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Abstract: Gear train optimization problems (GTOPs) can be very difficult. This paper proposes
an enumerative optimization procedure (EOP) for the GTOP of a two-speed dedicated electric
transmission (2DET) for electric vehicles (EVs). The EOP combines enumeration with the Min-Max
Principle of Optimality (MMPO). First, the requirements of the EV and the requirements of
manufacture and operation were checked in a dedicated order to obtain the feasible region of the
GTOP. Then, the MMPO was implemented within the feasible region to reveal the global optimum
in terms of the performance of the EV, the load capacity of the gears and the size of the gear
train (GT). Results demonstrated that the EOP was effective in determining the feasible region
and simultaneously and globally optimizing multiple criteria for the GTOP. The idea of combining
enumeration with optimization, as the EOP presents, may be helpful to solve other GTOPs and
provide global optima that are immediately practical and applicable.

Keywords: gear train optimization problem (GTOP); enumerative optimization procedure (EOP);
two-speed dedicated electric transmission (2DET); electric vehicle (EV); Min-Max Principle of
Optimality (MMPO)

1. Introduction

Gear trains (GTs) have been widely used. However, since GTs are quite complex and subjective
to design, many GTs are over-designed in terms of the working requirements. Therefore, mainly for
better performance or lower cost, gear train optimizations (GTOs) are rather necessary.

Such optimizations are difficult for three main reasons. First, numerous guiding equations, graphs
and tables have to be referenced. Second, several key design parameters, for example tooth numbers
and moduli, are discrete. Third, some constraints, for example the constraints for bending fatigue
and pitting fatigue, are nonlinear. Therefore, although many attempts have been made, GTOs are
still developing.

Some GTOs largely depend on algebraic equation derivations or graphical methods. White and
Sanger [1] deduced the gear size ratio expressions for a nine-speed GT based on the constraints of
mesh conditions and speed ratios. The corresponding graphs of the expressions were used to reveal
some typical design points for different optimization purposes. Based on the same constraints, Osman
et al. [2] deduced some of the gear size ratio expressions in another way, discovering that only three
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independent gear size ratios needed to be determined in the nine-speed GTO. Considering more
constraints such as that of kinematics and tooth strength, Savage et al. [3] presented feasible design
regions graphically for standard involute spur gear sets. They found the optimal designs mainly by
analyzing the feasible region graphs. Similarly, Carroll and Johnson [4] formulated a dimensionless
optimization model for spur gear sets and then investigated the optima mainly by referencing to
dimensionless feasible region graphs. To explore the relationship between problem formulations and
solution algorithms, Pomrehn and Papalambros [5] formulated the discrete nonlinear optimization
problem for a four-stage spur GT in three equivalent ways, each of which required a different type of
algorithms. In a sequel article [6], one of such problem formulations was further reformulated, allowing
performing a series of infeasibility and non-optimality tests to significantly reduce the solution space
of the problem. However, algebraic equation derivations or graphical methods proposed in those
studies [1–6] are numerically indirect, which could become rather complex, inefficient and impractical
for GTOs when the number of constraints or design variables is large.

Direct numerical methods are demanded for GTOs. Rao and Eslampour [7] presented a two-stage
goal programming approach for the multi-objective optimization of multi-stage and multi-speed
gearboxes. The kinematic design was first performed and then the strength design. Marjanovic et
al. [8] proposed a two-stage optimization procedure for spur GTs. The GT concept was first optimized
and then the parameters. Swantner and Campbell [9] proposed a three-stage optimization procedure
for GTs consisting of simple, compound, bevel and worm gears. The topology, the gear specifications
and the gear locations of the GT, respectively, were optimized at the three stages executed iteratively.
However, one part of the whole optimization problem might be dependent on the others to some
extent. Therefore, the multi-stage optimization methods for the GTOs in those studies [7–9] might lead
to local optima, which might be unsatisfying.

To obtain satisfying solutions, some GTOs involve the interaction between the designer and
the optimization procedure. Wang and Wang [10] developed an interactive multi-objective design
environment for spur gear set optimizations. Huang et al. [11] proposed an interactive physical
programming approach for the multi-objective optimization of a three-stage GT. In those studies [10,11],
the optimization processes were directed interactively according to the designer’s preferences on design
objectives. However, such interactive frameworks [10,11] for GTOs require that the designer should
monitor the execution of the optimization program till a satisfying solution is obtained, which might
be relatively tiring especially when the running time is long.

To obtain satisfying optima without much manual intervention, random methods are adopted
in some GTOs. Zarefar and Muthukrishman [12] developed a modified adaptive random-search
algorithm to optimize a helical gear set. Each combination of a starting solution and a search
direction, both randomly generated, was tried based on adaptive step sizes to obtain a feasible
solution approaching to the constrained boundary, thus iteratively forming a feasible set. Then, the
optimum was obtained within the feasible set by direct comparison of objective function values.
Thompson et al. [13] presented an optimization tradeoff analysis method for multi-stage spur GTs.
The multi-objective problem was formulated as a weighted-sum problem. Systematic variations of all
the weightings produced a Pareto optimum set to be plotted and analyzed for discovering the satisfying
optimum. Osyczka [14] developed a multi-objective optimization approach based on the Min-Max
Principle of Optimality (MMPO) and applied the approach to the automatic design of gearboxes.
The solutions for comparison in the min-max sense were randomly generated using the Monte Carlo
method or the trade-off studies. Abuid and Ameen [15] proposed a two-stage procedure for accurately
minimizing seven criteria of a two-stage spur GT. First, rough optimal solutions were obtained with
the random mesh method and the MMPO. Then, to be more accurate, the rough optimal solutions
were refined with the direct min-max search method. However, whether the outputs of the random
methods in those studies [12–15] are satisfying greatly depends on the numbers of random trials.
Therefore, the efficiencies of those methods might decrease in solving problems of large dimensions
for satisfying optima.
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In addition, advanced stochastic methods such as the genetic algorithms (GAs), the simulated
annealing algorithms (SAAs) and the particle swarm optimization algorithms (PSOAs) are intensively
used in some GTOs mainly because these methods can handle various types of design variables,
objectives and constraints easily, requiring no information of functional derivatives. Yokota et al. [16]
optimized the weight of a gear set with an improved GA. Marcelin [17] proposed a GA combined
with a penalty selection method to optimize gear pairs. Mendi et al. [18] used a GA with a static
penalty function incorporated in the fitness function to minimize the volume of a single-stage gearbox.
Gologlu and Zeyveli [19] utilized a GA to minimize the total volume of a two-stage GT, with static and
dynamic penalty function methods implemented to handle constraints. They found that the solutions
from the implementation of the dynamic penalty function method were generally better than those
from the implementation of the static one. Deb et al. [20] proposed an elitist non-dominated sorting GA
to minimize the gear ratio error and the maximum tooth number of a two-stage GT. Deb and Jain [21]
implemented the same algorithm to an eighteen-speed gearbox to maximize the power transmitted
and minimize the total gear volume. The algorithm generated a set of well-distributed solutions in
one single simulation run, providing an opportunity to discover some important design principles.
Chong et al. [22] proposed a generalized methodology incorporated an SAA to preliminarily design
basic gear parameters and configurations to globally minimize the total volumes of multi-stage GTs.
Savsani et al. [23] applied a GA, an SAA and a PSOA to minimize the weight of a spur gear set. The
results showed that the PSOA and the SAA were more effective and efficient than the GA. However,
numerous trials, especially for inexperienced designers, might have to be performed to appropriately
determine several parameters for the advanced stochastic methods used in those studies [16–23] since
the efficacies of those methods significantly depend on such parameters. Thus, such a requirement
might actually increase the total times for those methods to obtain global optima.

