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A Monte Carlo Particle Model Associated with
Neural Networks for Tracking Problem
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Abstract—Sequential Monte Carlo (SMC) methods, namely,
particle filters, are powerful simulation techniques for sam-
pling sequentially from a complex probability distribution. SMC
can be used to solve some problems associated with nonlinear
non-Gaussian probability distribution. Sampling is a key step for
these methods and has vital effects on simulation results. Various
sampling strategies have been proposed to improve the simulation
results of SMC methods, but degeneracy of particles sometimes is
very severe so that there are only a few particles having significant
weights. Diversity of particle samples is reduced significantly so
that only a few particles are used to represent the corresponding
probability distribution. This kind of sampling is not reasonable to
approximate probability distribution. This paper addresses a new
method which can avoid the phenomenon of particle degeneracy.
We split particles with very big weights into two small ones and
use the strategy of neural network to adjust positions of tail
particles in order to increase their weights. Another advantage is
that this method can efficiently make simulation results approach
the actual object. Our simulation results of the typical tracking
problem show that not only the phenomenon of particle degen-
eracy is effectively avoided but also tracking results are much
better than those of the traditional particle filters. Compared
with the move–resample method, our method shows better results
under the same conditions.

Index Terms—Backpropagation, neural networks, particle de-
generacy, particle filters, resample–move, tracking.

I. INTRODUCTION

P ARTICLE filters were originally introduced in the early
1950s by physicists. Its actual development and imple-

mentation began in the 1990s, since computers could provide
more powerful ability of computation and make this method
a reality. These methods have been very popular over the past
few years in statistics and related fields, and they are improved
greatly in implementations[11], [16], [17],[28], [30], [32]. They
are also used widely in various fields, such as econometrics [15],
signal processing [20], [27], noise analysis [14], circuit analysis
[23], [36], communications [19], [21], [22], performance anal-
ysis of wavelet transforms [33], statistical analysis of the affine
project algorithm [1], robotics [26], and so on. Particle filters
approximate the sequence of probability distributions of interest
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using a set of random samples called particles. Those particles
are propagated over time following the corresponding distribu-
tions by sampling and resampling mechanisms. At any time, as
the number of particles increases, particles asymptotically con-
verge toward the sequence of probability distribution. In reality,
computation time is a very important factor to consider, so the
number of particles cannot go too big. Thus, effective sampling
algorithms are key steps to capture a probability distribution by
a limited number of particles.

Many researchers are working in this field and have obtained
some significant results. Liu and Chen [30] sample particles
based on a tail importance density. Some other authors use a
very similar strategy to realize sampling, e.g., Doucet et al.
[12], Guo et al.[18]. Gilks and Berzuini [16] rejuvenate parti-
cles based on Markov chain Monte Carlo (MCMC), and there
are some other similar papers like[7] and [10]. Look-ahead tech-
nique is another method developed by Liu [28] for sampling. All
these methods cannot effectively reduce the mean square error
over time. For a sequence over a long time, performance of these
methods are poor. MCMC method in [16] requires fast mixture
of kernels in order to obtain a good performance. Look-ahead
algorithm needs to compute a local integration, and it is expen-
sive in computation time[10].

Arulampalam et al.[2] give a tutorial of particle filters for on-
line nonlinear non-Gaussian Bayesian tracking. They summa-
rize several popular types of particle filters with their properties
and adaptation. The purpose of resampling in particle filters is
to reduce particle degeneracy. Although this method can im-
prove the performance of particle filters, some other practical
problems appear, such as diversity of particle sample and statis-
tical repetition of particles with high weights. They mention that
this particle impoverishment is severe in the the case of small
process noise.

In this paper, we combine a neural network with the typical
sampling algorithm for particles in the tail area of probability
distribution with low weights while particles with very high
weights are split into small ones. This consideration is moti-
vated by raising diversity of particle samples over time, since
a typical particle filter will have only a few particles with high
weights after several recursive updates of the probability dis-
tributions of interest. Our method can adjust the distribution of
particles into the area with high weight of probability distribu-
tion and make the results approach the real objective.

