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Abstract: In this study, a simple Lyapunov-based adaptive model predictive control (MPC) is proposed to stabilise a class of
unconstrained non-linear systems with constant parametric uncertainties. In the proposed MPC design, the uncertain
parameters are estimated online with an adaptive updating law, and the estimated parameters are guaranteed bounded. A
Lyapunov-based constraint is employed in the adaptive MPC to ensure the stability of the closed-loop system. By using the
control Lyapunov function-based constraint, terminal penalties in traditional MPC can be avoided, such that computational
burden is significantly reduced. Both theoretical results and numerical examples demonstrate that, with the proposed adaptive
MPC, states of the closed-loop system can be stabilised, while the adaptive estimated parameters are bounded.

1 Introduction
Model predictive control (MPC) has been prevailingly used to
address process control problems (with or without constraints). For
an overview on MPC, please refer to the survey paper [1]. The
main reasons that MPC can be widely applied include: (i) superior
robustness with respect to external disturbances and (ii) explicit
constraint handling [2]. In MPC design, the system outputs at the
next several sampling times are predicted by using the system state
equation, and are fed-back for calculating controls for the
corresponding sampling times. The actual control is implemented
by a receding horizon way. In this way, the long term effect of
disturbances is considered in control design, contributing to the
superior robustness of MPC. The explicit constraint handling can
be performed by using numerical optimisation techniques. To deal
with specific industrial projects, some theoretical and technological
variations of classical MPC have been developed in recent years.
For example, MPC with disturbance feedback [3], MPC for
switched non-linear systems [4], time-varying MPC [5], robust
MPC [6], and networked predictive control [7]. Applications of
MPC to various areas include energy generation [8], resource
allocation [9], chemical process [10], flight control [11] and so on.

Although its inherent robustness with respect to external
disturbances is usually satisfactory, the performance of MPC with
respect to parametric uncertainties still remains an open topic (at
least theoretically). This is because parametric uncertainties would
lead to difficulties in predicting future states of the plant. An
intuitive solution to the problem of MPC design with parametric
uncertainties is to introduce adaptive strategies, such that the
prediction can still be processed with estimated parameters instead
of uncertain parameters. Early researches on adaptive MPC can
date back to [12], where implicit updating laws are proposed to
estimate the constant parametric uncertainties. Some other
representative researches include adaptive MPC based on persistent
excitation [13], adaptive strategy for single-loop MPC [14],
adaptive MPC by using comparison model [15], adaptive MPC for
constrained discrete-time linear systems [16], and adaptive MPC
for constrained continuous non-linear systems [17]. Recently,
neural networks are introduced in adaptive MPC design to solve
problems of system identification [18] and time delay [19].

In this paper, a new simple adaptive MPC is proposed for a
class of unconstrained non-linear systems with constant parametric
uncertainties. The proposed adaptive MPC is developed by
combining an adaptive updating law and a constrained MPC based

on control Lyapunov function. The theoretical framework of the
proposed adaptive MPC is enlightened by Lyapunov-based MPC
[4, 20], where control Lyapunov function is constructed and
regarded as an extra non-linear constraint. The primary advantage
of Lyapunov-based MPC is that, using a Lyapunov function as an
extra non-linear constraint, stability of the closed-loop system can
be guaranteed by the feasibility of the optimisation problem. The
main contributions of this paper include that, (i) by using a
Lyapunov-based non-linear constraint, a simple formulation of
MPC can be proposed such that prediction can be performed in
case of parametric uncertainties, and stability of the closed-loop
system can be guaranteed; and (ii) no terminal constraints are
necessary in the proposed adaptive MPC to ensure stability, such
that the computational burden in optimisation is significantly
reduced.

The configuration of this paper is arranged as following: the
problem of designing adaptive MPC is stated in Section 2; main
results of the adaptive MPC for non-linear system with constant
parametric uncertainties is proposed in Section 3; an extension of
the proposed adaptive MPC to include soft constraints is discussed
in Section 4; two numerical simulation examples of the closed-loop
system with the proposed adaptive MPC are presented in Section 5;
concluding remarks are given in the final section.