The authors propose an enumerative optimization procedure (EOP) incorporating the MMPO
to directly and globally optimize the GT of a two-speed dedicated electric transmission (2DET) for
electric vehicles (EVs). The enumeration technique is preferred to the random methods [12–15] and the
advanced stochastic methods [16–23] because the number of the possible solutions to the 2DET could
be well limited considering practical manufacturing requirements and a high-performance computer
could scan and evaluate all the candidates efficiently. In addition, multiple criteria are simultaneously
optimized for the 2DET using the MMPO to find global optima since the MMPO could well represent
the real optimization purposes of designers in an intuitive, reasonable and comprehensive way.

The following presents the EOP in detail, illustrated by the GTO of the 2DET. Section 2 introduces
the optimization problem of the GT of the 2DET. Section 3 evaluates the constraints in a dedicated
order, determining the feasible region of the problem gradually. Section 4 implements the MMPO to
the feasible region. Then, the optimization results are displayed and discussed in Section 5. Section 6
concludes the presented work.

2. GT of the 2DET

The GT of the 2DET in this paper is relatively simple (see Figure 1). The GT has six gears, G11,
G12, G21, G22, G31 and G32. G11 and G21 can selectively connect to the input shaft, connecting to the
motor. G12, G22 and G31 are fixed on the countershaft. G32 is fixed on the differential, connecting to
the driving wheels. G11 and G12, G21 and G22, and G31 and G32, respectively, compose G1, G2 and
G3, the three gear pairs. G1 and G2 are coaxial. At the neutral gear, the power cannot flow between
the input shaft and the differential; at the first gear, the power flows through G1 and G3; and, at the
second gear, through G2 and G3.
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Figure 1. Gear train (GT) of the two-speed dedicated electric transmission (2DET).

To appropriately simplify the GTO problem (GTOP) of the 2DET, several assumptions are made.
First, all the gears in the 2DET are standard involute gears. Second, the gear working widths of G1,
G2 and G3 are respectively 20 mm, 22 mm and 30 mm. Third, the common helical angle of the three
gear pairs is 18◦. Fourth, the coaxial G1 and G2 share a common gear modulus. Accordingly, the tooth
numbers and the moduli of all the six gears are the remaining parameters to basically determine the
gears, and are thus chosen to be the design variables. The design variables are constrained by the
requirements of the EV (see Table 1) and the requirements of manufacture and operation. The optima
of these design variables should be determined by simultaneously optimizing the performance of the
EV, the load capacity of the gears and the size of the GT. Although simplified as mentioned above, the
GTOP is still quite complicated in terms of the design variables, the constraints and the objectives.

Table 1. Parameters and requirements of the electric vehicle (EV).

Parameter Value Parameter Value

TMmax 270 Nm vramp 0.6 km/h
f 0.015 θEVmax 30%

mgross 2256 kg g 9.807 m/s2

CD 0.33 ρ 1.2258 Ns2/m4

A 2.2 m2 vair 0 km/h
rwheel 0.3216 m µ 0.8
m f ront 1139 kg vEVmax 150 km/h
nMmax 7000 r/min tacc_100 km/h ≤12 s

W60 km/h ≤16 kWh WNEDC ≤18 kWh
TM_startup_max 283.8398 Nm dMG32 214 mm

3. Enumeration

Enumeration is direct and practical for determining the feasible regions of the problems with a
limited number of possible solutions. The number of the possible solutions of the GTOP is well limited
not only because the tooth numbers must be integers and should not be too large or too small but
also because the moduli should belong to discrete and limited standard series. Therefore, before the
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optimal design solutions are obtained, all the candidates are enumerated and evaluated here within
the following scopes to determine the feasible region of the GTOP,

x1, x2, x3, x4, x5, x6 ∈ Stoothnumber, Stoothnumber = {17, 18, . . . , 100}
x7 ∈ SG1G2module, SG1G2module = {1.25 mm, 1.50 mm, 2.00 mm}
x8 ∈ SG3module, SG3module = {2.00 mm, 2.50 mm, 3.00 mm}

(1)

where x1, x2, . . . , and x8 are all the design variables of the GTOP; x1, x2, . . . , and x6, respectively,
the tooth numbers of G11, G12, G21, G22, G31 and G32; x7 the common modulus of G1 and G2;
x8 the modulus of G3; Stoothnumber the scope of x1, x2, . . . , and x6; and SG1G2module and SG3module,
respectively, the scopes of x7 and x8. Such scopes are established mainly based on engineering
experience. According to these scopes, the total number of the possible solutions can be up to

(100− 17 + 1)6 × 3× 3 = 3.1617× 1012

Because of such an enormous quantity of the possible solutions, the evaluation of each possible
solution with all the constraints can be impractical. Therefore, the enumeration procedure is elaborated
in the following order.

