index l is omitted in this part.

a) Let n1

[
θ
]

= 1 for θ = 0, a1, · · · , (2m− 1)a1 if a1 > 0,
and θ = (2m − 1)a1, · · · , 0 if a1 < 0. Let n1

[
θ
]

= 0 for
the rest values of θ. Then p

(
θ
)

is obtained by sequentially
implementing

nk
[
θ
]

=
∑

τ=0,··· ,2m−1

nk−1

[
θ − aiτ

]
(30)

until layer K ′ = ω (a) is reached. This requires no more than

K′∑
k=1

ωH ([a1, · · · , ak]) (2m − 1)2 (31)

additions in total and does not involve multiplication.
b) The conditional means can be obtained by sequentially

implementing

µ̃k
[
θ
]

=
∑

τ=0,··· ,2m−1

µ̃k−1

[
θ − aiτ

]
+ τ
√
ρψk. (32)

When reaching layer K ′ = ω (a) , the conditional mean is
computed by µ

(
θ
)

= µ̃K′
[
θ
]
/nK′

[
θ
]
.

c) The term
∑

c∈Ω(θ)

(∑
i∈I

√
ρψici

)2

is calculated by se-

quentially implementing

ϑk
[
θ
]
=∑

τ

(
ϑk−1

[
θ − akτ

]
+ 2τ

√
ρψiuk−1

[
θ − akτ

]
+ (τ
√
ρψi)

2) .
When reaching layer K ′, the conditional variance is

σ2
(
θ
)

= sK′
[
θ
]
/nK′

[
θ
]
− µ2

(
θ
)

+ γ2σ2. (33)

D. Example with Integer-forcing (IF)
Our developed soft LNC detection applies to any W, not

only for IF. For illustration purpose, we briefly illustrate an
example with regularized IF (RIF), whose filter is

WRIF= AHT
(
ρHHT+IN

)−1

. (34)

The filtered signal is

yl = wT
l y =

∑
i∈Il

√
ρψl,ici + ξl =

∑
i∈Il

√
ρal,ici + el, (35)

where the estimation error term is

el =
∑
i∈Il

√
ρ
(
ψl,i − al,i

)
ci + ξl. (36)
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The error term el is correlated with the useful signal part∑
i∈Il

√
ρal,ici. This leads to µl

(
θ
)
6= θ and σ2

l

(
θ
)
6= γ2σ̃2

l ,

which need to be calculated as in (27) and (28), respectively.
For a sufficiently large K, the number of terms that adds

up in (36) is sufficiently large to apply Central Limit Theorem
for el. Hence, one may approximate el as a Gaussian random
variable with variance E

(
e2
l

)
. It can be easily shown that the

MSE of el has a close-form representation

E
(
e2
l

)
= γ2aTl

(
ρHTH + I

)−1
aTl . (37)

Further, by disregarding the bias in the estimation error
term, the mean of el is approximated as zero. As such, the
calculation of the APP in (29) may be further simplified into

p (vl = θ|yl) ≈
1

η

∑
θ:aT

l ⊗c=θ

exp

(
−
(
yl − θ

)2
2E (e2

l )

)
p
(
θ
)
. (38)

For a small K, the loss by using (30) could be considerable.
For a large K, the loss shrinks.

E. Decoding

The symbol-wise APPs of each NC stream obtained from
the aforementioned soft LNC detector is forwarded to a 2m-
ary ring code decoder. For LDPC and IRA ring codes, 2m-
ary message passing decoding is conducted. When the parity-
check rule of the decoder’s hard-decision output is satisfied,
the message passing decoding is terminated, yielding the
decision ûl. The details on the ring-code decoder can be
found in [43]. Algorithm 1 summarizes the procedures of BSs
and CU of the LNC based cf-MIMO system. Note that the
computations of the Lj NC streams uj,1, · · · ,uj,K at BS j
are executed in parallel. The operations of the N BS are also
carried out in parallel.