2 Problem statement
In this paper, we consider the non-linear single-input system as�̇ = �(�) + �(�)� + Φ(�)�, (1)

where � ∈ ℛ� and � ∈ ℛ are system states and control input,
respectively; �(�) ∈ ℛ� and �(�) ∈ ℛ� are known continuously
differentiable functions with respect to � satisfying �(0) = 0 and�(�) ≠ 0; Φ(�) = �1(�), �2(�), …, ��(�)  is a known
continuously differentiable vector function satisfying Φ(0) = 0;
and � = [�1, �2, …, ��]T denotes the vector of uncertain constant
parameters.

2.1 Assumptions

 
Assumption 1 (full-state feedback linearisable [21]): For system
(1), the matrix
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� = �, ad��, ad�2�, …, ad��− 1� (2)

is of rank �, and the distribution� = span �, ad��, ad�2�, …, ad��− 2�
is involutive [21], where

ad��� ≜ �, ad��− 1� , ad�� ≜ [�, �], [�, �] ≜ ∂�∂�� − ∂�∂�� . (3)

It is indicated from Assumption 1 that, there exist a global
diffeomorphism � = [�1, …, ��]T = �(�) satisfying �(0) = 0, and
a state feedback control � = �(�) + �(�)�, such that the nominal
system �̇ = �(�) + �(�)� (4)

can be transferred into�̇� = ��+ 1, 1 ≤ � ≤ � − 1;�̇� = � . (5)

It can be seen that (5) is in a chained integral form, and there exist
a continuously differentiable feedback control � = �(�) to stabilise
it exponentially. It then follows from converse Lyapunov theorem
that a Lyapunov function �(�) exists, such that�1 ∥ � ∥2 ⩽ �(�) ⩽ �2 ∥ � ∥2 , (6)�̇(�) ⩽ − �3 ∥ � ∥2 , (7)

∥ ∂�(�)∂� ∥ ⩽ �4 ∥ � ∥ , (8)

where �1, �2, �3, �4 are positive constants; and ∥ ⋅ ∥ denotes the
Euclidean norm for vectors. We can rewrite (7) into a more
explanatory form:

�̇(�) = ∂�(�)∂� �̇ = ∂�(�)∂� ∂�∂� �(�) + �(�)�(�(�))⩽ −�3 ∥ � ∥2 . (9)

It should be noted that, in (7), �3 can be tuned arbitrarily large by
selecting appropriate �(�).
 
Assumption 2: Although the exact value of � is unknown, a
conservative estimation of its bound can be known∥ � ∥ ≤ �̄, (10)

where �̄ > 0 is a positive real number.

2.2 Control objective

Define a cost function for the nominal system (4)

�0 =∫� �+�� �(�|�), �(�|�) d�, (11)

where � denotes the prediction horizon; �(�, �) is a positive
definite scalar function with respect to � and �, and �(0, 0) reaches
its minimum value; �(�|�) and �(�|�) are the predictive states and
input at time �. In this paper, the control horizon is assigned the
same as predictive horizon for simplicity.

The traditional MPC for the nominal system (4) can be
designed by �(�) = �∗(�|�), � = �, (12)

where �∗(�|�) is the solution of the optimisation problem �nom:min�( ⋅ |�) �0 (13)

subject to the dynamic constraint�̇(� |�) = � �(�|�) + � �(�|�) �(�|�), � ∈ [�, � + �) . (14)

In this paper, hard constraints on system states and input in forms
of � ∈ � and � ∈ � are beyond consideration.

For the non-linear system (1) with constant uncertain
parameters, its dynamic equation cannot be directly used as
dynamic constraint (predictive equation). An intuitive solution is to
find an adaptive strategy to estimate the uncertain parameters, such
that prediction can be proceeded.

To this end, the objective of this paper is to design an adaptive
MPC for system (1) with constant uncertain parameters, such thatlim� → ∞ ∥ �(�) ∥ < �, (15)

where � > 0 is a small positive real number.

