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a b s t r a c t 

Aiming at the complexity and particularity of urban environment, a solar-powered UAV (SUAV) path plan- 

ning framework is proposed in this paper. The framework can be decomposed into three aspects to re- 

solve. First, to make SUAV avoid the building obstacles, a nature-inspired path planning method called In- 

terfered Fluid Dynamical System (IFDS) is introduced. Aiming at the defect that the traditional IFDS is not 

suitable for SUAV energy optimization calculation, the dynamic constraints and model are introduced to 

IFDS. The modified IFDS, called Restrained IFDS (RIFDS), is proposed. Second, to resolve the path planning 

issue efficiently, a novel intelligent optimization algorithm called Whale Optimization Algorithm (WOA) 

is selected as the basic framework solver. To further overcome the drawback of local minima, adaptive 

chaos-Gaussian switching solving strategy and coordinated decision-making mechanism are introduced 

to the basic WOA. The modified algorithm, called Improved WOA (IWOA), is proposed. Third, to solve 

the accurate modeling problem of solar energy in urban environment, two measures are adopted: (1) A 

practical judgment method for sunlight occlusions is proposed; (2) Aiming at some unreasonable aspects 

in the solar energy production model, the received solar energy is modified and recalculated by ASHRAE 

Clear Sky Model and the solar irradiance calculation principle for slant surfaces in this paper. Finally, the 

effectiveness of the proposed framework is tested by the simulations. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

With the boom of urbanization, the demand for small Un-

anned Aerial Vehicles (UAVs) flying at low altitudes increases

apidly. The small UAV in city can execute the missions such as

olice patrols, news reports, high building fire control, etc. These

issions have rigorous requirements for the endurance time. How-

ver, the traditional small UAV is limited by its load as it cannot

eserve more energy and be qualified for the work. Solar-powered

AVs (SUAVs) utilize solar radiation as energy. Compared with the

raditional UAV, SUAV has a better endurance performance. Hence,

mall SUAVs like those mentioned in [1,2] are suitable for long en-

urance missions in city. Currently, the corresponding SUAV tech-

ology has been widely focused on and studied, especially the

spects of energy optimization and management [3-5] . Because

urrent studies on the energy exchange efficiencies of solar cells

annot make breakthroughs within a short time, optimizing flight
∗ Corresponding author at: School of Automation Science and Electrical Engineer- 

ng, Beihang University, Beijing 100191, China. 
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aths has become an effective methodology to make SUAV receive

ore solar radiation. Klesh and Kabamba [1] establish the energy

arvesting and consumption model and design the energy-optimal

ath for SUAV. Dai et al. [6,7] extend the energy-optimal path from

D space to 3D space. Hosseini et al. [8,9] plan the SUAV path for

he area surveillance problem. Spangelo and Gilbert [2] plan the

ath of SUAV for ground target tracking. The aforementioned stud-

es have achieved important results for SUAV path planning in free

nvironment and have laid the foundation for SUAV path planning.

owever, in urban environment, these methods may not be suit-

ble for the following reasons: 

(1) The high buildings in city will influence the flight safety

as they are obstacles. However, the aforementioned studies

only consider the energy optimization problem and focus on

the path planning in free environment, but do not design a

proper obstacle avoidance strategy. 

(2) High buildings may block out sunlight and generate “shadow

regions”. The range of a shadow region depends on the

height difference between SUAV and buildings and the solar

angles. Hence, the range of a shadow region is time-variable.

https://doi.org/10.1016/j.neucom.2017.10.037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.10.037&domain=pdf
https://doi.org/10.1016/j.neucom.2017.10.037
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If SUAV is located in a shadow region, the received solar ra-

diation can be regarded as zero. Because the accurate model-

ing of urban environment is a precondition for SUAV energy-

optimal path planning, the sunlight occlusions by buildings

must be taken into consideration. However, it seems that

there is no literature considering the sunlight occlusions for

SUAV. This is the most distinct difference between urban and

free environments for SUAV applications. 

(3) According to the research achievements of solar engineering

[10,11] , solar radiation can be divided into three parts: the

beam component, the diffuse component, and the ground

reflected component. However, in the aforementioned stud-

ies, only the beam radiation is considered and is simpli-

fied as a constant, i.e., an average value for SUAV. Actually,

by [10,11] , the values of the beam radiation and diffuse ra-

diation can be calculated accurately according to the date.

Moreover, because SUAV flies near the ground in city, the

ground reflected solar radiation should be considered for the

more accurate energy modeling. 

Due to the complexity of urban environment caused by the cou-

pling of obstacle avoidance and energy optimization, according to

our present investigation, no related literature specializes in SUAV

path planning in urban environment. Therefore, this paper focuses

on solving this issue by decomposing it into the following aspects.

First, to solve the obstacle avoidance problem, a novel nature-

inspired methodology called Interfered Fluid Dynamical System

(IFDS), which is proposed in our previous work [12-14] , is in-

troduced. IFDS imitates the phenomenon through which water in

river smoothly avoids rocks and eventually reaches the destination.

Unlike other nature-inspired methodologies e.g., the method which

directly optimizes a series of waypoints in the path via the intel-

ligent algorithm [15-20] , IFDS generates a smooth streamline (i.e.,

planned path) according to some parameters of each obstacle. The

biggest advantage of IFDS is the smooth planned paths. However,

IFDS from our previous work cannot be applied in SUAV path plan-

ning directly because of the following reasons: 

(1) SUAV needs to adjust its attitude (especially its direction and

bank angles) to track the solar incidence direction in real

time so that the cells on the surface of wings can obtain as

much solar radiation as possible. Nevertheless, the stream-

line generated by IFDS is merely a series of UAV positions,

which do not contain the attitude information directly. This

defect may not influence the traditional UAV, but it is un-

negligible for SUAV energy-optimal path planning. 