Algorithm 1 Summary of the procedures of LNC based cf-
MIMO system
Step 1) At each BS j, calculate the filter matrix, e.g. WRIF

in (34). Perform the filtering (22).
Step 2) Calculate the a priori probability as in (30), the
conditional mean as in (32), the conditional variance as in
(33), for l = 1, · · · , Lj .
Step 3) Perform (29) in parallel to calculate the APPs
p (vl = θ|yl) for the Lj streams of codeword-level NC stream-
s. Forward the Lj streams of APPs to the Lj ring-code
decoders.
Step 4) Perform ring-code decoding for the Lj streams
parallely, which yields the decisions û1, .., ûLj

. Forward the
Lj NC streams to the CU via the BH link.
Step 5) The CU collects all LCU NC streams from the N BSs,

forming the aggregated NC streams Û =
[
ÛT

1 , · · · , ÛT
N

]T
and A ,

[
AT

1 , · · · ,AT
N

]T
. Then, the CU implements (9).

The detection algorithm resented in [40] utilized an ex-
haustive search method to calculate the a posteriori probability
(APP) w.r.t. to an integer combination. The complexity therein

is exponential to the weight of the integer coefficient vector,
which prevents its usage for the massive access scenario with
K being large. In this paper, we develop a new soft detection
algorithm. This algorithm calculates the a priori distribution
of the integer sum of the extended lattice constellation, the
conditional mean and conditional variance. Then, a Gaussian
approximation technique is used to calculate the APP. We
show that with this technique, the complexity is proved to
be no greater than O(2mK), see Theorem 1. This new
contribution is of pivotal importance to the massive access
cell-free MIMO.

Here we note that in the proposed scheme, each BS just
computes LNC streams locally, and forwards them to the
central unit via its own BH link. Its processing operations
are independent from those of other BSs. The synchronization
procedure is exactly the same as in the conventional single-BS
setup. The preamble sequence (e.g. using m-sequence, gold-
sequence or zadoff-chu sequence) of each user is transmitted.
The BS correlates with the preamble sequence locally and
attains precise synchronization. This is performed indepen-
dently at the N BSs. Thus, the proposed LNC impose no new
challenges to the synchronization. In practice, the maximum
relative delay among the K users at the BS is usually within
the length of the cyclic prefix (CP) of the OFDM symbol.
As such, the asynchrony among the users only introduces
some phase shift. Our proposed LNC techniques, e.g. the
soft detection and network coding matrix selection, will adjust
accordingly w.r.t. the phase shifts.

V. ON OPTIMIZED DESIGN OF LNC FOR CF-MIMO
In this section, we study the optimized NC coefficient

matrices A1, · · · ,AN , based on the accurate local CSI at
each BS. For a tractable analysis, we consider LNC with
linear detection and rely on the existence of “good” lattice
codes. This enables us to provide an efficient yet powerful
suboptimal solution to A1, · · · ,AN .

A. Analysis of Achievable Symmetric Rate
Lemma 1: For BS j, j = 1, · · · , N , as n → ∞,

the probability of computation error of the lth NC stream
Pr (ûj,l 6= uj,l) < ε for any arbitrarily small ε if the rates of
the K users satisfies

Ri <
1

2
log+

2

(
1

aTj,l
(
ρHT

j Hj+IK
)−1

aj,l

)
,∀i ∈ Ijl . (39)

Proof. The mean square error (MSE) in the linear estimator
of aTl x with wj,l is given by

E
(∣∣wT

j,lyj−aTj,lx
∣∣2) . (40)

The derivative of the MSE w.r.t. wj,l is

∂E

(∣∣∣wT
j,lyj−aTj,lx

∣∣∣2)
∂wj,l

. (41)

By setting the derivative to zero, the minimum MSE (MMSE)
of the linear estimator is

min
wj,l

E
(∣∣wT

j,lyj−aTj,lx
∣∣2) = aTj,l

(
ρHT

j Hj+IK
)−1

aj,l.