3 Main results
The adaptive MPC consists two parts: an adaptive estimator and an
MPC for the estimated system.

3.1 Adaptive updating law for the estimated parameter

Define an estimated parameter �̂ for the uncertain constant
parameter, and define the estimated error �~ ≜ � − �̂. Select a
Lyapunov function

�̂ = �(�) + 12��~T�~ = � �(�) + 12��~T�~, (16)

where �(�) satisfies (6)–(8); and � is a positive real number. For
simplicity, � �(�)  will be written as �(�) in the following
sections.
 
Remark 1: The Lyapunov function �(�(�)) is selected based on
the nominal system (4), and it is independent of the uncertain
parameter �.

The derivative of the Lyapunov candidate can be calculated by

�̇̂ = ∂�(�)∂� �̇ − 1��~T�̇̂= ∂�(�)∂� �(�) + �(�)� + Φ(�)� − 1��~T�̇̂= ∂�(�)∂� �(�) + �(�)� + Φ(�)�̂ + ∂�(�)∂� Φ(�)�~− 1��~T�̇̂ .
(17)

Let the adaptive updating law be designed by

�̇̂ = Prj�̄ �ΦT(�) ∂�(�)∂� T , (18)

where Prj�̄( ⋅ ) is the projection operator [22] with respect to the
bound �̄, as is defined by

1938 IET Control Theory Appl., 2016, Vol. 10 Iss. 15, pp. 1937-1943
© The Institution of Engineering and Technology 2016



Prj�̄ �ΦT(�) ∂�(�)∂� T

=
�ΦT(�) ∂�(�)∂� Tif ∥ �̂ ∥ < �̄,or ∥ �̂ ∥ = �̄, and �̂TΦT(�) ∂�(�)∂� T < 0;
�ΦT(�) ∂�(�)∂� T− ��̂TΦT(�) ∂�(�)/∂� T∥ �̂ ∥2 �̂

if ∥ �̂ ∥ = �̄, and �̂TΦT(�) ∂�(�)∂� T ≥ 0.
(19)

The projection operator-based adaptive law guarantees that, if the
initial value of �̂ satisfies that ∥ �̂(0) ∥ ≤ �̄, then∥ �̂(�) ∥ ≤ �̄, (20)

and

�̇̂ ≤ ∂�(�)∂� �(�) + �(�)� + Φ(�)�̂ , (21)

where the control � = �(�, �̂) is to be designed with MPC
approach to ensure that �̇̂ ⩽ 0. Proofs of (20) and (21) are given in
the Appendix.

3.2 Lyapunov-based adaptive MPC

Design the stage cost function�(�, �) = ∥ � ∥�2 + ∥ � ∥�2 , (22)

where � denotes the current sampling time, � denotes the predictive
horizon; � and � are positive definite matrices such that∥ � ∥�2 = �T�� and ∥ � ∥�2 = �T��. The cost function �0 is
defined by (11).
 
Remark 2: In this paper, the control horizon is assigned equal to the
predictive horizon: �� = �� = � . (23)

The open-loop optimal problem at each sampling time � can be
formulated as ��: min�( ⋅ |�) �0, (24)

subject to constraints:�̂(� |�) = �̂(�), � ∈ [�, � + �), (25)�(�|�) = �(�), � = �, (26)�̇(� |�) = �(�(�|�)) + �(�(�|�))�(�|�)) + Φ(�(�|�))�̂(� |�),� ∈ [�, � + �),
(27)∂�∂� �(�(�|�)) + �(�(�|�)�(�|�)) ⩽ − �3(�) ∥ � �(�|�) ∥2 ,� = �,
(28)

where �̂(�) is updated by (18); � �(�)  satisfies (6) and (8); the
time-varying �3(�) can be obtained by solving the following
optimisation problem ��:

min�3 �32, (29)

subject to: �3 > 0, (30)

(see (31)) �3 = �, if ∥ �(�) ∥ = 0, (32)

where � > 0 can be assigned according to the requirements of
transient performances.

The adaptive MPC can be proceeded by implementing�(�) = �∗(�|�), � = �, (33)

where �∗( ⋅ | �) is the optimal solution of ��.
 
Remark 3: The constraint (25) indicates that, after updating at

each sampling time, the adaptive estimated parameter remains
constant during the entire control horizon.