We also address the application of particle filters on estima-
tion and tracking of a time-varying target. Dynamic modeling is
used to simulate the activity of target using nonlinear Gaussian
state-space models. We use local linearization technique to ap-
proximate nonlinear function of this dynamic model. We com-

1549-8328/$25.00 © 2008 IEEE
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Fig. 1. Ship is moving in ��� plane, where � � � denotes observed angular po-
sitions from the initial fixed point and � denotes the true position of ship.

pare our method with the typical particle filter and the resample–
move algorithm. Our simulation results, e.g., the number of re-
sampling and error from the actual tracking path under the same
conditions, are better than those of the two methods.

This paper is organized as follows. State-space model is
represented in Section II. Particle filters are addressed in
Section III, including sequential-importance-sampling (SIS)–
resampling algorithm, resample–move algorithm, and our
method. The simulation results are given in Section IV. Finally,
discussion and conclusions are described in Section V.

II. STATE-SPACE MODEL

The problem of interest is the sequential detection of the po-
sition of a moving target. As a motivating example, a moving
ship is considered in the sea, and one observer is located at a
fixed point. This is a classical problem in nonlinear tracking (see
Gordon et al.[17], Carpenter et al.[4], [5], and Gilks et al.[16]).

A ship is moving through random smooth accelerations and
decelerations as shown in Fig. 1. A stationary observer at the
fixed point of the plane obtains a noisy measurement of the an-
gular position of the ship over time. Assume that , denote
coordinates of the ship, where is discrete time, .
The state-space model [16] is described as follows:

(1)

where denotes a normal distribution with mean and
variance , is discrete time, and are velocities of -
and -direction of the ship, respectively, is an unknown con-
stant number, is the white noise with Gaussian distribution

, and is an unknown variance.
As the ship moves over time, the observer can measure a se-

ries of angular positions of the ship with noise. For a given , we
actually consider the velocities of the ship as Gaussian

distribution with varying mean value. Thus, the vector of un-
known parameters at time is

(2)

Therefore, the target distribution of is a posterior distribu-
tion of interest

We consider coordinates , as independent components, and
we have

(3)

where the notation indicates all the elements from dis-
crete time 1 to . The space of , extends with the increase of
time. However, at any time, the number of particles keeps con-
stant and is used to approximate the conditional posterior distri-
bution for the current position of the ship. In addi-
tion, each particle should make up a path from the beginning to
current time. It is not true in practice since particle degeneracy
makes some particles lose their paths. We will address this issue
later.

By Bayesian theory, a recursive formula for can
easily be obtained with

(4)

where is the likelihood function and can
recursively be calculated by the prior distribution of the param-
eters . From (4), a posterior probability distribution can
be obtained either by analysis or by approximation. For model
(1), we cannot analytically calculate the terms and

, since they are nonlinear and non-Gaussian dis-
tributions.

Then, we use the local linearization technique [12] to get a
linear equation. The aim of linearization here is to obtain an
importance function, which can be calculated analytically, and
the algorithm should converge asymptotically toward the de-
sired distribution under usual assumptions. Now, consider the
observer equation

By the first-order Taylor expansion formula for the component
, this equation becomes

(5)

where from (1). Thus, a new linear
Gaussian observer equation is obtained by linearization of

. Based on (1) and (5), we can do calculation to obtain a
Gaussian importance function
with mean and covariance for one of components,
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e.g., coordinate. and are obtained by the following
formula:

(6)

(7)

where denotes transpose. Since

finally, (6) and (7) become

(8)

(9)

Following the earlier procedure, the Gaussian importance
function for coordinate can easily be obtained:

(10)

(11)

At any time point , there are a number of particles which are
used to approximate the importance function distribution, and
each particle follows the earlier dynamic model.

III. PARTICLE FILTERS

This section includes three parts. The first part briefly de-
scribes the typical particle filter, namely, the SIS and resampling

algorithm. The second one introduces the particle filter with re-
sample–move algorithm [16]. The last one addresses our par-
ticle filter with neural networks.