3.1. Tooth Numbers of a Gear Pair

The tooth numbers of a gear pair are preferred to be coprime for the uniform abrasion of the
gear pair. Furthermore, the tooth number sum of a gear pair in a vehicle automatic transmission is
preferred to be not less than 50 [24] and not larger than 120 [25]. Thus, Sgeartoothnumber, the set of the
feasible tooth number combinations of a gear pair, can be expressed as

Sgeartoothnumber =

(n1, n2)

∣∣∣∣∣∣∣


(n1, n2) = 1
50 ≤ n1 + n2 ≤ 120
n1, n2 ∈ Stoothnumber

 (2)

where n1 and n2 are the tooth numbers of a gear pair; and (n1, n2) = 1 means n1 and n2 are coprime.
Figure 2 shows the scheme of the enumeration for the tooth numbers of a gear pair.
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3.2. Tooth Numbers of G1 and G2

The following equations show that the gear step ratio λ only depends on the tooth numbers of G1
and G2,

iG1 =
x2

x1
(3)

iG2 =
x4

x3
(4)

iG3 =
x6

x5
(5)

i1 = iG1iG3 =
x2x6

x1x5
(6)

i2 = iG2iG3 =
x4x6

x3x5
(7)

λ =
i1
i2

=
x2x3

x1x4
(8)

where iG1, iG2 and iG3 are, respectively, the gear ratios of G1, G2 and G3; and i1 and i2, respectively, the
first and the second gear ratio. Therefore, the scope of λ can be a constraint for the tooth numbers of
G1 and G2. Obviously, i1 should be greater than i2, which means

λ =
i1
i2

> 1 (9)

Besides, usually
λ ≤ 2 (10)

Furthermore, investigating the scopes of i1 and i2 can provide additional lower and upper limits
of λ. The climbing ability of the EV requires that

TMmaxi1 ≥{[
sgn
(
vramp

)
f cos(arctan(θEVmax)) + sin(arctan(θEVmax))

]
mgrossg + 0.5CDρA

(
vramp − vair

)2
}

rwheel
(11)

where TMmax is the maximum motor torque, sgn( ) the sign function, vramp the vehicle climbing
velocity (specified according to GB/T 18385-2005 [26]), f the rolling resistance coefficient, θEVmax the
required maximum ramp gradient, mgross the gross mass of the EV, g the acceleration of gravity, CD the
air drag coefficient, ρ the air density, A the front area, vair the air velocity, and rwheel the wheel radius.
Therefore, i1min, the minimum of i1, can be obtained by

i1min ={[
sgn
(
vramp

)
f cos(arctan(θEVmax)) + sin(arctan(θEVmax))

]
mgrossg + 0.5CDρA

(
vramp − vair

)2
}

rwheel
TMmax

(12)

The adhesion limit of the front-wheel-drive EV requires that

TMmaxi1 ≤ µm f rontgrwheel (13)

where µ is the adhesion coefficient and m f ront the front axle laden mass. Therefore, i1max, the maximum
of i1, can be obtained by

i1max = µm f rontg
rwheel
TMmax

(14)

To achieve the required maximum vehicle speed vEVmax at the second gear, the following
conditions should be met:

nMmaxrwheel
i2

≥ vEVmax (15)



Energies 2017, 10, 1362 7 of 24

PM_EVmaxspeed ≥ PDR_EVmaxspeed (16)

where nMmax is the maximum motor speed, PM_EVmaxspeed the available motor power at vEVmax, and
PDR_EVmaxspeed the driving resistance power of the EV at vEVmax. Figure 3 shows the relationship
between the available motor power PM_available and the motor speed nM. Based on such relationship,

PM_available = PM_EVmaxspeed when nM = nM_EVmaxspeed (17)

where nM_EVmaxspeed is the motor speed corresponding to vEVmax and

nM_EVmaxspeed =
i2vEVmax

rwheel
(18)

PDR_EVmaxspeed can be calculated by

PDR_EVmaxspeed =
[
sgn(vEVmax) f mgrossg + 0.5CDρA(vEVmax − vair)

2
]
vEVmax (19)

The motor speed where
PM_available = PDR_EVmaxspeed (20)

is defined as nM_PDR and calculated by interpolation. According to Figure 3, Equation (16) leads to

nM_EVmaxspeed ≥ nM_PDR (21)

Therefore, according to Equations (15), (18) and (21),

i2max =
nMmaxrwheel

vEVmax
(22)

i2min =
nM_PDRrwheel

vEVmax
(23)

where i2max and i2min are, respectively, the maximum and minimum of i2.
Thus,

i1min

i2max
≤ λ =

i1
i2
≤ i1max

i2min
(24)

Moreover, according to the assumptions made in Section 2, the tooth number sums of G1 and G2
should be the same, which means

x1 + x2 = x3 + x4 (25)

Therefore, SG1G2toothnumber, the set of feasible tooth number combinations of G1 and G2, can be
expressed as

SG1G2toothnumber =

(x1, x2, x3, x4)

∣∣∣∣∣∣∣∣∣


1 < λ ≤ 2
i1min
i2max

≤ λ ≤ i1max
i2min

x1 + x2 = x3 + x4

(x1, x2), (x3, x4) ∈ Sgeartoothnumber

 (26)

Figure 4 shows the scheme of the enumeration for the tooth numbers of G1 and G2.



Energies 2017, 10, 1362 8 of 24

Energies 2017, 10, 1362 8 of 25 

 

 
Figure 3. Motor power-to-speed external characteristics. 

Moreover, according to the assumptions made in Section 2, the tooth number sums of G1 and 
G2 should be the same, which means 

1 2 3 4x x x x+ = +  (25) 

Therefore, 1 2G G toothnumberS , the set of feasible tooth number combinations of G1 and G2, can be 
expressed as 

( )

( ) ( )

1max1min

2 max 2 min1 2 1 2 3 4

1 2 3 4

1 2 3 4

1 2

, , ,

, , ,

G G toothnumber

geartoothnumber

ii

i iS x x x x

x x x x

x x x x S

λ

λ

 < ≤
 
  ≤ ≤  =   
  + = +
  

∈     

(26) 

Figure 4 shows the scheme of the enumeration for the tooth numbers of G1 and G2. 

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

nM [rpm]

P M
_a
va
ila
bl
e

[k
W

]

PDR_EVmaxspeed

nM_PDR nM_EVmaxspeed

PM_EVmaxspeed

Figure 3. Motor power-to-speed external characteristics.

Energies 2017, 10, 1362 9 of 25 

 

 
Figure 4. Scheme of the enumeration for the tooth numbers of G1 and G2. 