(42)
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As n tends to infinity, the effective noise sphere is given by
this MMSE for computing the lth NC stream. Then, there exist
a nested lattice code with simultaneous “Roger-goodness” and
“Poltyrev-goodness”, such that the rate

1

2
log+

2

(
1

aTj,l
(
ρHT

j Hj+IK
)−1

aj,l

)
(43)

w.r.t. the lth NC stream is achievable [18], [29].
The symmetric rate is pertain to the open-loop uplink

system [37]. For the LNC-based cf-MIMO, the symmetric
rate is characterized in the following theorem. Recall that
Lj denotes the number of rows of Aj , and CBHj denote the
finite BH capacity of BS j. For Hj , let the MMSE matrix be
denoted by Ψj=

(
ρHT

j Hj+IK
)−1

. Its eigen-decomposition
is given by

Ψj= VjDjV
T
j . (44)

Theorem 2: A symmetric rate R0 is achievable if there exist
integer valued coefficient matrices A1, · · · ,AN at the N BSs,
such that

D
1
2
j VT

j aj,l <

√
1

22R0
,∀l = 1, · · · , Lj , j = 1, · · · , N, (45)

A =
[
AT

1 , · · · ,AT
N

]T
is of full rank K in Z2m . (46)

and
R0Lj < CBHj , j = 1, · · · , N. (47)

Proof. From Lemma 1, the symmetric rate with which BS j
can compute Lj NC streams is

R0 ≤ Rj = min
l=1,··· ,Lj

Rcompj,l

= min
l=1,··· ,Lj

1

2
log+

2

(
1

aTj,lVjDjVT
j aj,l

)
. (48)

It follows directly that all Lj NC streams at BSs 1, · · · , N
can be reliably computed if

min
j=1,··· ,N,l=1,··· ,Lj

1

2
log+

2

(
1

aTj,lVjDjVT
j aj,l

)
> R0. (49)

This leads to (45). The entropy of the NC streams of BS j is
precisely

H (Uj) = R0Lj (50)

According to the source-coding theorem, Uj can be lossless
recovered by the CU if

H (Uj) = R0Lj < CBHj , j = 1, · · · , N, (51)

which leads to (47). Given the full rank condition (46), all
users’ messages are recovered.

Remark 10:
For lattice-based processing with ring-coded PAM, the

achievable mutual information that takes into account the
2m-PAM modulation should be used for characterization. We
have reported this in our previous work [24]. However, for
the case with a large number of users and BS antennas, it
is well-known that calculating the exact mutual information
for 2m-PAM requires a multi-dimension integration. This
makes finding the optimized A intangible. To obtain a viable

and pragmatic solution to A, in this paper we resort to the
succinct rate expression presented in Lemma 1, which is an
upper bound for the achievable mutual information with ring-
code PAM. Then, the BIVP w.r.t. Theorem 2 is formulated
based on this rate upper bound. Solving that problem with
our proposed constrained sphere decoding algorithm provides
a competitive pragmatic solution, as demonstrated with our
extensive numerical results. We note that the NC coefficient
matrices are determined based on the instantaneous rate,
which is calculated based on the receiver side CSI at each BS.
The solution is found by solving the BIVP given in Theorem
2.

B. Optimized Coefficient Matrices A1, · · · ,AN

1) Optimized Design with BIVP: The central problem to
be addressed is: based on the local CSI of Hj , BS j finds
all linearly independent lattice points, formed by the basis
vectors D

1
2
j VT

j , within the boundary of radius
√

1
22R0

(45).
We referred to this as a bounded independent vectors problem
(BIVP).