A. SIS–Resampling Algorithm

The basis of particle filters is an SIS algorithm. Most sequen-
tial Monte Carlo methods developed over the last decade are
based on this SIS algorithm. This technique is capable of im-
plementing a recursive Bayesian filter by Monte Carlo simu-
lations. The key idea is to use a sample of random particles
to represent a posterior probability distribution approximately.
The sequential sampling is very important in realizing this al-
gorithm. Assume an arbitrary distribution . Samples are
supposed to be drawn from , but in many practical cases,

is not a standard probability distribution, e.g., Gaussian
distribution, so it is difficult to draw samples from . There-
fore, based on the Bayesian importance-sampling scheme [3], a
sample can be drawn from another probability
distribution called the importance function, which is easy
to sample. Thus, these particles can approximate the distribu-
tion . In order to use these particles to represent the desired
distribution , a weighted approximation to the density
is given by

(12)

where

(13)

and is a Dirac delta function defined by

.
(14)

If the samples are drawn from an importance function
, then the weights in (13) are decided as

(15)

Now, we can proceed to obtain a recursive updating equation
which can keep the previous trajectories of particles when a set
of new data is available. At each iteration, samples can approx-
imate the corresponding distribution, e.g., ,
and go ahead to approximate with a new set of
samples. From the Bayesian theory, we can easily obtain

(16)

From (16), we already have samples
and can draw a particle from to aug-
ment samples to . The aim is to approximate a density func-
tion , so is expressed as follows, based on the
Bayesian theory and the Markov properties [2]

(17)
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Now, particle weights are considered. Substituting (16) and (17)
into (15), the updated weight equation is

(18)

In (18), the term is omitted, since it is a value
by calculation. Doucet [9] showed that the effect of omission is
compensated by normalizing the weights with

(19)

The SIS algorithm has been obtained, but two problems exist in
practice. One is the phenomenon of degeneracy and the other
is the choice of importance function . In general, all but
a few particles will have negligible weights after several iter-
ations, and a large computational effort is devoted to updating
trajectories whose contribution to the final estimation is almost
zero [12]. The variance of particles will increase over time [12],
[25], and thus, it is difficult to avoid the degeneracy phenom-
enon. Liu et al.[30] introduced an approximate method to mea-
sure particle degeneracy by

(20)

where is the normalized weight obtained by (19). The
smaller the , the worse the degeneracy. Generally speaking,
increasing the number of particles can reduce degeneracy, but it
is impractical. There are two ways to make degeneracy better.
One is a choice of optimal importance function and the other
is resampling. However, degeneracy still exists although two
methods are used. We can briefly describe these two methods.

The optimal importance function [6], [12], [25], [29] can be
chosen as

(21)

Substituting (21) into (18), we can get

(22)

In order to use the optimal result in (22), particles must be
drawn from density distribution and integral
in (22) can be analytically calculated. Otherwise, we cannot
apply this optimal equation in practice. However, a very close
distribution function which is satisfied with the earlier two
conditions may be chosen to improve performance of a particle
filter. A possible case is that the dynamic model is the one
having Gaussian state space with nonlinear transition equa-
tion[12]. After linearization, our tracking problem is the case
and the optimal function can be used to realize a particle filter.

The second method that can be used to reduce the effect
of degeneracy is resampling whenever the particle degeneracy
is severe, e.g., the result from (20) is lower than an assigned
threshold. The main idea of resampling is to eliminate parti-
cles with small weights and to split particles with big weights
into equivalent small weights. After this procedure, all the par-
ticles have the same weights. It is possible to implement the re-

sampling procedure in by using a classical algorithm [9],
[32], [34].

Resampling procedures can decrease the degeneracy phe-
nomenon but it introduces practical and theoretical problems
[12]. From a theoretical point of view, the simulated trajectories
are no longer statistically independent after resampling so
the previous convergence result will be lost. From a practical
point of view, it limits the opportunity to parallel computation
since all the particles must be combined, although the impor-
tance-sampling steps can still be realized in parallel.