(2) For flight safety, some states of UAV are set as the restrained

values according to the dynamic performances e.g., the bank

angle is limited for the SUAV mentioned in [1] . However,

in the traditional IFDS, the states of UAV are not restrained.

Hence, the feasibility of the planned path cannot be guaran-

teed. 

In general, the biggest defect of the traditional IFDS is that it

is divorced from the UAV dynamic model. Therefore, we will intro-

duce the UAV model and constraints for IFDS. The modified IFDS

proposed in this paper for SUAV is called Restrained IFDS (RIFDS). 

Second, to resolve the optimal paths, an efficient solver is in-

troduced. This solver, unlike the traditional mathematical program-

ming methods such as the mixed integer linear programming, non-

linear programming, etc., uses intelligent optimization algorithms

(IOAs) to effectively avoid the problem of “combination blast”. IOAs

imitate natural phenomena to search the optimal solution effi-

ciently. Currently, the traditional IOAs applied in UAV path plan-

ning include Genetic Algorithm (GA) [20] , Particle Swarm Opti-

mization (PSO) [21] , Differential Evolution (DE) [22] , Gravitational

Search Algorithm (GSA) [23] , Pigeon-inspired Optimization (PIO)
16] , Artificial Bee Colony (ABC) [18] , Grey Wolf Optimizer (GWO)

24] , Backtracking Search Algorithm (BSA) [25] , etc. In recent years,

 novel swarm-based optimization algorithm called Whale Opti-

ization Algorithm (WOA) is proposed by Mirjalili, which imitates

he hunting behavior of humpback whales [26] . According to the

heoretical analysis and many numerical experiments, compared

ith the traditional IOAs, WOA has a faster solution speed and a

igher accuracy. Hence, we would like to select WOA as the solver

or our problem. However, the original WOA still has the draw-

ack that it may become trapped in local minima. To overcome

his drawback, some improvements are proposed and introduced

o WOA in this paper. The modified WOA is called Improved WOA

IWOA). 

Third, to solve the accurate modeling problem of solar energy

n urban environment, two measures are adopted in this paper:

irst, a practical judgement method for the shadow region is pro-

osed. Second, SUAV is regarded as a piece of flying solar panel so

hat the received energy can be recalculated by the knowledge in

he field of the solar engineering, i.e., ASHRAE (American Society

f Heating, Refrigerating and Air-conditioning Engineers) Clear Sky

odel [11] . 

The contributions of this paper can be summarized as follows: 

(1) An SUAV path planning framework aimed at urban environ-

ment is proposed. The obstacle condition and the shadow

regions caused by high buildings are considered. 

(2) Dynamic constraints and model are introduced to the tra-

ditional IFDS. The modified IFDS, called RIFDS, is proposed.

The necessary angles can be resolved by RIFDS for SUAV en-

ergy calculation. 

(3) Some improvement measures are introduced to WOA to

avoid local minima. The modified WOA, called IWOA, is pro-

posed. 

(4) The traditional SUAV solar energy production is modified

and recalculated according to ASHRAE Clear Sky Model and

the solar irradiance calculation principle for slant surfaces. 

. Problem formulation 

.1. Obstacle modeling 

The building obstacles in urban environment can mainly be de-

cribed as cuboids, cylinders and their combinations. The unified

ormulation of obstacles is shown as follows: 

(ξ ) = 

(
x − x 0 

a 

)2 d 

+ 

(
y − y 0 

b 

)2 e 

+ 

(
z − z 0 

c 

)2 f 

(1)

here ξ = (x, y, z) is the SUAV position; ξ0 = ( x 0 , y 0 , z 0 ) is the ob-

tacle center; a, b, c are axes lengths of the obstacle; and d, e, f are

he shape parameters. If d = e = 1 , f > 1 , the obstacle is approxi-

ately a cylinder; if d > 1, e > 1, f > 1, the obstacle is approximately

 cuboid. If �( ξ ) > 1, SUAV is away from the obstacle, i.e., SUAV is

afe; if �( ξ ) < 1, SUAV is inside of the obstacle, i.e., SUAV is located

n the no-fly zone; if �(ξ ) = 1 , SUAV is on the surface of the ob-

tacle, i.e., SUAV collides with the obstacle. For path planning, the

ituation of �( ξ ) ≤ 1 must be avoided. To describe the following

roposed judgement method for the shadow region, according to

q. (1) , the side surface equation of the obstacle can be obtained. 

.2. SUAV dynamic model and constraints 

According to the mission requirements, suppose that SUAV

aintains a level flight at the constant height h and constant
0 
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Fig. 1. The geometrical relationship between the sun and SUAV. 
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peed V . The discretized 3-DOF dynamic model of SUAV is de-

cribed as follows: 

 

ψ(t + 1) = ψ(t) + g tan ( φ(t) ) · �T 
x (t + 1) = x (t) + V cos ( ψ(t + 1) ) · �T 
y (t + 1) = y (t) + V sin ( ψ(t + 1) ) · �T 

(2) 

here ψ and φ are heading and bank angles respectively; �T is

he sampling time; and t is the current time. φ is usually set as the

ontrol input for SUAV [1,6,7,27] . The dynamic constraint in SUAV

s | φ| ≤φmax . 