 
Remark 4: The constraint (28) is required only at the initial

predictive stage � = �, but not during the entire control horizon,
such that computational burden could be significantly reduced. The
reason is that, in MPC (or receding horizontal control), only
predictive control �(�|�) at � = � is implemented, while the
predictive controls in other steps of the control horizon
( � ∈ (�, � + �)) are discarded.

The Lyapunov-based adaptive MPC algorithm can be
summarised as following:

 
Algorithm 1:

1. at the sampling time �, update the estimated parameter �̂(�)
with the adaptive updating law (18);

2. calculate �3(�) by solving the optimisation problem (29)
subject to the constraint (31);

3. solve the optimal problem (24) subject to constraints (25)–(28),
and obtain the optimal solution �∗;

4. implement adaptive MPC by (33);
5. repeat steps (1)–(4).

3.3 Feasibility and stability

Feasibility of optimisation and stability of the closed-loop system
with the proposed adaptive MPC can be given in the following
theorem.
 
Theorem 1: For non-linear system (1) with parametric uncertainties
satisfying Assumptions 1 and 2, it holds that

1. (feasibility) the optimisation problems �� and �� are feasible;
2. (stability) the closed-loop system with Algorithm 1 is globally

asymptotically stable.

 
Proof:

i. Optimisation problem �� is a convex optimisation if∥ �(�) ∥ ≠ 0; consequently, the optimisation is feasible.

For problem ��, constraints (25)–(27) are for prediction; they
are satisfied naturally at all time.

�3 ∥ �(�) ∥2 ≥ ∥ ∂�∂� ∂�∂�Φ(�(�))�̂(�) ∥ + � ∥ �(�) ∥2 , if ∥ �(�) ∥ ≠ 0, (31)
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With Assumption 1 and the corresponding derivations given in
Section 2.1, for any positive �3(�), there always exists�(�(�|�)) = �(�(�(�|�))) at � = �, such that∂�(�(�(�|�)))∂�(�(�|�)) ∂�(�(�|�))∂�(�|�) �(�(�|�))+�(�(�|�))�(�(�(�|�))⩽ −�3(�) ∥ �(�(�|�)) ∥2 , (34)

indicating that, there always exists a control flow �( ⋅ |�), such
that the Lyapunov-based constraint (28) can be satisfied.
Moreover, for arbitrarily large �3, (28) can be satisfied by
selecting appropriate �. Consequently, feasibility of �� is
proved.

ii. Since �(�|�) = �(�) and �(�|�) = �(�), it follows from the
Lyapunov constraint (28) that∂�(�(�))∂�(�) (�(�(�)) + �(�(�))�(�)) ⩽ − �3(�) ∥ �(�(�)) ∥2 .

(35)

Substituting (35) into (21) yields that

�̇̂ ≤ −�3(�) ∥ �(�(�)) ∥2 + ∥ ∂�(�)∂� ∂�∂�Φ(�)�̂ ∥ .(36)

It then follows from (31) that�̇̂ ≤ − � ∥ � ∥2 , (37)

which is negative semi-definite.

It can be indicated from (20) and (37) that �̂ ∈ ℒ∞ and � ∈ ℒ∞,
and �̂ is (un-strictly) decreasing. Integrating (37) from � = 0 to� = +∞ yields that∫0 +∞ ∥ � ∥2 d� ≤ 1� �̂(0) − �̂( + ∞) (38)

implying that � ∈ ℒ2.
The boundedness of � and the continuous differentiability of �,� and � indicate that system states and input are bounded;
therefore �̇ (or �̇) is bounded, indicating that � is uniformly
continuous.

Consequently, by using Barbalat lemma [21], it can be proved
that � → 0 as � → +∞. Since the � = �(�) is a
diffeomorphism, and �̂ is radially unbounded, it can be
claimed that the closed-loop system is globally asymptotically
stable.

□
 
Remark 5: In the proposed adaptive MPC, although the cost
function (11) [or stage cost function (22)] is not used explicitly for
the proof of feasibility and stability, it is considerably important in
affecting the transient performance of the closed-loop system.