A generic particle filter is then described by Algorithm 1 [12]
as follows.

Algorithm 1: SIS/Resampling Particle Filter

1) Importance sampling
a) For sample

and set .
b) For evaluate the importance

weights up to a normalizing constant:

(23)

c) For , normalize the importance
weights:

(24)

d) Evaluate using (20).
2) Resampling

a) If
.

b) Otherwise, for , sample an index
distributed according to the discrete distribution
with elements satisfying
for . For
and .

B. Resample–Move Algorithm

Gilks and Berzuini [16] introduced this algorithm in 2001.
The purpose of this algorithm is to avoid particle degeneracy
over time when a particle filter is used. As we know, degen-
eracy will make a particle filter suffer from progressive impov-
erishment of the representativeness of particles as the dynamic
process evolves. This method is based on SIS/resampling algo-
rithm and adds one step of resampling–move in order to reduce
particle degeneracy.

The algorithm 2 [16] is shown as follows.

Algorithm 2: Resample–Move Algorithm

1) Initialization: At , generate the initial set
of particles by sampling, independently for

,

(25)
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where “ ” denotes “is sampled from.” is the target
distribution. Then, for , we have the
rejuvenation step.

2) Rejuvenation: At each time , calculate
weights , for . Generate by
performing the following two steps, independently for

:
a) resample step—randomly select a particle from

, such that is selected with probability
proportional to , for , and denote
the selected particle by .

b) move step—move to a new position by
sampling

(26)

where denotes a Markov chain transition kernel
with stationary distribution .

This algorithm assumes that it is possible to sample indepen-
dently and directly from the target distribution . The resample
step at time can select particles at random from the current
particle set , for each . This is a weight-de-
pendent selection, namely, particles with high weights have a
high chance to be selected while particles with small weights
have a little chance to be selected. The incremental weights
used in the resample step involve and , but they use
constants and to normalize target function and
individually, namely, and which
are easy to obtain.

The move step in this algorithm at time in effect per-
forms one or more iterations of a MCMC algorithm on each of
the particles selected at the resample step. Assume that the dis-
tribution of the MCMC is invariant . The common choice
of transition kernel involved in this step is a Gibbs sampler or
a Gibbs or Metroplis–Hastings move [35]. The kernel here
needs to be neither irreducible nor reversible.

For the tracking problem we consider, Gilks et al.[16] gave
the detailed implementation of the resample–move algorithm.
At any discrete time , the target posterior distribution of in
(2) can be obtained.

Specifically, in the augmentation stage at any time , a pair
of samples can be obtained by sampling from the conditional
prior density function . Thus, each
particle will be augmented to .

In the rejuvenation stage at time , they use three types of
moves

1) Rescaling: All coordinates and velocities repre-
senting the ship’s trajectory are reduced or amplified by
the same factor. For the specification, they implemented
this move according to a Metropolis–Hastings scheme by
using a symmetric proposal distribution.

2) Local perturbation: This is the key step to implement re-
sampling–move algorithm. The particle trajectory is per-
turbed by moving a block of consecutive points of the
trajectory to a new position while the remaining part of
the trajectory is not changed. This move also follows a
Metropolis–Hastings scheme. The move is applied to the

vector first and then the vector . For any given block
currently at value , a new candidate can be

drawn from the proposal distribution.
3) –move: Update the value of . The parameter is updated

by a standard Gibbs move.
For the details of the earlier moves, see [16] and [11Ch. 6].

C. Particle Filters Associated with Neural Networks

In order to avoid particle degeneracy, many methods have
been proposed, e.g., Doucet et al.[13] used an optimal impor-
tance density function; the resampling technique [24] is applied
to particle filters; or the resample–move algorithm[16] is devel-
oped. All of these methods can reduce particle degeneracy at
different levels for some models, but they introduce some prac-
tical problems described before. All of them are not effective
in reducing sample variance which increases over time. If time
lasts long enough, tracking trajectory of the ship will deviate
from the true position significantly, which is not acceptable in
practice. Thus, we propose a new method which considers both
particle degeneracy and sample variance.