.3. SUAV energy model in urban environment 

.3.1. The modified received solar irradiance for SUAV 

ssumption 1. In this paper, SUAV always flies in clear sky con-

itions without clouds which meets the requirements of ASHRAE

lear Sky Model. 

In this paper, ASHRAE Clear Sky Model, which is widely ap-

lied in solar engineering, is introduced to modify some unrea-

onable aspects of the current studies on SUAV energy production

rocesses [1,2,6-9] as follows. 

The electric energy of SUAV is converted by solar cells from so-

ar radiation. The solar irradiance I (W/m 

2 ), which is perpendicular

o the horizontal plane in the exoatmosphere, is calculated as: 

 = I 0 

(
1 + 0 . 034 cos 

2 πn day 

365 . 25 

)
(3) 

here I 0 is the solar constant and n day is the number of solar days

hich start from January 1 as 1. 

The solar radiation can be absorbed, diffused and reflected by

he atmosphere of earth. Thus, the total solar irradiance on the

arth horizontal surface I h is calculated based on the years of ob-

ervation and summary as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

I h = I b sin αe + I d 
I b = I e −τb m 

b 
r 

I d = I e −τd m 

d 
r 

b = 1 . 219 − 0 . 043 τb − 0 . 151 τd − 0 . 204 τb τd 

d = 0 . 202 + 0 . 852 τb − 0 . 007 τd − 0 . 357 τb τd 

m r = 

1 
sin αe 

(4) 

here I b and I d are the beam and diffuse irradiances on the earth

orizontal surface; τ b and τ d are the beam and the diffuse optical

epths respectively, whose values can be obtained by [11] ; b and d

re the beam and the diffuse air mass exponents respectively; m r 

s the air mass ratio; and αe is the solar elevation angle. 

As time goes on, the solar elevation angle αe and solar azimuth

ngle αz can be calculated as follows: 

 

 

 

 

 

 

 

sin αe = sin n lat sin δ + cos n lat cos δ cos ω(t) 

sin αz = 

cos δ cos ω(t) 
cos αe 

δ = 0 . 4093 sin 

(
2 π(284+ n day ) 

365 

)
ω(t) = 0 . 2618 × (12 − t local ) 

(5) 

here n lat is the latitude; δ is the declination angle of the sun;

 local is the current hour of the day; and ω( t ) is the hour of sun. 

Then, to obtain the solar irradiance on the wings of SUAV, the

ncident angle λ of the sunlight on the surface of the wings should

e calculated. As shown in Fig. 1 , P-NED is the navigation coordi-

ate frame fixed to the ground, which points to the orientations

f north, east and the ground, respectively. The unit vector of the

unlight V in the navigation coordinate frame is expressed as 
P 
 P = 

[ 

cos αe cos αz 

cos αe sin αz 

− sin αe 

] 

(6) 

The unit vector V b along the reverse direction of Axis O b z b in

he body fixed frame is expressed as 

 b = 

[
0 0 −1 

]T 
(7) 

 P can be converted under the body fixed coordinate frame in the

ollowing form: 

 

b 
P = L x (φ) L y (θ ) L z (ψ) 

[ 

cos αe cos αz 

cos αe sin αz 

− sin αe 

] 

(8) 

here θ is the flight path angle and L x , L y , L z are the element ro-

ation matrixes. Because SUAV maintains a level flight, θ can be

egarded as zero. 

According to vector multiplication, cos λ is calculated as 

os λ = V b · V 

b 
P = cos αe sin αz cos ψ sin φ

− cos αe cos αz sin ψ sin φ + sin αe cos φ (9) 

Finally, the solar irradiance on the surface of the wings P UAV can

e worked out. In the traditional studies on SUAV energy produc-

ion process [1,2,6-9] , P UAV is calculated as 

 UAV = 

{
P sd cos λ if cos λ ≥ 0 

0 if cos λ < 0 

(10) 

here P sd is the solar spectral density and is regarded as a con-

tant. However, according to our analysis of the solar irradiance in

q. (4) , there are three kinds of solar radiation absorbed by the

ings: I h , I b and I d . Therefore, P UAV in Eq. (10) cannot represent

he influence of the different types of solar radiations comprehen-

ively. Thus, another way should be found to rewrite the equation

f P UAV . 

emark 1. When cos λ< 0, the lower surface of the wings is ir-

adiated by solar radiation. However, the cells of the SUAV men-

ioned in [1] are only installed on the upper wing surface. Hence,

he produced power is zero. 

The surface of the wings can be regarded as a piece of fly-

ng slant solar panel. The absorbed radiation can be calculated ac-

ording to the solar irradiance calculation principle for slant sur-

aces as follow, which is widely utilized in the solar engineering
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industry [10] : ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

P UAV = P b + P d + P r 

P b = 

{
I b cos λ if cos λ ≥ 0 

0 if cos λ < 0 

P d = I d cos 2 φ
2 

P r = ρr I h sin 

2 φ
2 

(11)

where P b , P d , and P r are the beam irradiance, the diffuse irradiance,

and the ground reflection irradiance on the airfoil respectively; and

ρr is the ground reflection factor. Compared with the previous en-

ergy modeling method in Eq. (10) , the modified Eq. (11) is more

accurate. 

2.3.2. Energy collection and consumption models of SUAV 

When sunlight shines on solar cells on wings, cells produce the

electric power P in : 

P in = ηsol S P UAV (12)

where ηsol is the efficiency of the solar cells and S is the area of

the wings. 