2) Solution to BIVP: We suggest a constrained sphere
decoding (CSD) which solves BIVP (45). The goal is to find
all coefficient vectors that are within the boundary of radius√

1
22R0

. In CSD, we set the search center to an all-zero vector,

and set the radius to
√

1
22R0

. Choleski factorization

TTT = VjDjV
T
j

is applied where T is a triangular matrix. Next, a tree search
is implemented over the layers of T as in sphere decoding,
which identifies all coefficient vectors within the radius.
The rank of these coefficient vectors in Z2m are calculated,
denoted by L̃j . Finally, we pick those Lj ≤ L̃j linearly
independent vectors with the smallest norms, with Lj being
set to meet the BH constraint (47).

Fig. 2. Averaged number of correctly computed NC streams L at each BS,
nR = 8,K = 24, R0 = 0.5.

3) Comparison: Recall that the objective of the design is
to identify a good coefficient matrix at each BS, such that
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it can correctly compute and forward as many NC streams
as possible. Fig. 2 shows the averaged number of correctly
compute NC messages L at each BS, where nR = 8,K = 24.
The greater the L, the higher the chance that CU can recover
all users’ messages. For the conventional non-lattice coded
based scheme with MMSE detection where A = I, L is
about 2.5 and barely increases with SNR. The conventional
processing with MMSE is a user-by-user based processing
method. A linear MMSE filter is employed to just suppress
the multi-user interference, which does not sufficiently exploit
the interference structure. In contrast, the proposed scheme is
set to operate over integer linear combination (or network
coding) streams. By adopting an optimized A matrix, the
multi-user interference structure is much better harnessed in
the LNC scheme. For the LNC based cf-MIMO scheme, L
increases with SNR, suggesting the CU can recover all users’
messages at a sufficiently high SNR. It is clear that our
proposed CSD method, that solves the BIVP, considerably
outperforms existing LLL and HKZ lattice reduction methods
[27]. The gains in outage probability and FER will be shown
in Fig. 8 in the next section.

C. Discussion of LNC

In essence, LNC involves two functionalities: 1) channel-
code decoding w.r.t. Uj , and 2) multi-user data compression.
For 1), based on Yj , LNC decodes the partial information Uj

by exploiting the 2m-ary channel code, as detailed in Section
IV. For 2), Uj is a “compressed version” of all K users’ data
B, where Aj serves as the compression code (or network
code). This is in line with the spirit of general network coding
[16]. In particular, the network code Aj is chosen to facilitate
the decoding of Uj , and maintain as much information of B
as possible to maximize the network information flow.

The “goodness” of the network code Aj depends on:
a) The algorithm for identification of Aj . From the above,

solving BIVP with CSD yields a better network code Aj as
compared to the LLL and HKZ lattice reduction methods.

b) The wireless channel realization Hj . A “good” Hj

enables more linearly independent NC coefficient vectors
within radius

√
1

22R0
as in Th.2, resulting in a greater Lj .

In cf-MIMO, some BSs may have “bad” (or “good”)
channel realization, and outputs a little (or large) number of
NC streams. As long as the N BSs can collectively provide
sufficient amount of NC streams, the task of CU decoding
can be accomplished.

In executing the LNC scheme, each BS can reliably com-
pute L integer linear combinations (equations). If the total
rate of these L equations is no greater than its BH rate
constraint, all the L equations can be forwarded to the CU.
On the other hand, if the total rate of these L equations is
greater than its BH rate constraint, the BS just selects the
best L′ < L equations, where L′ is chosen to meet the BH
requirement. It is noteworthy that the BH consumption is
affected by the BIVP solution of A matrix. To be specific, the
BIVP is set to find as much independent a vector as possible
within a bounded region whose radius is determined by the
target rate R0. For different MIMO channel realizations at
different BSs, the number of satisfactory vectors L1, ..., LN

are different, thus the BH consumption of the BSs are different
and asymmetrical in general.