1) Neural Networks: The backpropagation neural networks
are one of the most common neural-network structures as they
are simple and effective and used in various fields from character
recognition to system controls.

The backpropagation neural networks start as a network of
nodes arranged in several layers—input, hidden, and output
layers. The input and output layers serve as input and output
of the model, and the hidden layers serve to connect the input
and output layers and to provide values to the output layer.
Before any data run through the network, the weights for all
the nodes are typically random, but some specific applications
can use initial weights given. There are two steps to use the
backpropagation neural networks: training and testing. After
training, neural networks actually build a nonlinear model to
represent relationship between input data and target data. For
our problem, we just need the training step since we want to
find model parameters with respect to our objective.

The basic idea of the backpropagation neural networks is to
use the steepest descent (gradient) procedure to minimize the
error energy at the output layer. The error energy can be denoted
as follows:

(27)

where is the number of neurons in the output
layer, is the target value, and is the output of neural net-
work. By using gradient procedure and updating weights of all
neurons to train a neural network, proper weights can be found
to make output of the network close to the desired objective
within the assigned error. The activation function in the neural
network can be chosen according to the actual problems (for de-
tails, see [37] or other related books).

2) Combination of Neural Networks and Particle Filters: For
the ship tracking, the dynamic model is given in (1). All the
density distributions are Gaussian so we can analytically obtain
some function values. Equation (5) linearizes the last equation
of (1). Thus, the dynamic model becomes the one with linear
Gaussian state space. This model actually is not Markovian as
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(5) depends on and . We can choose the optimal func-
tion , since particles can be sam-
pled from directly. Thus, the importance weight function
(23) becomes

(28)

We already derived the posterior density distribution function
for components and in (8), (9), (10),

and (11).
Even though the optimal density functions are used, impov-

erishment phenomenon still exists, and this does not guarantee
that Algorithm 1 will be efficient. If the discrepancy between
two consecutive distributions and is
high, then the variance of the incremental weights is pretty high
[10]. Consequently, it will be necessary to resample very often,
and the particle joint distribution will be unreliable. Thus, the
marginal distribution will be approximated by a few particles
after a period of time because of resampling. The effective
method to improve performance is to modify both particles and
weights. This cannot change the fact that sample variance will
be increased over time. For a long time, variance will arise to an
unbelievable level. Our method considers all earlier elements.
In general, there are two extra steps beyond the SIS/resampling
algorithm.

The first step is to split. At any time, a set of particles are
sampled from the importance distribution or

. After normalizing, the particle weights, parti-
cles with weights larger than and smaller than are
identified, where is the total number of particle. Particles
with very big weights are split into two small ones by half the
weights. Normally, the amount of this kind of particles is just a
few. After this step, the number of particles is augmented. In
order to keep a fixed number of particles and to reduce inputs
of neural network, the difference between the total particle
number before and after augment is calculated. The number of
particle equivalent to that difference with smaller weights are
ignored. This will not have too much effect on approximating
the posterior distribution, since these particles have negligible
weights.

The second step is to update particles with small weights by
a neural network. The number of input neurons is determined
by the number of particles whose weights need to be adjusted.
The weights of these particles are set as inputs of the neural net-
work. The hidden layer has two neurons: one for component
and one for component . The mean values of the weights of
particles whose weights do not need to change are computed
and are set as biases of corresponding neurons for components

and , respectively. This allows us to adjust particle weights
so that the mean value of particles will approach the true trajec-
tory of the object. The target is the measured angular position
at any time. Normally, the measurement noise is small owing to
modern measurement techniques.

This procedure can actually reduce variance of samples. Sup-
pose that there are two initial particles sampled from the same
probability density function. One set of particles are distributed
into areas with high probability density and the other set of par-
ticles are distributed partly into areas with high probability den-

sity. Even though they have the same mean value, their vari-
ances are totally different. After the earlier procedure of neural
network, the particles in the area with low probability density
can be adjusted into areas with high probability densities. This
will reduce sample variance and increase weights of some par-
ticles. This procedure can effectively avoid particle degeneracy
in particle filters while it can make simulated trajectory close to
the real one. The algorithm is summarized as follows.