Hence, the collected energy is 

E in = 

∫ t f 

t 0 

P in dt (13)

Then, the energy consumption power P out is calculated as the

same as [1] : ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

P out = 

T V 
ηprop 

+ P E 

T = D 

D = 

1 
2 
ρV 

2 S C D 

C D = C D 0 + 

C 2 L 

επR a 

C L = 

2 mg 
ρV 2 S cos φ

(14)

where T is the thrust; ηprop is the efficiency of the propeller; P E 
is the consumed power of the airborne equipment, which can be

considered as a constant; D is the drag; ρ is the air density; C D is

the coefficient of drag; C D 0 is the parasitic drag coefficient; C L is

the coefficient of lift; ɛ is the Oswald efficiency factor; and R a is

the ratio of the wings. 

Hence, the consumed energy is 

E out = 

∫ t f 

t 0 

P out dt (15)

Therefore, the total energy is 

E total = E in − E out (16)

2.3.3. Judgment method for the shadow region 

When SUAV flies among high buildings, the buildings higher

than SUAV may block out sunlight for SUAV. If the sunlight is

blocked out, i.e., SUAV is located in the shadow region, the col-

lected power P in can be regarded as zero. 

In the fields of urban planning and construction design, the

shadow regions for the rated altitude can be obtained via the

methodologies of computer graphics and numerical simulations

[28,29] . The advantages of these methodologies are their precision

and ability to calculate all kinds of irregular buildings. However,

their disadvantages are very obvious: the precise simulation will

require a large amount of computing resources, which will make

the optimization problem too complicated. Hence, a simple and

practical judgment method for identifying the shadow region is

proposed as follows: 

Step. 1. Obtain the equation of sunlight. Suppose that the posi-

tion of SUAV is ( x u , y u , h u ). According to Eq. (6) , the straight-

line equation of the sunlight which points to SUAV can be

written in two-point form: 

x u − x = 

y u − y = 

h u − h 

(17)

cos αe cos αz cos αe sin αz − sin αe 

g

Step. 2. Judge whether there is an intersection between the

straight-line equation of the sunlight and the side surface

equations of the buildings higher than SUAV. We combine

Eq. (17) with the side surface equation of each obstacle ac-

cording to Eq. (1) , and judge whether there is an intersec-

tion. The schematic diagram is shown in Fig. 2 . 

Step. 3. Decide the input power of SUAV. If there is no intersec-

tion on the side surface, P in is calculated by Eq. (12) . Instead,

let P in = 0 . 

. Restrained Interfered Fluid Dynamical System 

.1. IFDS 

Suppose that the destination is ξd = ( x d , y d , z d ) and the number

f the obstacles is K . 

First, the original fluid speed u is described as 

 = −
[ 

V (x − x d ) 

d 

V (y − y d ) 

d 

V (z − z d ) 

d 

] T 
(18)

here d = 

√ 

(x − x d ) 
2 + (y − y d ) 

2 + (z − z d ) 
2 

is the distance be-

ween SUAV and its destination. 

Then, the influence of the obstacles on the original fluid speed

s expressed by the total interfered modulation matrix M̄ : 

¯
 = 

K ∑ 

k =1 

ω k M k (19)

here ω k is the weighting coefficient of the k th obstacle and M k 

s the interfered modulation matrix of the k th obstacle. ω k and M k 

re defined as 

 k = 

⎧ ⎨ 

⎩ 

1 K = 1 

K ∏ 

i =1 ,i � = k 
( �i −1) 

( �i −1)+( �k −1) 
K � = 1 

(20)

 k = I − n k n 

T 
k 

| �k | 1 / ρk n 

T 
k 

n k 

+ 

t k n 

T 
k 

| �k | 1 / σk ‖ 

t k ‖ ‖ 

n k ‖ 

(21)

here �k and �i are the obstacle equations calculated by Eq. (1) ;

 is the three-order unit matrix; − n k n 
T 
k 

| �k | 1 / ρk n T 
k 

n k 
and 

t k n 
T 
k 

| �k | 1 / σk ‖ t k ‖‖ n k ‖ 
re the repulsive and tangential matrixes, respectively; ρk and

k are the repulsive and tangential parameters, respectively; n k =
 

∂ �k 
∂x 

∂ �k 
∂y 

∂ �k 
∂z 

] T 
is the normal vector; and t k is the tangent

ector, which can be obtained as follows. 

The tangent reference frame o ′ - x ′ y ′ z ′ is established by taking

 k , 1 , t k , 2 and n k as the x ′ axis, y ′ axis and z ′ axis respectively. 