4 Extension to adaptive MPC with soft
constraints
The main disadvantage of the adaptive MPC proposed in Section 3
is that it cannot explicitly handle hard constraints expressed as� ∈ � or � ∈ �. However, the proposed adaptive MPC can be
extended to handle soft constraints.

In this section, we aim to constrain the states and input within
the target constraints given by∥ � ∥ ≤ �̄, ∥ � ∥ ≤ �̄, (39)

where �̄ and �̄ are positive constants.
The concern is that, constraints (39) can be violated, but the

violations would be severely penalised. To this end, the stage cost
function for adaptive MPC with soft constraints can be designed by�(�, �) = ∥ � ∥� + ∥ � ∥� + �1��2( ∥ � ∥ − �̄+ �1)+ �3��4( ∥ � ∥ − �̄+ �2), (40)

where �� (� = 1, 2, 3, 4) are positive weight constants; �� (� = 1, 2)
are slack parameters indicating that the stage cost would increase
when the states and input approach their constraints.

The implication of the stage cost function (40) is that, if the
constraints given by (39) are violated, the stage cost would increase
exponentially. Consequently, due to the optimisation with the stage
cost function (40), the constraints (39) would be violated as little as
possible.

 
Remark 6: Since the stage cost function does not appear

explicitly in the proof of feasibility and stability, it can be
appropriately modified according to some particular requirements
without diminishing the results of Theorem 1.

5 Simulation examples
In this section, two simulation examples are presented to illustrate
performances of the proposed MPC.

5.1 Example 1: First-order non-linear system

The plant to be controlled is given by a first-order system with one
uncertain parameter �̇ = �3+ � + ��2, (41)

where � = 0.8 is the uncertain constant parameter and Φ(�) = �2.
It is known that a conservative bound for the uncertain � is given
by �̄ = 1.5. Apparently, the first-order non-linear affine system
(41) naturally satisfies Assumption 1. The nominal system�̇ = �3+ � (42)

can be stabilised by� = �(�) = − �3− ��, (43)

where � > 0 is the control gain.
Apparently, � = (1/2)�2 is a feasible Lyapunov function for

(42). According to (18), the adaptive updating law can be designed
by �̇̂ = Prj�̄ ��3 , (44)

where � = 0.4 is assigned. The time-varying �3(�) is obtained by
solving the optimisation problem (29) subject to (31) with � = 0.1.
The expected constraint for the control input is assigned by∥ � ∥ ≤ 10. In the MPC design, the predictive (control) horizon is
assigned to � = 0.8 s. The initial value of the estimated parameter
is set to �̂(0) = 0.5, and the control parameter. The stage cost
function is designed by (40), where the parameters are given by� = 1, � = 0.05, �1 = �2 = 0, �3 = 0.02, �4 = 2, �1 = 0, and�2 = 0.5. Adaptive MPC is designed according to Algorithm 1 in
Section 3.2. Suppose that initial value of the system state is�(0) = 1.7. Results are obtained by implementing Algorithm 1,
and are displayed in Figs. 1–3. 

As can be seen from Fig. 1, the state of the closed-loop system
can be stabilised asymptotically by the proposed adaptive MPC. In
Fig. 2, it can be seen that the control input violates its expected
constraint slightly at its early stage; the reason is that the expected
constraint is soft. Since the violation would be penalised
exponentially, the control input then evolves within its constraint.
Fig. 3 shows that, although it does not necessarily converge to the
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real value of the corresponding uncertain parameter, the estimated
parameter is bounded.

5.2 Example 2: Higher-order non-linear system

The plant to be controlled is given by a third-order system with two
uncertain parameters:�̇1 = �12− �13+ �2+ �1�1,�̇2 = �3+ �1�1+ �2�2,�̇3 = �, (45)

where Θ = [�1, �2]T = [0.3, 0.7]T are uncertain constant
parameters. A conservative bound for Θ can be given by �̄ = 2.