VI. NUMERICAL RESULTS

The environment of the simulations follows that in the
system model depicted in Section II. For a cf-MIMO with
given N,K, nR and target rate R0, outage probability (OP) at
the CU is served as the performance metric from a theoretical
aspect. The frame error rate (FER) of a 2m-ary LDPC coded
system is served as the performance metric from a practical
aspect. The OP provides a lower bound for the FER. Here,
i.i.d. Rayleigh fading channels for all users and all BSs
are considered. The extension to the setup with randomly
located users with different path-losses is straightforward. For
comparison purpose, we consider decode-forward (DF) [46]
and compress-forward [25] [35] [36] as the baseline schemes,
whose achievable rate and BH consumption are presented in
Appendix. Note that both LNC and DF have a fully digitized
usage of the BH, while compress-forward does not. Local CSI
with and without channel estimation errors are considered at
each BS. In the numerical results, the vertical axis is either
FER or outage probability.

A. Moderate numbers of antennas and users

Fig. 3. Comparison of OPs of DF, compress-forward and our proposed LNC
based schemes. A cf-MIMO system with N = 4 distributed BSs, nR =
8 antenna at each BS, K = 24 users, target per-user rate R0 = 0.5 is
considered in this figure.

First consider a cf-MIMO with N = 4 BSs, K = 24 users,
nR = 8 antennas at each BS, and a target per-user rate of
R0 = 0.5 bit per real-dimension. The spectral efficiency is 12
bits per real-dimension. The channel coefficients are assumed
to be i.i.d. and follow a Rayleigh distribution. Fig. 3 shows the
OPs of the cf-MIMO system with various schemes including
baseline DF, compress-forward and our proposed LNC based
scheme. Associate with a certain symmetric rate R0, the
outage probability is defined as the probability that a users
achievable rate is less than R0 [37]. For the DF scheme, the
OP hardly drops as SNR increases. This is because at each BS,
the DF scheme has to rely on only nR = 8 antennas to decode
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K = 24 users’ message. In this case, the BS can only correctly
decode and forward a very limited number of users’ messages.
In contrast, both the compress-forward based scheme and our
proposed scheme have OPs that decrease as SNR increases.
Here, the BH usage of the compress-forward based scheme
and our proposed LNC based scheme are set to be identical
for a fair comparison. The achievable rate of the LNC scheme
characterized in Theorem. 2 is used to evaluate the OP. At an
OP≤ 10−2, the proposed LNC based scheme outperforms the
compress-forward based scheme with either optimal vector
quantization or scalar quantization. Note that to achieve the
OP with vector quantization, an optimal vector quantization
code that achieves the rate-distortion function with a very long
codeword size n → ∞ is required. In practice, such vector
quantization code may not be available, or its encoding and
decoding may not be affordable. The compress-forward with
scalar quantization is thus a more viable solution.

Fig. 4. FER of binary LDPC coded LNC for a cf-MIMO system with N = 4
distributed BSs, nR = 8,K = 24, R0 = 0.5. A rate 1/2 code with BPSK
signaling is used. The block size is k = 480. The behaviors of FERs agree
with that of OPs.

The OP shown in Fig. 3 provides a theoretical upper bound
on the FER that any practical coded system can achieve. Fig.
4 presents the FER of the proposed LNC scheme using a
practical LDPC code in 5G standard. To meet the target rate
of R0 = 0.5 per-user, a rate 1/2 code with BPSK signaling is
used. The block size is k = 480. The maximum number of
iterations of LDPC code decoding is set to 200. In the point-
to-point AWGN channel, this code achieves a FER of = 10−2

(or 10−3) at 1.68 dB (or 1.99 dB) , which is about 1.69 dB (or
1.99 dB) away from the capacity limit (0 dB for R0 = 0.5).
For the proposed LNC scheme in cf-MIMO, our developed
soft LNC detection algorithm in Section IV. D is utilized,
which yields the input log likelihood ratios (LLRs) to the
LDPC decoders to execute BP decoding. At FER=10−2, the
performance of the LDPC coded LNC scheme is about 2.54
dB away from the theoretical OP. The FER of the proposed
is about 1.4 dB better than that of the compress-forward
scheme with scalar quantization. The behaviors of FERs agree
with that of OPs. Fig. 5 shows the FER performance of
the proposed LNC scheme with various MSE of channel