 

 

 

 

 

 

 

 

 

t k, 1 = 

[
∂ �k 

∂y 
−∂ �k 

∂x 
0 

]T 

t k, 2 = 

[
∂ �k 

∂x 

∂ �k 

∂z 

∂ �k 

∂y 

∂ �k 

∂z 
−
(

∂ �k 

∂x 

)2 

−
(

∂ �k 

∂y 

)2 ]T 

(22)

Hence, any tangent vector from the tangent plane can be ex-

ressed as 

 

′ 
k = 

[
cos θk sin θk 0 

]T 
(23)

here θk ∈ [ −π, π ] is the tangential direction coefficient, which is

he rotary angle along the z ′ axis. Then, in the inertial frame, t ′ k 
an be transformed to t k : 

 k = �I 
T t 

′ 
k (24)

here �I 
T is the coordinate transformation matrix from the tan-

ent reference frame to the inertial frame. 
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Fig. 2. The schematic diagram of the judgment method. 
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Moreover, for the building obstacles, the disturbed fluid speed

¯ can be obtained by modifying the original fluid speed u : 

¯ = M̄ u (25) 

Finally, the next planned waypoint is obtained by 

 t+1 = P t + ū · �T (26) 

The purpose of introducing the tangential matrix is to avoid the

tagnation point and trap area problems. The parameters ρk , σ k 

nd θ k determine the shape of the streamline. By adjusting σ k and

k , the streamline can get rid of the stagnation point and trap area

roblems. The extent of the reaction to obstacles can be adjusted

y ρk and σ k . The bigger ρk or σ k is, the earlier and more drasti-

ally the path avoids the obstacles. 

emark 2. Because the buildings are the static obstacles, the dis-

urbed fluid speed can be calculated as Eq. (25) . If the obsta-

les are dynamic with speed vector v , ū should be recalculated as

¯ = M̄ (u − v ) + v . 

.2. RIFDS 

According to Eq. (26) , the planned path of the traditional IFDS is

otally divorced from UAV model. Hence, Restrained IFDS (RIFDS) is

roposed in this paper to guarantee the feasibility of the planned

ath. 

Suppose the current heading angle is ψ( t ). The disturbed fluid

peed is the expected speed, i.e., the command speed in the next

oment, which can be written as ū (t) = [ ̄u x (t) ū y (t) ū z (t) ] T 

 ̄u z (t) = 0 ). Hence, the expected heading angle is calculated as 

 c (t) = tan 

−1 

(
ū z (t) 

‖ ̄

u (t) ‖ 

)
(27) 

The expected heading angular rate is 

˙ 
 c (t) = 

ψ c (t) − ψ(t) 

�T 
(28) 

emark 3. The range of the difference value ( ψ c (t) − ψ(t) )

hould be within (−π, π ] . Hence, in the actual programming, the
ifference value should be discussed according to the different

uadrants. 

Put ˙ ψ c (t) into Eq. (1) , and the expected bank angle φc ( t ) can

e resolved: 

c (t) = tan 

−1 

(
˙ ψ c (t) 

g 

)
(29) 

The resolved φc ( t ) should satisfy the constraint condition as

 φ( t )| ≤φmax . Hence, the actual restrained bank angle φa ( t ) is cal-

ulated as 

a (t) = 

{ 

φc (t) if φc (t) ≤ | φmax | 
φmax if φc (t) > φmax 

−φmax if φc (t) < −φmax 

(30) 

Then, put φa ( t ) back into Eq. (1) as the control input. The posi-

ion of the next planned waypoint and the actual feasible heading

ngle can be resolved. 

By introducing the constraint of the bank angle and the UAV

ynamic model as Eq. (1) , RIFDS can overcome the defect of the

raditional IFDS being divorced from the SUAV model. In addition,

he elements for calculating the received solar energy, ψ and φ,

an be resolved (see Eq. (9) ). The rationality of RIFDS can be shown

n the following case: Suppose that UAV turns in the level plane by

FDS and RIFDS, respectively. The initial position and the destina-

ion of the UAV are (0, 0, 150) and ( −300, 0, 150), respectively. The

nitial speed direction of the UAV points in the positive direction

f the X -axis (i.e., γ = 0 and χ = 0 ). The rolling angle is limited

o | φ| ≤ 45 °. The comparison of the flight trajectories by the two

ethods is shown in Fig. 3 . 

In Fig. 3 , the trajectory by IFDS points in the rear destination

irectly, which is divorced from the actual dynamic model of UAV.

n contrast, the trajectory by RIFDS has a gradual turning process

o the rear destination that considers the dynamic model and con-

traints. Hence, RIFDS is more rational than IFDS. 

. Improved Whale Optimization Algorithm 

.1. Whale Optimization Algorithm 

WOA is a novel heuristic algorithm that mimics the hunting be-

avior of the humpback whale. In WOA, the position of each whale
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Fig. 3. The flight trajectories of a UAV turns in a level plane by IFDS and RIFDS. 
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represents a feasible solution. The framework of WOA is divided

into three parts as follows. 

(1) Encircling prey 

WOA assumes that the current best candidate solution is the

target prey or is close to the optimum. After the best search agent

is defined, the other search agents will try to update their posi-

tions toward the best search agent. This behavior is represented as

follows: {
D = | C X 

∗(t) − X (t) | 
X (t + 1) = X 

∗(t) − A D 

(31)

where t is the current iteration; X 

∗( t ) is the position vector of the

current best search agent, i.e., the agent with the best fitness; X ( t )

is the position vector of the current agent; A and C are the param-

eters calculated as { 

A = 2 a r 1 − a 
C = 2 r 2 
a = 2 − 2 t/ T max 

(32)

where r 1 and r 2 are random numbers in (0, 1); a is linearly de-

creased from 2 to 0; and T max is the maximum iteration. 

(2) Bubble-net attacking method 

Whales move toward the target via a spiral motion whose

mathematical formula is {
X (t + 1) = X 

∗(t) + D p e 
bl cos (2 π l) 

D p = | X 

∗(t) − X (t) | (33)

where D p is the distance vector between the whales and the tar-

get; b is a constant for defining the shape of the logarithmic spiral;

and l is a random number in [ −1 , 1] . 