3.3. Tooth Numbers of G1, G2 and G3 

Engineering experience usually suggests that 

1 3 4.5G Gi i≤ ≤  (27) 

Besides, the scopes of 1i  and 2i  are 

1min 1 1maxi i i≤ ≤  (28) 

2 min 2 2 maxi i i≤ ≤  (29) 

Therefore, 1 2 3G G G toothnumberS , the set of feasible tooth number combinations of G1, G2 and G3, can 
be expressed as 

( )
( )
( )

1 3

1min 1 1max

2 min 2 2 max1 2 3 1 2 3 4 5 6

1 2 3 4 1 2

5 6

4.5

, , , , ,
, , ,
,

G G

G G G toothnumber

G G toothnumber

geartoothnumber

i i

i i i

i i iS x x x x x x

x x x x S

x x S

 ≤ ≤
  ≤ ≤   ≤ ≤=   
  ∈
  

∈     

(30) 

Figure 5 shows the scheme of the enumeration for the tooth numbers of G1, G2 and G3. 

Start

Enumerate (x1, x2) and
(x3, x4) within Sgeartoothnumber

Have (x1, x2) and (x3, x4)
been enumerated thoroughly

within Sgeartoothnumber?
x1+x2 = x3+x4?

i1min/i2max ≤ λ ≤ i1max/i2min?

Add (x1, x2, x3, x4)
into SG1G2toothnumber

Stop

Yes

Yes

Yes

No

No

No

Calculate λ

Calculate i1min, i1max, i2max and i2min

1 ≤ λ ≤ 2?

Yes

No

Figure 4. Scheme of the enumeration for the tooth numbers of G1 and G2.



Energies 2017, 10, 1362 9 of 24

3.3. Tooth Numbers of G1, G2 and G3

Engineering experience usually suggests that

iG1 ≤ iG3 ≤ 4.5 (27)

Besides, the scopes of i1 and i2 are

i1min ≤ i1 ≤ i1max (28)

i2min ≤ i2 ≤ i2max (29)

Therefore, SG1G2G3toothnumber, the set of feasible tooth number combinations of G1, G2 and G3, can
be expressed as

SG1G2G3toothnumber =


(x1, x2, x3, x4, x5, x6)

∣∣∣∣∣∣∣∣∣∣∣



iG1 ≤ iG3 ≤ 4.5
i1min ≤ i1 ≤ i1max

i2min ≤ i2 ≤ i2max

(x1, x2, x3, x4) ∈ SG1G2toothnumber
(x5, x6) ∈ Sgeartoothnumber


(30)

Figure 5 shows the scheme of the enumeration for the tooth numbers of G1, G2 and G3.Energies 2017, 10, 1362 10 of 25 
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3.4. Acceleration Time

tacc_100 km/h, the 0–100 km/h acceleration time, is a criterion for evaluating the power performance
of the EV. For each tooth number combination belonging to SG1G2G3toothnumber, vshi f t, the shift speed
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for the 0–100 km/h acceleration test, should be determined before calculating tacc_100 km/h. The motor
torque-to-speed external characteristic can be converted into the vehicle torque-to-speed external
characteristics of the first and the second gear, based on which vshi f t is determined. Figure 6 shows an
example of the conversion of the characteristics. The first intersection of the two vehicle torque-to-speed
curves can be derived with interpolation. The vehicle speed at the intersection is vshi f t. However,
if vshi f t is larger than vMmaxspeed1, the vehicle speed corresponding to nMmax at the first gear, then
vMmaxspeed1 is treated as vshi f t. vMmaxspeed1 can be obtained by

vMmaxspeed1 =
nMmaxrwheel

i1
(31)
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vehicle torque-to-speed external characteristics: (a) motor torque-to-speed external characteristic; and
(b) vehicle torque-to-speed external characteristics of the first and the second gear.

The 0–100 km/h acceleration process of the EV is considered in a discrete way. The constant
acceleration time step ∆tacc is 0.1 s. The i-th acceleration time instance tacc_i is

tacc_i = (i− 1)∆tacc (i = 1, 2, 3, . . .) (32)

The EV speed at tacc_i is defined as vacc_i, and

vacc_i =

{
0 km/h (i = 1)
vacc_i−1 + aacc_i−1∆tacc (i = 2, 3, 4, . . .)

(33)
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where vacc_i−1 and aacc_i−1 are, respectively, the EV speed and the EV acceleration at the (i− 1)-th
acceleration time instance tacc_i−1. aacc_i−1 can be derived from

aacc_i−1 =
Twheel_acc_i−1 − TDR_acc_i−1

rwheelmgross
(i = 2, 3, 4, . . .) (34)

where Twheel_acc_i−1 and TDR_acc_i−1 are, respectively, the driving torque and the driving resistance
torque at tacc_i−1. Twheel_acc_i−1 can be interpolated by vacc_i−1 based on the vehicle torque-to-speed
external characteristics and vshi f t. If vacc_i−1 is smaller than vshi f t, the vehicle torque-to-speed external
characteristic of the first gear is used to interpolate Twheel_acc_i−1; otherwise, the vehicle torque-to-speed
characteristic of the second gear is used. TDR_acc_i−1 can be obtained using

TDR_acc_i−1 =
[
sgn(vacc_i−1) f mgrossg + 0.5CDρA(vacc_i−1 − vair)

2
]
rwheel (35)

The first time vacc_i reaches 100 km/h, the corresponding acceleration time instance is recorded as
tacc_100 km/h.

According to Table 1, tacc_100 km/h should be constrained by

tacc_100 km/h ≤ 12 s (36)

Therefore, Sacc, the set of feasible tooth number combinations of G1, G2 and G3 with consideration
on the acceleration time, can be expressed as

Sacc =

{
(x1, x2, x3, x4, x5, x6)

∣∣∣∣∣
{

tacc_100 km/h ≤ 12 s
(x1, x2, x3, x4, x5, x6) ∈ SG1G2G3toothnumber

}
(37)

Figure 7 shows the scheme of the enumeration for the acceleration time.
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3.5. Energy Consumption

For each element of Sacc, both the 100 km energy consumption at a constant speed of 60 km/h
and that according to the New European Driving Cycle (NEDC) [27] (see Figure 8) are criteria for
evaluating the economic performance of the EV, respectively, denoted as W60 km/h and WNEDC.
Calculating W60 km/h and WNEDC requires a knowledge of the efficiency of each power-transition
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component, such as the battery, the inverter, the motor and the 2DET. For simplification, the efficiencies
of all the power-transition components but the motor are assumed to be 100%.