Fig. 5. FER of binary LDPC coded LNC for a cf-MIMO system with channel
estimation errors, for N = 4 distributed BSs, nR = 8,K = 24, R0 = 0.5.
A rate 1/2 code with BPSK signaling is used. The block size is k = 480.

estimation errors. We consider that the estimated channel
matrix is given by

Ĥ = H + Γ (52)

where Γ denotes the channel estimation error. The mean
square error (MSE) w.r.t. is given by

E
(
|ĥi,j − hi,j |2

)
= E

(
|τ i,j |2

)
(53)

where τ i,j is the (i, j)-th entry of τ i,j . The entries of Γ
are modelled as following a i.i.d. Gaussian distribution. In
obtaining the numerical result in Fig. 5, the MSE E

(
|τ i,j |2

)
is set to 0.01 and 0.02. The selection of the NC matrix and
the soft LNC detection are then implemented based on the
estimated channel matrix Ĥ. It is demonstrated that the LNC
scheme is subject to losses of about 0.2dB and 0.95 dB
respectively, relative to the perfect CSI case.

Fig. 6. Outage probability of the cf-MIMO with N = 4 distributed BSs,
nR = 8,K = 12, R0 = 1.
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Next consider a cf-MIMO with N = 4 BSs, K = 12
users, nR = 8 antennas at each BS, where the target per-
user rate is increased to R0 = 1. The spectral efficiency is 12
bit/per real-dimension, which is the same as in the previously
evaluated configuration. In Fig. 6, it is shown that the OP
of the proposed LNC scheme considerably outperforms the
compress-forward scheme with either optimal vector quanti-
zation or scalar quantization, with the same BH consumption.
It is also shown that the LNC based scheme outperforms the
decode-and-forward scheme, where joint decoding of all users
messages by means of iterative APP detection and decoding
is utilized.

Fig. 7. FER of a 2m = 2 LDPC coded cf-MIMO system with N = 4
distributed BSs, nR = 8,K = 12, R0 = 1.

Fig. 7 presents the FER. To meet the target rate of R0 = 1
per-user, a rate 1/2 4-ary LDPC (a doubly irregular repeat-
accumulate [43]) ring code with 4-PAM signaling is used,
which belongs to the ensemble of lattice code. The block size
is k = 256. In the point-to-point AWGN channel, this code
achieves a FER of = 10−2 at 7.61 dB, which is about 2.84
dB away from the capacity limit (4.77 dB for R0 = 1). For
the proposed LNC scheme in cf-MIMO, our developed soft
LNC detection algorithm in Section IV. D is utilized, which
yields the 2m-level APPs to the LDPC ring code decoders that
execute 2m-ary BP decoding. At FER=10−2, the FER is about
2.96 dB away from the OP upper bound for the proposed
scheme. The FER of the proposed LNC scheme is about
1.6 dB better than that of the compress-forward scheme with
scalar quantization. Again, the behaviors of FERs agree with
that of OPs for the scenario with a higher-level modulation
and 2m-ary code.

Fig. 8 compares the OPs of the LNC based cf-MIMO
with various methods in finding Aj , j = 1, · · · , N . The
first baseline is MMSE, which is equivalent to LNC with
coefficient matrix A is set to I [29]. It has a much inferior
performance w.r.t. lattice-based schemes. Our proposed CSD
outperforms existing LLL and HKZ methods by 1.2 and 1.5
dBs at OP of 10−3, respectively. This advance is owing to
that the proposed CSD is able to provide more NC streams
from each distributed BSs, as explained in Fig. 2.

Fig. 8. Comparison to existing LLL and HKZ lattice reduction methods.
N = 4 distributed BSs,nR = 8,K = 24, R0 = 0.5.