Because whales swim around their prey within a shrinking cir-

cle and along a spiral-shaped path simultaneously, a probability of

50% is assumed when choosing between the shrinking encircling

mechanism and the spiral model to update the position of whales

during the optimization. The mathematical model is as follows: {
X (t + 1) = X 

∗(t) − A D if p < . 5 

X (t + 1) = X 

∗(t) + D p e 
bl cos (2 π l) if p ≥ . 5 

(34)

where p is a random number in [0, 1]. 

When the whales prey and close to the target, a will decrease

from 2 to 0. The fluctuation range of A will decrease following a

in [ −a, a ] . When A is in [ −1 , 1] , the next position of the whale can

be anywhere between itself and the target. Therefore, when A < 1,

whales are set to attack the target. 

(3) Search for prey 

When whales are searching for prey, the mathematical formula

is shown as follows: {
D = | C X rand (t) − X (t) | 
X (t + 1) = X rand (t) − A D 

(35)
here X rand ( t ) is the randomly selected position vector of the

hale. When A ≥ 1, WOA will select a search agent randomly. Ac-

ording to the randomly selected position, the whale can be forced

o deviate from the current target and find a more proper one. This

ill enhance the global searching ability. 

The optimization process of WOA can be summarized as fol-

ows: First, produce N whale agents randomly as the initial popu-

ation in the search space. Then, update the position of each agent

ccording to the current best agent or a randomly selected agent.

oreover, determine the motion forms of the whales (including

he spiral motion and the encircling motion) according to the ran-

om number p . Finally, loop the iteration until the termination

ondition is satisfied. 

.2. Improved WOA 

To balance the global and the local searching, the setting of A

s introduced in WOA. The local optimum problem can be avoided

o some extent. However, because the searching process is com-

letely dependent on the randomness, the searching efficiency

s not highly satisfactory. The randomness still easily results in

he local optimum. To overcome the noted drawback, the adap-

ive Chaos-Gaussian switching solving strategy and the coordinated

ecision-making strategy are introduced to WOA, and Improved

OA (IWOA) is proposed in this paper. 

.2.1. Adaptive chaos-Gaussian switching solving strategy 

To enhance the global searching ability, chaos is introduced

o WOA. Chaos is a nonlinear phenomenon that exists widely in

ature. It has the characteristics of randomness and ergodicity.

ence, chaos is often combined with other IOAs to improve their

lobal searching abilities [30-32] . In this paper, we adopt Logistic

haos equation: 

j (τ + 1) = μ0 β j (τ )(1 − β j (τ )) , 

β j (τ ) ∈ (0 , 1) , β j (τ ) � = 0 . 25 , 0 . 5 , 0 . 75 . (36)

here β j is the chaotic iteration variable and τ is the number of

haotic iteration. When μ0 = 4 , Logistic equation is in a complete

haos state. Fig. 4 shows the Logistic chaos distribution character

f the two-dimensional vector with 500 iterations. 

From Fig. 4 , the agents scatter across the whole search space

nd have a higher probability of being mainly concentrated on the

dge area (the red circle area). Hence, the chaos is beneficial for

OA to jump out of the local optimum. 

In contrast, to enhance the local searching ability, a probability

ensity function with centrality should be introduced to WOA. In-

tinctively, we select Gaussian distribution N ( μ, σ 2 ), whose proba-

ility density function is 

f (x ) = 

1 √ 

2 πσ
exp 

(
− (x − μ) 

2 

2 σ 2 

)
, σ> 0 . (37)

here μ is the Gaussian expectation and σ 2 is the variance. 

To intuitively show that Gaussian distribution character is bene-

cial for the local searching, we select another typical distribution:
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Fig. 4. Logistic chaos distribution character. 
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xponential distribution [33,34] as the comparative item. Fig. 5

hows the normalized Gaussian distribution character N 

∗(0, 1) (i.e.,

tandard normal distribution) and exponential distribution charac-

er of the two-dimensional position vector. 

From Fig. 5 , the agents in Gaussian distribution are concen-

rated on the central area (the red circle area) with a higher prob-

bility, which is beneficial for the local searching ability. Hence,

he searching precision will be improved accordingly. On the con-

rary, the agents in exponential distribution only concentrate on

he bottom-left corner (the green circle area) in the search space.

t can neither enhance the local searching ability like Gaussian dis-

ribution nor have the ergodicity to enhance the global searching

bility like chaos. 

Therefore, after the performance analysis, the corresponding

trategy is designed for WOA as follows: 

Step. 1. Population initialization. 

Step. 2. Execute WOA in the first step and generate the fitness

value of each position. 

Step. 3. According to the conditions of the population, deter-

mine whether to select the chaos variation operation from

Eq. (38) with ɛ iterations or the Gaussian variation opera-

tion from Eq. (39) to update the initialization positions of

the agents to be used for executing WOA in the next itera-

tion. {
X j (t) = (1 − ζ ) X j (t) + ζ δC 

δC = X 

min + β j (ε + 1)( X 

max − X 

min ) 
(38) 

{
X j (t) = (1 − ζ ) X j (t) + ζ δG 

δG = X 

min + N 

∗(0 , 1)( X 

max − X 

min ) 
(39) 

where X 

max and X 

min are the upper and lower bound vectors

of X j ( t ); δC and δG are the chaos and Gaussian variation op-

erators; β j (ε + 1) is the chaotic iteration value obtained by

Eq. (36) with ɛ iterations from a random number β j (1) ∈ (0,

1); and ζ is the shrinking factor to determine the variation

space, which is calculated as 

ζ = 1 −
∣∣∣ t − 1 

t 

∣∣∣m 

(40) 

where m is utilized to control the shrinking speed. 