W60 km/h can be calculated by

W60 km/h =
100 km

60 km/h
PConsumed_60 km/h (38)

where PConsumed_60 km/h is the consumed power of the EV at 60 km/h. PConsumed_60 km/h can be obtained
by

PConsumed_60 km/h =
PDR_60 km/h

ηM_60 km/h
(39)

where PDR_60 km/h is the driving resistance power of the EV at 60 km/h and ηM_60 km/h the motor
efficiency at 60 km/h. PDR_60 km/h can be obtained by

PDR_60 km/h =
[

f mgrossg + 0.5CDρA(60 km/h− vair)
2
]
60 km/h (40)

ηM_60 km/h can be obtained by

ηM_60 km/h = max(ηM_60 km/h_1, ηM_60 km/h_2) (41)

where ηM_60 km/h_1 and ηM_60 km/h_2 are, respectively, the motor efficiencies of the first and the second
gear at 60 km/h. ηM_60 km/h_1 and ηM_60 km/h_2 can be obtained based on the motor efficiency map
(see Figure 9) with PDR_60 km/h, nM_60 km/h_1 and nM_60 km/h_2, where nM_60 km/h_1 and nM_60 km/h_2
are, respectively, the required motor speeds of the first and the second gear at 60 km/h, and

nM_60 km/h_1 =
60 km/h · i1

rwheel
(42)

nM_60 km/h_2 =
60 km/h · i2

rwheel
(43)

WNEDC can be obtained by

WNEDC =
iend

∑
i=1

0.5(PConsumed_NEDC_i + PConsumed_NEDC_i+1)∆tNEDC (44)

where iend is the index meaning that, at the (iend + 1)-th NEDC time instance tNEDC_iend+1, the driving
distance first reaches 100 km; PConsumed_NEDC_i and PConsumed_NEDC_i+1, respectively, the consumed
powers of the EV at the i-th and the (i + 1)-th NEDC time instance tNEDC_i and tNEDC_i+1; and ∆tNEDC
the constant NEDC time step of 1 s. iend is determined by the following equation system

iend−1
∑

i=1
0.5(vNEDC_i + vNEDC_i+1)∆tNEDC < 100 km

iend
∑

i=1
0.5(vNEDC_i + vNEDC_i+1)∆tNEDC ≥ 100 km

(45)

where vNEDC_i and vNEDC_i+1 are, respectively, the EV speeds at tNEDC_i and tNEDC_i+1. tNEDC_i can
be obtained with

tNEDC_i = (i− 1)∆tNEDC, i = 1, 2, . . . , iend + 1 (46)

and PConsumed_EVNEDC_i can be obtained with

PConsumed_NEDC_i =

{
PDR_NEDC_i
ηM_NEDC_i

if PDR_NEDC_i > 0
PDR_NEDC_iηM_NEDC_i otherwise

(47)
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where PDR_NEDC_i is the driving resistance power of the EV at tNEDC_i, and ηM_NEDC_i the motor
efficiency at tNEDC_i. PDR_NEDC_i can be calculated by

PDR_NEDC_i =
[
sgn(vNEDC_i) f mgrossg + 0.5CDρA(vNEDC_i − vair)

2 + mgrossaNEDC_i

]
vNEDC_i (48)

where aNEDC_i is the EV acceleration at tNEDC_i. aNEDC_i can be calculated by

aNEDC_i =
vNEDC_i+1 − vNEDC_i

∆tNEDC
(49)

Before determining ηM_NEDC_i, the working gear at tNEDC_i should be determined. The required
motor speeds of the first and the second gear at tNEDC_i are, respectively, denoted as nM_NEDC_1_i and
nM_NEDC_2_i, and

nM_NEDC_1_i =
i1vNEDC_i

rwheel
(50)

nM_NEDC_2_i =
i2vNEDC_i

rwheel
(51)
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Then, ηM_NEDC_1_i and ηM_NEDC_2_i, respectively, the motor efficiencies of the first and the second
gear at tNEDC_i, can be obtained based on the motor efficiency map (see Figure 9) with PDR_NEDC_i,
nM_NEDC_1_i and nM_NEDC_2_i. In addition, PM_NEDC_max_1_i and PM_NEDC_max_2_i, respectively, the
maximum available motor powers of the first and the second gear at tNEDC_i, can be obtained based
on the motor power-to-speed external characteristic (see Figure 3). Symmetrically, PM_NEDC_min_1_i
and PM_NEDC_min_2_i, respectively, the minimum available motor powers of the first and the second
gear at tNEDC_i, can be obtained by

PM_NEDC_min_1_i = −PM_NEDC_max_1_i (52)

PM_NEDC_min_2_i = −PM_NEDC_max_2_i (53)

Besides, TM_NEDC_1_i and TM_NEDC_2_i, respectively, the required motor torques of the first and
the second gear at tNEDC_i, can be obtained by

TM_NEDC_1_i =
TDR_NEDC_i

i1
(54)

TM_NEDC_1_i =
TDR_NEDC_i

i1
(55)
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where TDR_NEDC_i is the driving resistance torque of the EV at tNEDC_i, and

TDR_NEDC_i =
[
sgn(vNEDC_i) f mgrossg + 0.5CDρA(vNEDC_i − vair)

2 + mgrossaNEDC_i

]
rwheel (56)

The following procedure decides the working gear at tNEDC_i:
Step 1: If {

vNEDC_i = 0 km/h
vNEDC_i+1 = 0 km/h

(57)

then the working gear at tNEDC_i is the neutral gear,
nM_NEDC_i = 0 rpm
TM_NEDC_i = 0 Nm
ηM_NEDC_i = 0

(58)

where nM_NEDC_i and TM_NEDC_i are, respectively, the motor speed and the motor torque at tNEDC_i,
and the next step is Step 4. Otherwise, the working gear at tNEDC_i is not the neutral gear and the next
step is Step 2.

Step 2: If 
nM_NEDC_1_i ≤ nMmax

PM_NEDC_min_1_i ≤ PDR_NEDC_i ≤ PM_NEDC_max_1_i
ηM_NEDC_1_i ≥ ηM_NEDC_2_i

(59)

then the working gear at tNEDC_i is the first gear,
nM_NEDC_i = nM_NEDC_1_i
TM_NEDC_i = TM_NEDC_1_i
ηM_NEDC_i = ηM_NEDC_1_i

(60)

and the next step is Step 4. Otherwise, the working gear at tNEDC_i is not the first gear and the next
step is Step 3.