Fig. 9. Comparison of LNC based cf-MIMO with N = 1, 2, 4, 8 BSs,
nR = 8,K = 24, R0 = 0.5. The LLL method is used.

Fig. 9 compares the performance of LNC based cf-MIMO
with N = 1 to 8 distributed BSs.

B. Large numbers of antennas and users

We next consider a cf-MIMO with a larger number of
antennas nR = 32 at BS, where N = 4, R0 = 1. Fig. 10
shows the OP (left sub-figure) and the BH consumption (right
sub-figure) with various numbers of users K = 32, 40, 48. As
the number of users increase, the total data-rate increases, and
a higher SNR is required to achieve a certain OP requirement.
For example, to achieve OP=10−2, the required SNR is -3.72
dB,-1.22 dB, 3.21 dB for K = 32, 40, 48, respectively. It is
interesting to note to achieve OP=10−2, the BH consumptions
does not considerably increase as K increases, for the range
of K under consideration. For instance, each BS is required to
consume about 22.1, 22.6, 20.5 bits/channel-use of the BH on
average for K = 32, 40, 48, respectively. We conjecture that
this is because for a higher SNR, the NC messages aggregated
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Fig. 10. Outage probability and BH rate consumption with N = 4 distributed BSs, nR = 32,K = 32, 40, 48, R0 = 1.

from the BSs tend to be more linearly independent, thus a
similar number of NC messages from each BS suffices to
guarantee the full-rank condition at the CU for an increased
number of K.

Fig. 11. FER with N = 4 distributed BSs, nR = 32, 48,K = 32, 48.

To consolidate the result with large nR and K, Fig. 11
shows the FER of the proposed LNC based scheme with the
2m = 4 LDPC code of rate 1/2 and 4-PAM utilized in Fig.
7. At FER=10−2, the gap to the theoretical OP is about 2.97
dB for nR = K = 32 and 3.19 dB for nR = K = 48. The
behaviors of FERs agree with that of the OPs. Fig. 12 shows
the ε-outage rate [37] of LNC-based cf-MIMO system. The
ε-outage rate is defined as the rate R at which the outage
probability of the scheme equals to ε. The typical values of ε
widely used are from 0.1 to 0.001. It is demonstrated that the
proposed LNC scheme offers a very much improved outage
capacity over the benchmark scheme with decode-forward. As
the system load increases, the improvement becomes more
significant.

Fig. 12. Rate per-user at OP=0.01. nR = 32,K = 32, 48.

TABLE I
THE ORDER OF COMPLEXITY OF LNC BASED CF-MIMO.

Detection Decoding NC Coefficient Identification
LNC O

(
LCUn2m · E

(
ωH (a)

))
O(LCUn

(
2m − 1

)
) Between O(NK3) and O(NK4)

DF O
(
NKn2m

)
O(NKn

(
2m − 1

)
) Nil

C. Analysis of Implementation Costs

The orders of complexities are shown in Table. I. The
computation in LNC for a BS consists of 1) channel-code
decoding, 2) LNC soft detection, and 3) identification of Aj .
For 1), LNC requires Lj decoding operations at BS j. For
the uplink system, the modulation order 2m is usually not
large, where the complexity of ring-code decoding is not
considerably greater than that based on conventional binary
channel code decoding. For 2), LNC needs to compute Lj
streams of APPs w.r.t. the NC messages. The per-symbol
detection complexity (of calculating the distance) of stream l
is of order O((2m − 1)ωH (al)), where ωH (al) < K denotes
the weight of the coefficient vector al. The average detection



14

complexity of LNC is thus O (Ljn (2m − 1)E (ωH (a))) for
BS j. For 3), with LLL, the complexity is between O(K3) and
O(K4), a polynomial in K. The complexity of HKZ and CSD
is moderately higher than LLL. Since Aj is chosen once per
block, for a moderate-to-long block length n (e.g. n > 480),
this overhead is not significant.