It can be seen from (45) that

Φ(�) = �1 0�1 �20 0 . (46)

It is simple to calculate that the distribution

span �, ad��, ad�2� (47)

is involutive and of rank 3, indicating that there exist a
diffeomorphism and a feedback control, such that the nominal
system �̇1 = �12− �13+ �2,�̇2 = �3,�̇3 = �, (48)

can be transformed into (5). In fact, expressions for the
diffeomorphism can be given by�1 = �1,�2 = �12− �13+ �2,�3 = (2�1− 3�12)(�12− �13+ �2) + �3, (49)

and the feedback control � = �(�) + �(�)�, where�(�) = −(15�14− 20�13+ 6�12− 6�1�2+ 2�2)(�12− �13+ �2)+(3�12− 2�1)�3,�(�) = 1. (50)

It follows that the eigenvalues of the closed-loop nominal system
can be assigned arbitrarily by:� = �(�) = − �1�1− �2�2− �3�3, (51)

where �� (� = 1, 2, 3) are control gains. If we set �1 = 8, �2 = 12,�3 = 6, and select the Lyapunov function �(�) = �TΓ�, where

Γ = 1.9063 1.2344 0.06251.2344 2.0938 0.14450.0625 0.1445 0.1074 , (52)

then, along the solution of the nominal system (48), it holds that�̇(�) = − �T�. It can also be calculated that �4 ≃ 3.2.
 
Remark 7: It should be noted that �1, �2, and �3 do not appear

explicitly in the proposed adaptive MPC; the purpose of selecting�1 = 8, �2 = 12, and �3 = 6 is to find a feasible Lyapunov function�(�) and its corresponding �4.
In this example, the expected constraint for the control input is

assigned by ∥ � ∥ ≤ 2. Correspondingly, the stage cost can be
designed by (40) with parameters given by � = diag(1, 0.4, 0.04),� = 0.005, �1 = �2 = 0, �3 = 0.002, �4 = 8, �1 = 0, and �2 = 0.1.
The predictive (control) horizon is assigned to � = 0.8 s. Initial
values of estimated parameters are set to Θ̂(0) = [0.5, 0.5]T.
According to (18), the updating law for estimated parameters can
be designed by Θ̇̂ = Prj�̄ �Φ(�)TΓ� , (53)

where � = 0.4 is assigned. The time-varying �3(�) is obtained by
solving the optimisation problem (29) subject to (31) with � = 0.1.
Suppose that initial values of the system states are�(0) = [1.1, − 0.4, − 0.1]T. Results are obtained by implementing
Algorithm 1 [with the stage cost function designed by (40)], and
are displayed in Figs. 4–6. 

As illustrated by Fig. 4, the states of the closed-loop system can
be stabilised asymptotically by the proposed adaptive non-linear
MPC. It can be seen in Fig. 5 that, with the proposed stage cost
function (40) (that considers soft constraints), the control input
violates the expected constraints slightly at the initial stage; the
control input is capable of entering the constraints after very short
transient process, since the violation is penalised exponentially by
using (40). It is indicated by Fig. 6 that, although they do not

Fig. 1  States of the closed-loop system in example 1
 

Fig. 2  Control input of the closed-loop system in example 1
 

Fig. 3  Adaptive estimated parameter in example 1
 

IET Control Theory Appl., 2016, Vol. 10 Iss. 15, pp. 1937-1943
© The Institution of Engineering and Technology 2016

1941



necessarily converge to the real values of the corresponding
uncertain parameters, the estimated parameters are bounded.

To better evaluate superior performances and computational
efficiency of the proposed adaptive MPC, classic non-linear MPC
with terminal inequality constraint is applied to stabilised the non-

linear system (48). The control horizon is assigned the same value
as that in the proposed adaptive MPC. It is assumed that, in the
classic MPC, the exact value of Θ is known, such that the
prediction can be performed. The terminal inequality constraint is
designed by ∥ � ∥ < 0.6 which is fairly large, such that
optimisation can be feasible at initial stages. In the simulation, the
optimisation tool is applied with algorithm ‘interior-point’ [23].
The results of classical MPC is displayed in Fig. 7, where states of
the closed-loop system are capable of converging into small
neighbourhood of zeros. They do not necessarily converge
asymptotically to zeros; the reason is that, to improve feasibility
and computational efficiency, terminal inequality constraint
(instead of terminal equality constraint which guarantees the
convergence to zeros) is applied. As can be seen from Fig. 7, the
overshots are significantly larger than those in Fig. 4.
Computational efficiencies of both the proposed adaptive MPC and
the classic MPC are illustrated by Fig. 8, where a number of
optimisation iterations are displayed. It can be seen from Fig. 8
that, compared with that of the classic MPC with terminal
inequality constraint, number of iterations to perform the
optimisation of the proposed adaptive MPC are fairly reduced
during transient process, implying that the computational efficiency
of the proposed adaptive MPC is significantly superior. 