Step 3: If {
nM_NEDC_2_i ≤ nMmax

PM_NEDC_min_2_i ≤ PDR_NEDC_i ≤ PM_NEDC_max_2_i
(61)

then the working gear at tNEDC_i is the second gear,
nM_NEDC_i = nM_NEDC_2_i
TM_NEDC_i = TM_NEDC_2_i
ηM_NEDC_i = ηM_NEDC_2_i

(62)

and the next step is Step 4. Otherwise, the working gear at tNEDC_i is not the second gear,

WNEDC = 0 kWh (63)

and the calculation of WNEDC for the current element of Sacc stops and that for the next element (if
exists) starts.

Step 4: If {
vNEDC_i = 0 km/h
vNEDC_i+1 6= 0 km/h

(64)

then tNEDC_i is a start-up instance for the EV and the next step is Step 5. Otherwise, tNEDC_i is not a
start-up instance for the EV and the next step is Step 6.
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Step 5: If
TM_NEDC_1_i ≤ TM_startup_max (65)

where TM_startup_max is the maximum motor start-up torque, then the motor start-up torque demand
at tNEDC_i can be met and the next step is Step 6. Otherwise, the motor start-up torque demand at
tNEDC_i cannot be met,

WNEDC = 0 kWh (66)

and the calculation of WNEDC for the current element of Sacc stops and that for the next element (if
exists) starts.

Step 6: The procedure of deciding the working gear at tNEDC_i ends.
According to Table 1, the energy consumptions of the EV should be constrained by{

W60 km/h ≤ 16 kWh
0 < WNEDC ≤ 18 kWh

(67)

Therefore, Sener, the set of feasible tooth number combinations of G1, G2 and G3 with consideration
on the energy consumption, can be expressed as

Sener =

(x1, x2, x3, x4, x5, x6)

∣∣∣∣∣∣∣


W60 km/h ≤ 16 kWh
0 < WNEDC ≤ 18 kWh
(x1, x2, x3, x4, x5, x6) ∈ Sacc

 (68)

Figure 10 shows the scheme of the enumeration for the energy consumptions.
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Step 6: The procedure of deciding the working gear at _NEDC it  ends. 
According to Table 1, the energy consumptions of the EV should be constrained by 
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≤
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Therefore, enerS , the set of feasible tooth number combinations of G1, G2 and G3 with 
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x x x x x x S

 ≤
 = < ≤  
  ∈   
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3.6. Safety Factor

The strength safety factors of all the six gears are criteria for evaluating the load capacity of the
2DET. The 200,000 km NEDC is used as the operating condition for the fatigue strength check of the
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2DET. For each element of Sener, along with the calculation of WNEDC, the time history of the G11, the
G21 and the G31 speed can be acquired by

nG11_NEDC_i =
i1vNEDC_i

rwheel
= nM_NEDC_1_i (69)

nG21_NEDC_i =
i2vNEDC_i

rwheel
= nM_NEDC_2_i (70)

nG31_NEDC_i =
iG3vNEDC_i

rwheel
(71)

where nG11_NEDC_i, nG21_NEDC_i and nG31_NEDC_i are, respectively, the G11, the G21 and the G31 speed
at tNEDC_i. Besides, the time history of the G11, the G21 and the G31 torque can be acquired by

TG11_NEDC_i =

{
TDR_NEDC_i

i1
= TM_NEDC_1_i if the working gear at tNEDC_i is the first gear

0 Nm otherwise
(72)

TG21_NEDC_i =

{
TDR_NEDC_i

i2
= TM_NEDC_2_i if the working gear at tNEDC_i is the sec ond gear

0 Nm otherwise
(73)

TG31_NEDC_i =
TDR_NEDC_i

iG3
(74)

where TG11_NEDC_i, TG21_NEDC_i and TG31_NEDC_i are, respectively, the G11, the G21 and the G31 torque
at tNEDC_i. Based on ISO 6336-6: 2006(E) [28], the equivalent speeds and the equivalent torques of
G11, G21 and G31 in the 100 km NEDC are calculated, regarded as the same with those in the 200,000
km NEDC for simplifying the fatigue strength check. Then, for each combination of x7 and x8, the
contact safety factors of G11, G12, G21, G22, G31 and G32, respectively, denoted as SG11_H , SG12_H ,
SG21_H , SG22_H , SG31_H and SG32_H , and the bending safety factors of G11, G12, G21, G22, G31 and G32,
respectively, denoted as SG11_F, SG12_F, SG21_F, SG22_F, SG31_F and SG32_F, can be calculated according
to GB/T 3480-1997 [29]. These safety factors should be constrained by{

SG11_H , SG12_H , SG21_H , SG22_H , SG31_H , SG32_H ≥ 1.10
SG11_F, SG12_F, SG21_F, SG22_F, SG31_F, SG32_F ≥ 1.25

(75)

Therefore, Sstr, the set of feasible tooth number and module combinations of G1, G2 and G3 with
consideration on the strength, can be expressed as

Sstr =


(x1, x2, x3, x4, x5, x6, x7, x8)

∣∣∣∣∣∣∣∣∣∣∣



SG11_H , SG12_H , SG21_H , SG22_H , SG31_H , SG32_H ≥ 1.10
SG11_F, SG12_F, SG21_F, SG22_F, SG31_F, SG32_F ≥ 1.25
(x1, x2, x3, x4, x5, x6) ∈ Sener

x7 ∈ SG1G2module
x8 ∈ SG3module


(76)

Figure 11 shows the scheme of the enumeration for the safety factors.



Energies 2017, 10, 1362 18 of 24
Energies 2017, 10, 1362 19 of 25 

 

 
Figure 11. Scheme of the enumeration for the safety factors. 

3.7. Dimension 

For each element of strS , several dimensions can be obtained by 

1 7
11

2 7
12

3 7
21

4 7
22

5 8
31

6 8
32

1 11 12 21 22

2 31 32

2cos18

2cos18

2cos18

2cos18

2cos18

2cos18

G

G

G

G

G

G

G G G G

G G

x x
r

x x
r

x x
r

x x
r

x x
r

x x
r

a r r r r

a r r

 = °
 = °

 = °

 = °
 = °
 = °
 = + = +
 = +  

(77) 

where 11Gr , 12Gr , 21Gr , 22Gr , 31Gr  and 32Gr  are, respectively, the reference radii of G11, G12, G21, 

G22, G31 and G32, and 1a  and 2a , respectively, the center distances of G1 (or G2) and G3. To avoid 
interference, the following constraints apply: 

Start

Enumerate (x1, x2, x3, x4, x5, x6),
x7 and x8 respectively within
Sener, SG1G2module and SG3module

Have (x1, x2, x3, x4, x5, x6),
x7 and x8 been respectively

enumerated thoroughly within
Sener, SG1G2module and SG3module?