Step. 4. t = t + 1 , and return to Step. 2. until the maximum it-

eration. 

In Step. 3. , the selection of the variation method is dependent

n the condition of the population. In this paper, it can be regarded
s the improvement rate ( IR ) of the population which is calcu-

ated as IR = N b /N, where N b is the number of the agents which

re better than their last generation. IR can be utilized to measure

he healthy development level of the population. Biological studies

how that when IR remains at 20% approximately, this condition

s the most favorable to population growth [35] . If IR is too low,

he search space is large enough to avoid the local optimum but

he searching precision is low; namely, the local searching ability

s weak. Thus, for this condition, the Gaussian variation operation

hould be selected because of its centered distribution character. If

R is too high, the search space is overly concentrated in the local

rea; namely, the global searching ability is weak. Thus, for this

ondition, the chaos variation operation should be selected due to

ts ergodicity. Therefore, the variation method selection mechanism

s designed as 
 

X j (t) = (1 − ζ ) X j (t) + ζ δG IR < 0 . 15 

X j (t) = X j (t) IR ∈ [0 . 15 , 0 . 25] 
X j (t) = (1 − ζ ) X j (t) + ζ δC IR > 0 . 25 

(41) 

here the setting of the interval [0.15, 0.25] is done to avoid an

verly frequent switch of variation methods. 

.2.2. Coordinated decision-making mechanism 

In GWO proposed by [24] , the population is divided into four

ierarchies: α, β , δ and ω. α, β and δ are the ones that have the

op three optimal fitness values. The search direction of the pop-

lation is codetermined by α, β and δ. The practical experiments

ndicate that such elite agents coordinated decision-making mech-

nism can make the population jump out of the local optimum to

ome extent. Hence, such mechanism is introduced to Eq. (34) in

OA as follows: 
 

 

 

 

 

 

 

 

 

 

 

X (t + 1) = 

X 1 ∗(t)+ X 2 ∗(t)+ X 3 ∗(t) 
3 

− A D if p < . 5 

X (t + 1) = 

X 1 ∗(t)+ X 2 ∗(t)+ X 3 ∗(t) 
3 

+ D p e 
bl cos (2 π l) if p ≥ . 5 

D = 

∣∣∣C X 1 ∗(t)+ X 2 ∗(t)+ X 3 ∗(t) 
3 

− X (t) 

∣∣∣
D p = 

∣∣∣ X 1 ∗(t)+ X 2 ∗(t)+ X 3 ∗(t) 
3 

− X (t) 

∣∣∣
(42) 

here X 

1 ∗( t ), X 

2 ∗( t ) and X 

3 ∗( t ) are the agents with the top three

ptimal fitness values in each iteration. 

. Description of path planning 

.1. Path planning framework 

The path planning process can be described as follows: 

First, calculate the cost function J to evaluate the quality of the

enerated path. J is composed of several subfunctions that repre-

ent the safety, energy reserve, path length, etc. as follows: 

 = 

G ∑ 

i =1 

λi J 
sub 
i (43) 

here G is the number of subfunctions; λi and J sub 
i 

are the corre-

ponding weight and subfunction, respectively. 

Then, the reactive parameters of all K obstacles are optimized

o obtain the minimum J by the proposed IWOA: 

ρ ′ 
1 , σ

′ 
1 , θ

′ 
1 , · · · , ρ ′ 

K , σ
′ 
K , θ

′ 
K 

}
= arg min 

ρ,σ,θ
J (44) 

here { ρ′ 
1 , σ

′ 
1 , θ

′ 
1 , ���, ρ′ 

K , σ
′ 
K , θ

′ 
K } are the optimized reactive

arameters of all K obstacles. These reactive parameters determine

he trend of the planned path. 

Finally, select the path with the minimum J as the flight path.

or the application of SUAV in urban environment, RIFDS, IWOA,

nd accurate energy modeling bond together. The integrated flow

iagram of the proposed path planning framework is shown in

ig. 6 . 
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Fig. 5. The comparison between the normalized Gaussian distribution character and exponential distribution character of the two-dimensional position vector: (a) Gaussian 

distribution character. (b) Exponential distribution character. 
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Fig. 6. The integrated flow diagram of the proposed path planning framework. 
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5.2. Cost function 

The cost function is composed of the collision index J c , the en-

ergy index J e and the path length index J l . 

The collision index describes the performance of SUAV in avoid-

ing high buildings in urban environment, which is defined as 

J c = 

{
0 ∀ �i (ξ ) > 1 , i = 1 , 2 , · · · , K 

+ ∞ ∃ �i (ξ ) ≤ 1 , i = 1 , 2 , · · · , K 

(45)

where �i ( ξ ) is defined in Eq. (1) . 
The energy index describes the energy storage condition of

UAV, which is defined as 

 e = 

{
−E total ∀ E total (t) ≥ 0 

+ ∞ ∃ E total (t) < 0 

(46)

here E total represents the total energy of the whole flight pro-

ess and E total ( t ) represents the total energy in the moment t . The

eaning of J e is that SUAV should store as much energy as possible
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Table 1 

The simulation parameters. 