 
Remark 8: Number of optimisation iterations of the classic

MPC are slightly smaller during steady-state; the reason is that,
during steady-state, states of the closed-loopy system with the
classic MPC has already converged into the inequality constraint,
and it can be regarded that the optimisation is then processed
without constraints.

6 Conclusion
In this paper, an adaptive model predictive control is proposed for a
class of non-linear systems with constant parametric uncertainties.
The control objective is to stabilise system states. Parametric
uncertainties are estimated online by adaptive estimated parameters
with a simple adaptive updating law, such that an estimated system
can be constructed and used to predict future states. MPC is then
designed with Lyapunov-based constraint, such that stability of the
closed-loop system can be guaranteed, and computational burden
of terminal penalties is reduced. Both theoretical proofs and
simulation results demonstrate that, with the proposed adaptive
MPC, states of the closed-loop system are stabilised
asymptotically, and the estimated parameters are bounded.

Future works on this research may include: (i) analysis on
sensitivity of the closed-loop system with respect to control
parameters and (ii) extension of the proposed adaptive non-linear
MPC to more general non-linear systems.

Fig. 4  States of the closed-loop system in example 2
 

Fig. 5  Control input of the closed-loop system in example 2
 

Fig. 6  Adaptive estimated parameters in example 2
 

Fig. 7  States of the closed-loop system with classic NMPC
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7 Appendix
 
7.1 Proof of (20)

The proof follows from the steps in [22]:
If ∥ �̂ ∥ < �̄, the boundedness of �̂ is satisfied.
If ∥ �̂ ∥ = �̄ and �̂TΦT(�) ∂�(�)/∂� T < 0, select a Lyapunov

function �� = (1/2)�̂T�̂. Its derivative can be calculated by

�̇� = �̂T�̇̂ = ��̂TΦT(�) ∂�(�)∂� T < 0, (54)

implying that ∥ �̂ ∥ decreases.
If ∥ �̂ ∥ = �̄ and �̂TΦT(�) ∂�(�)/∂� T ≥ 0, the derivative of�� can be calculated by

�̇� = �̂T�̇̂ = ��̂TΦT(�) ∂�(�)∂� T− ��̂TΦT(�) ∂�(�)∂� T∥ �̂ ∥2 �̂T�̂= 0, (55)

indicating that ∥ �̂ ∥ is non-increasing. The second line of the
above equation holds because the term �̂TΦT(�) ∂�(�)/∂� T is a
scalar.

In summary, if the initial value of �̂ satisfies that ∥ �̂(0) ∥ < �̄,
then ∥ �̂(�) ∥ < �̄ holds for all � > 0.

7.2 Proof of (21)

In the first two cases of (19),

�̇̂ = �ΦT(�) ∂�(�)∂� T, (56)

and (21) holds obviously.
In the third case of (19),

�̇̂ = �ΦT(�) ∂�(�)∂� T− ��̂TΦT(�) ∂�(�)/∂� T∥ �̂ ∥2 �̂, (57)

and it follows that:

�̇̂ = ∂�(�)∂� �(�) + �(�)� + Φ(�)�̂
+ ��̂TΦT(�) ∂�(�)/∂� T∥ �̂ ∥2 �~T�̂, (58)

where

ΦT(�) ∂�(�)∂� T ≥ 0, (59)

and

�~T�̂ = �T�̂ − ∥ �̂ ∥2 = 12 ∥ � ∥2 − 12 ∥ � − �̂ ∥2 − 12 ∥ �̂ ∥2≤ 12 ∥ � ∥2 − 12�̄2 ≤ 0. (60)

Consequently, (21) holds in this case.

Fig. 8  Number of iterations in optimisation
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