Add
(x1, x2, x3, x4, x5, x6, x7, x8)

into Sstr

Stop

YesYes

No

No

Calculate SG11_H, SG12_H,
SG21_H, SG22_H, SG31_H and SG32_H

SG11_H, SG12_H,
SG21_H, SG22_H,

SG31_H and SG32_H

≥ 1.10?

SG11_F, SG12_F,
SG21_F, SG22_F,

SG31_F and SG32_F

≥ 1.25?

Yes

No

Calculate SG11_F, SG12_F,
SG21_F, SG22_F, SG31_F and SG32_F

Figure 11. Scheme of the enumeration for the safety factors.

3.7. Dimension

For each element of Sstr, several dimensions can be obtained by

rG11 = x1x7
2 cos 18◦

rG12 = x2x7
2 cos 18◦

rG21 = x3x7
2 cos 18◦

rG22 = x4x7
2 cos 18◦

rG31 = x5x8
2 cos 18◦

rG32 = x6x8
2 cos 18◦

a1 = rG11 + rG12 = rG21 + rG22
a2 = rG31 + rG32

(77)

where rG11, rG12, rG21, rG22, rG31 and rG32 are, respectively, the reference radii of G11, G12, G21,
G22, G31 and G32, and a1 and a2, respectively, the center distances of G1 (or G2) and G3. To avoid
interference, the following constraints apply:

rG31 < a1 (78)

max(rG12, rG22) < a2 (79)
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Moreover, the EV arrangement requires that

a1 + a2 ≥ dMG32 (80)

where dMG32 is the distance between the rotation axis of the input shaft and that of G32. Therefore,
Sdim, the set of feasible tooth number and module combinations of G1, G2 and G3 with consideration
on the dimension, can be expressed as

Sdim =

(x1, x2, x3, x4, x5, x6, x7, x8)

∣∣∣∣∣∣∣∣∣


rG31 < a1

max(rG12, rG22) < a2

a1 + a2 ≥ dMG32

(x1, x2, x3, x4, x5, x6, x7, x8) ∈ Sstr

 (81)

For each element of Sdim, the radial length L, representing the size of the GT, can be obtained by

L = a1 + a2 + rG32 + max(rG11, rG21) (82)

Figure 12 shows the scheme of the enumeration for the dimensions.

Energies 2017, 10, 1362 20 of 25 

 

31 1Gr a<  (78) 

( )12 22 2max ,G Gr r a<  (79) 

Moreover, the EV arrangement requires that 

1 2 32MGa a d+ ≥  (80) 

where 32MGd  is the distance between the rotation axis of the input shaft and that of G32. Therefore, 
dimS , the set of feasible tooth number and module combinations of G1, G2 and G3 with consideration 

on the dimension, can be expressed as 

( ) ( )

( )

31 1

12 22 2
1 2 3 4 5 6 7 8

1 2 32

1 2 3 4 5 6 7 8

max ,
, , , , , , ,

, , , , , , ,

G

G G
dim

MG

str

r a

r r a
S x x x x x x x x

a a d

x x x x x x x x S

 <
  <  =   + ≥  
  ∈   

(81) 

For each element of dimS , the radial length L , representing the size of the GT, can be obtained 
by 

( )1 2 32 11 21max ,G G GL a a r r r= + + +  (82) 

Figure 12 shows the scheme of the enumeration for the dimensions. 

 
Figure 12. Scheme of the enumeration for the dimensions. 

4. MMPO 

The optimization method used in this paper is based on the MMPO [14]. According to Osyczka 
[14], for a multi-criterion optimization problem, the MMPO assumes that none of the criteria change 

Start

Enumerate (x1, x2, x3, x4, x5, x6, x7, x8)
within Sstr

Has
(x1, x2, x3, x4, x5, x6, x7, x8)

been enumerated
thoroughly within Sstr?

Add
(x1, x2, x3, x4, x5, x6, x7, x8)

into Sdim

Stop

Yes

Yes

No

No

Calculate rG12, rG22, rG31, a1 and a2

rG31 < a1?

a1+a2≥ dMG32

Yes

No

max(rG12, rG22) < a2?

Yes

No

Calculate L

Figure 12. Scheme of the enumeration for the dimensions.

4. MMPO

The optimization method used in this paper is based on the MMPO [14]. According to
Osyczka [14], for a multi-criterion optimization problem, the MMPO assumes that none of the criteria
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change sign and none are equal to zero within the feasible region, and that all the criteria are to be
minimized. Based on these assumptions, the fractional increment is defined as [14]

FIi(X) =
Ci(X)

Ci,min
− 1 ≥ 0 (X ∈ S, S 6= ∅, i = 1, 2, . . . , n, n ≥ 2) (83)

where X is a feasible solution of the multi-criterion optimization problem; S the feasible region of the
multi-criterion optimization problem; ∅ the empty set; n the number of the criteria, FIi(X) and Ci(X),
respectively, the fractional increment and the value of the i-th criterion of X; and Ci,min the minimum of
the i-th criterion. Ci,min can be obtained by solving the following single-criterion optimization problem

min f (X) = Ci(X)

X ∈ S
(84)

where f (X) is the objective function of the single-criterion optimization problem. FIi(X) represents
how much Ci(X) deviates from Ci,min. For each X ∈ S, FI1(X), FI2(X), . . . , and FIn(X) are anew
denoted as SFI1(X), SFI2(X) . . . , and SFIn(X), and

SFI1(X) ≥ SFI2(X) ≥ . . . ≥ SFIn(X) (85)

Using SFIi(X)(i = 1, 2, . . . , n), the following procedure decides X∗, the global optimum of the
multi-criterion optimization problem:

Step 1: Set p = 1, where p is a temporary variable. Solve the following single-criterion
optimization problem

min f1(X) = SFI1(X)

X ∈ S
(86)

where f1(X) is the objective function of the single-criterion optimization problem. Denote the set of
the optima of the single-criterion optimization problem as S1. If only one optimum is obtained, go to
Step n + 1. Otherwise, go to Step 2.