Parameter Value 

Sampling time, �T (s) 0.1 

Flight speed (m/s) 20 

Flight height (m) 150 

Starting point (0, 0, 150) 

Destination (750, 750, 150) 

Maximum rolling angle, φmax (deg) 60 

SUAV parameters From [1] 

Location in simulation scenario Beijing, China (39.93 °N, 116.28 °E) 

Date in simulation scenario 12:00 a.m., Mar. 1st 

Ground reflection factor, ρr 0.2 

SUAV initial energy storage (J) 20 

Range of repulsive reaction coefficient, ρk [0.1, 20] 

Range of tangential reaction coefficient, σ k [0.1, 20] 

Range of tangential direction coefficient, θ k [0, π ] 

Population size, N 100 

Maximum iteration, T max 100 

Shrink speed control factor, m 1 

Table 2 

The simulation results. 

Total flight time (s) Total energy (J) 

The proposed framework 54.4 143.16 

Time optimal framework 53.6 26.93 

Energy optimal framework 56.9 330.04 
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Table 3 

The fitness statistical results. 

Algorithm Best Worst Mean 

IWOA 213.27 216.36 214.24 

WOA 215.21 220.05 215.98 

GWO 214.94 221.9 216.63 

GSA 216.42 225.52 219.32 

PSO 221.41 234.59 226.01 
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nder the condition that the produced energy is always positive to

aintain the normal control. 

The path length index reflects the mission accomplishment

uality directly, i.e., the core mission of SUAV is to arrive at its

estination as soon as possible. Because the flight speed is set as

 constant, the total time t total when SUAV arrives at its destina-

ion can be utilized to measure the flight path length. The smaller

 total is, the better the mission accomplishment quality is. The path

ength index is defined as 

 l = t total (47) 

emark 4. In Eq. (46) , the reason why J e = + ∞ when the total en-

rgy of SUAV is less than zero is in consideration of the worst sit-

ation i.e., the rechargeable batteries in SUAV do not contain any

tored electric energy at all. 

emark 5. In this paper, we suppose that when the condition

 < 5m appears, SUAV can be considered to arrive at its destina-

ion. 

. Simulation 

.1. Testing the performance of the proposed framework 

The comparative items are set as follows: (1) The proposed

ramework without the energy index, i.e., time optimal framework;

2) The proposed framework without the path length index, i.e.,

nergy optimal framework. Other parameters of the comparative

tems are identical to those of the proposed framework. The sim-

lation parameters are shown in Table 1 . The planned paths are

hown in Fig. 7 . The energy storage situation is shown in Fig. 8 .

he specific results are shown in Table 2 . 

From the results, on the one hand, though the mission comple-

ion time of the time optimal framework is the shortest, the con-

ition that the total energy in the flight process is less than zero

ppears without taking consideration of the energy index, which

s unacceptable for SUAV. On the other hand, the energy optimal

ramework can make SUAV store the most energy, but the con-

umed time is also the longest. Compared with the above com-

arative items, the proposed framework comprehensively considers
oth the time index and the energy index, and realizes the balance

f the mission time sensitivity and flight endurance. In the real ap-

lications, the weights of the indexes in the proposed framework

an be adjusted according to the mission requirements. 

.2. Testing the performance of IWOA 

The solving performance of IWOA is tested in this section. WOA,

WO, GSA, PSO are selected as comparative solvers. For the fair-

ess of the simulation, the population sizes and the maximum it-

rations of the comparative solvers are the same as those of IWOA

n Table 1 . The other parameters of the basic WOA are identical to

hose of IWOA. The other parameters in the path planning frame-

ork are identical to the proposed one except for the solvers. 20

roups of comparative tests are made. A group of typical fitness

urves are shown in Fig. 9 . The fitness statistical results are shown

n Table 3 . 

From the results, not only the best fitness but also the mean

tness of IWOA are optimal in several typical IOAs. The proposed

mprovement measures can make WOA effectively avoid the local

inima and obtain a higher solving accuracy and faster conver-

ence speed. 

. Conclusion 

This paper proposes a novel path planning framework for SUAV

n urban environment. Aiming at the complex urban environment,

hree main contributions are made in this paper. First, for the SUAV

olar energy production modeling, this paper describes some un-

easonable aspects of the previous studies and modifies the model

y introducing ASHRAE Clear Sky Model. Meanwhile, for a more

recise energy modeling in city, the sunlight occlusions by high

uildings are taken into consideration in this paper. Second, for the

bstacle avoidance in city, RIFDS is proposed to overcome the de-

ect of divorcing from the dynamic model in the traditional IFDS

nd provides the necessary angles for the calculation of the en-

rgy model. Third, to provide an effective solver for the path plan-

ing framework, some improvements are introduced to WOA, and

he proposed IWOA is selected as the solver. The proposed IWOA

hows a higher solving accuracy and a faster convergence speed,

nd can effectively avoid the local minima. These three contribu-

ions can be closely combined for the application of SUAV in ur-

an environment. In the future, we will focus on two aspects of

he related work: First, we will further design the SUAV 3D path

lanning framework which is more complicated than the proposed

D framework, and on the basis of 3D planning, we will consider

he influences of other environment factors for SUAV in city such

s the airflow between buildings. Second, we will further improve

ur proposed IWOA in the following aspects: (1) The analysis for

he computational complexity and convergence of IWOA will be

xplored; (2) The parallel computing method will be introduced

o our IWOA in an attempt to accelerate its computation speed;

3) The performance of the multi-objective IWOA will be explored.
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Fig. 7. The planned paths. 

Fig. 8. The energy storage situation. 

Fig. 9. A group of typical fitness curves with different optimization algorithms. 
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