D. Discussion of Backhaul Consumption

The BH consumption of the LNC based cf-MIMO is
of the same order of the air-interface capacity, given by
O (KR0). To see this, note that the entropy of the NC streams

is 1
n

N∑
j=1

H (Uj) ≤ R0

N∑
j=1

Lj , which determines the BH

consumption. Since Lj ≤ K, the total BH consumption of N
BSs is at most NKR0, where the typical number of BSs N is
not large. Empirically, to achieve FER of 10−2 to 10−3, Lj is
just a fraction of K. As such, the total BH rate consumption is
significantly smaller than NKR0, i.e., the order is O (KR0).
Meanwhile, for a properly designed system, the sum-rate
KR0 should be in match with the channel capacity of the
air-interface, whose order is also O (KR0).

VII. CONCLUSIONS

This paper studied lattice network coding based cell-free
MIMO system with non-cooperative BSs. We suggested a
package of techniques that are essential to its practical imple-
mentation, including the 2m-ary ring-coded modulation, soft
detection algorithms, constrained sphere-decoding for solving
the BIVP that identifies the optimized coefficient matrix A
at each base stations. Considerable performance enhance-
ment were demonstrated over existing compress-forward and
decode-forward schemes.

APPENDIX

[Rate of Compress-forward]
Each BS compress y w.r.t the nR antennas. The description

rate is chosen such that the BH capacity constraint is met. The
correlation between two entries of y is

E (yυ, yυ′) =

K∑
i=1

hv,ihv′,i
K→∞→ 0, υ, υ′ ∈ {1, · · · , nR} , υ 6= υ′

(54)
where Law of large number is used in the last step. In other
words, as K becomes large, the correlation among the entries
of y vanishes. Thus, the entropy can be approximated as

H (y)
K→∞
≈ 1

2

nR∑
v=1

log2

(
K∑
i=1

|hv,i|2 ρ+ 1

)
+

1

2
nR log2 2πe.

(55)
It is clear that the entropy of y is linear in nR and logarithm
in K. For cf-MIMO with large nR and K under considera-
tion, H (y) tends to be much greater than the BH capacity
constraint, and thus compression is required. The compression
of the signal y [35] [36] is depicted as follows.

Denote by yv the received signal of the v-th antenna, and

ỹv = yv + ev, υ ∈ {1, · · · , nR}

be its quantized version. Here MSE is used as the distortion
measurement, i.e. D

v
= E

(
e2
v

)
. If an optimal vector quanti-

zation code that achieves the rate-distortion (RD) function is
applied, according to the RD theorem [15], the per-antenna
compression rate satisfies

R (D
v
) > min

p(yv|ỹv)
I (y

v
; ỹ

v
) =

1

2
log2

(
var (yv )

D
v

)
=

1

2
log2

(∑K
i=1 |hv,i|

2
ρ+ 1

D
v

)
=
CBHj
nR

, (56)

for v = 1, · · · , nR. The inequality is owing to the BH con-
straint, where an equal rate allocation is applied to quantize
the nR antennas’ signals. This translates into quantization
noise variance

Dv =

(
K∑
i=1

|hv,i|2 ρ+ 1

)
2
−2CBH

j
nR . (57)

The quantized version obtained from the N BSs are for-
warded to the CU. The CU aggregates

ỹCU =
[
ỹT1 , · · · , ỹTN

]T
= HCUx + zCU (58)

where the entries of zCU has variances Dj,v + 1, v =
1, · · · , nR, j = 1, · · · , N . Then, the achievable rate of this
compress-forward scheme can be calculated from (58).

The above compress-forward scheme assumes a “perfect”
vector quantization RD code for n → ∞. In practice, the
optimal vector quantization code would be either unavailable
or too expensive. If a simple 1-bit quantization is applied
symbol-wisely (without using a RD code) per-antenna, the
distortion is calculated to be 0.3633

(∑K
i=1 |hv,i|

2
ρ+ 1

)
. In

such case, the total BH consumption is exactly nR bits.
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