Step 2: Set p = 2. Solve the following single-criterion optimization problem

min f2(X) = SFI2(X)

X ∈ S1
(87)

where f2(X) is the objective function of the single-criterion optimization problem. Denote the set of
the optima of the single-criterion optimization problem as S2. If only one optimum is obtained, go to
Step n + 1. Otherwise, go to Step 3.

...
Step k(k ≥ 2): Set p = k. Solve the following single-criterion optimization problem

min fk(X) = SFIk(X)

X ∈ Sk−1
(88)

where fk(X) is the objective function of the single-criterion optimization problem. Denote the set of
the optima of the single-criterion optimization problem as Sk. If only one optimum is obtained, go to
Step n + 1. Otherwise, go to Step k + 1.

...
Step n: Set p = n. Solve the following single-criterion optimization problem

min fn(X) = SFIn(X)

X ∈ Sn−1
(89)
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where fn(X) is the objective function of the single-criterion optimization problem. Denote the set of
the optima of the single-criterion optimization problem as Sn. Go to Step n + 1.

Step n + 1: Every element in Sp is the global optimum of the multi-criterion optimization problem.
The procedure of deciding X∗ ends.

For a better comprehension of how the MMPO and the fractional increment work, an additional
example is presented by Tables 2 and 3. Table 3 indicates that (0, 0) is the global optimum of
the example.

Table 2. Example of the optimization with the Min-Max Principle of Optimality (MMPO):
data preparation.

X(X ∈ S) C1(X) C2(X) FI1(X) FI2(X) SFI1(X) SFI2(X)

(0, 0) 1 (C1,min) 3 0 2 2 0
(0, 1) 3 2 2 1 2 1
(1, 0) 4 1 (C2,min) 3 0 3 0

Table 3. Example of the optimization with the MMPO: results of Steps 1 and 2.

X(X ∈ S1) f1(X) X(X ∈ S2) f2(X)

(0, 0) 2 (0, 0) 0
(0, 1) 2 - -

To optimize the GT of the 2DET, the acceleration time tacc_100 km/h, the energy consumptions
W60 km/h and WNEDC, and the radial length L need to be minimized, while the safety factors SG11_H ,
SG12_H , SG21_H , SG22_H , SG31_H , SG32_H , SG11_F, SG12_F, SG21_F, SG22_F, SG31_F and SG32_F need to be
maximized. Since these criteria need to be optimized simultaneously by the MMPO, the maximization
problems for the safety factors are converted to the minimization problems for 1

SG11_H
, 1

SG12_H
, 1

SG21_H
,

1
SG22_H

, 1
SG31_H

, 1
SG32_H

, 1
SG11_F

, 1
SG12_F

, 1
SG21_F

, 1
SG22_F

, 1
SG31_F

and 1
SG32_F

.
Due to the limited space, the detail of implementing the MMPO to the GTOP of the 2DET, based

on the results from the multi-stage enumeration in Section 3 is not presented.

5. Results and Discussion

The total number of possible solutions can be up to 3.1617× 1012. Besides, the preceding text
shows that most of the constraints and the objective functions are highly nonlinear and discontinuous,
and are difficult to be expressed analytically. However, the number of the elements of Sdim is only
4.55306× 105, sufficiently demonstrating that the multi-stage enumeration is effective in determining
the feasible region of the large, non-linear, discontinuous and discrete GTOP of the 2DET.

(x1, x2, x3, x4, x5, x6, x7, x8)∗, the global optimum of the GTOP of the 2DET, is obtained as

(x1, x2, x3, x4, x5, x6, x7, x8)∗ = (23, 60, 35, 48, 21, 82, 2.00 mm, 3.00 mm) (90)

Obviously, the global optimum is directly practical and applicable, requiring little work for further
parameterization of the GT of the 2DET.

The minimum and the optimal value of each criterion and the fractional increments of the global
optimum are listed in Table 4. Furthermore, the computational process (not displayed) of the MMPO
only tackles the objective function of Step 1 but not those of other steps. The optimal value of the
objective function of Step 1 is only 0.2758, indicating that the global optimum is quite satisfying
and that the MMPO is effective to simultaneously and globally optimize multiple criteria of the
same importance.
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Table 4. Results of the gear train optimization problem (GTOP) of the two-speed dedicated electric
transmission (2DET).

Criterion Minimum Optimal Value Fractional Increment

tacc_100 km/h 10.4 s 10.5 s 0.0096
W60 km/h 13.1759 kWh 13.4033 kWh 0.0173
WNEDC 15.7679 kWh 15.7760 kWh 0.0005

L 325.9533 mm 415.8533 mm 0.2758
1

SG11_H
0.3089 0.3830 0.2398

1
SG12_H

0.3042 0.3804 0.2505
1

SG21_H
0.2820 0.3285 0.1648

1
SG22_H

0.2803 0.3271 0.1671
1

SG31_H
0.2696 0.3385 0.2553

1
SG32_H

0.2654 0.3368 0.2690
1

SG11_F
0.1483 0.1880 0.2678

1
SG12_F

0.1424 0.1743 0.2239
1

SG21_F
0.1418 0.1589 0.1202

1
SG22_F

0.1397 0.1556 0.1134
1

SG31_F
0.1290 0.1542 0.1955

1
SG32_F

0.1177 0.1396 0.1861

6. Conclusions

In this paper, a discrete GTOP of a 2DET for an EV was described. Accordingly, an EOP
incorporating the MMPO was proposed to solve the GTOP directly and globally. The EOP tackled one
type of constraints to reduce the computational load for the next as much as possible, and the sequence
of applying the constraints was dedicatedly designed. The constraints consisted of the requirements of
manufacture and operation and the requirements of the EV. Resultantly, only 4.55306× 105 feasible
solutions out of 3.1617× 1012 possible solutions were reserved for the implementation of the MMPO,
sufficiently demonstrating that the EOP is effective in determining the feasible region of the GTOP.
The global optimum was quite satisfying in terms of the performance of the EV, the load capacity of
the gears and the size of the GT, indicating that the EOP is effective to simultaneously and globally
optimize multiple criteria of the same importance.

The idea of combining multi-stage enumeration with optimization, as the EOP shows, may
be helpful to optimize the GTs in various applications and provide the global optima which are
immediately practical and applicable.
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