Algorithm 3: SIS/Resampling Particle Filter With Neural
Networks

1) Importance sampling
a) For sample

and set , where .
b) For , evaluate the importance

weights for component up to a normalizing
constant

(29)

The same procedure is for component .
c) For , normalize the importance

weights for components and , respectively

(30)

d) At time , identify particles with high weights
larger than and low weights less than .
Replace some low weight particles with high ones
if needed.

e) At time , adjust particles for components and
with low weights by neural network. Assign and

normalize weights by (29) and (30).
f) Evaluate using (21).

2) Resampling if necessary
a) If for

.
b) Otherwise, for , sample an index

distributed according to the discrete distributions
of components and with elements,
respectively, satisfying for

.
For and

.

We know that the sampling and resampling procedure can
be implemented with by using a classical algorithm [9],
[32], [34]. Nikova and Stoeva [31] mentioned that the time com-
plexity of backpropagation learning is about , where is
the number of inputs. Therefore, the neural network used in
our algorithm can be realized by , since the number of
particles is bigger than the number of inputs of the neural
network. Thus, our algorithm has approximately the time com-
plexity of .
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Fig. 2. Comparison of performance among three algorithms for particle
number � � ���� ���.

IV. SIMULATION RESULTS

A series of 200 observations are given by equations in (1) and
the initial conditions are given as follows:

(31)

Under the same conditions, simulations are done by using three
algorithms, namely, SIS/resampling algorithm, resample–move
algorithm, and our algorithm. For the purpose of comparison,
we plot the simulation results of three algorithm into one figure.
Figs. 2 and 3 show tracking results for particle number

, respectively.
In these figures, the solid line represents the true running tra-

jectory of the ship. The dashed line shows the simulated trajec-
tory by using our method. The dashed dotted line comes from
the SIS/resampling algorithm, and the dotted line is obtained by
using resample–move algorithm. It is obvious that the results of

Fig. 3. Comparison of performance of three algorithms for particle number
� � ��������.

TABLE I
AVERAGE RESAMPLING NUMBER OF THE THREE ALGORITHMS FOR 100

SIMULATIONS, 200 TIME INSTANCES

our method are very close to the true trajectory from the figures.
Even when the particle number is 200, our results are still good
enough. The standard particle filter of SIS/resampling can cap-
ture the direction of ship running, but it cannot track the position
of ship precisely. For the resampling–move algorithm, the ten-
dency of ship running is close to the true one, but coordinates
are much less than the true ones.

We count the resampling number of the three methods. The
threshold is set to , which is the same as [12].
Table I shows results of all three methods.

The standard algorithm of SIS/resampling and resam-
pling–move algorithm need to be resampled very often, while
our method has a better performance without resampling so
often.
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V. DISCUSSION AND CONCLUSION

A particle filter associated with neural networks is addressed
in this paper. The other two algorithms, namely, SIS/resampling
and resample–move algorithms, are briefly introduced.

This algorithm can efficiently reduce resampling amount and
has superior performance. The reason is that particles with low
weights are adjusted to the high weight area by using neural
networks. The other two algorithms suffer from the resampling
problem under the same initial conditions. Very similar perfor-
mances can be found in [10].

The SIS/resample algorithm and the resample–move algo-
rithm do not consider performance in terms of variance so their
simulated paths of the ship deviate the actual one significantly.
This is due to the fact of increasing variance over time. The
SIS/resample instability is obvious for small number of particles
used. If particle number increases, e.g., 5000 or 10 000, the per-
formance would be better than small particle number. However,
it will increase computation time very much, so it is impractical
to increase particle number unlimitedly. The simulated path of
resample–move algorithm may not catch up with the real one.
It is obvious when time lasts long. If the variance is much
smaller than the present one, this method may have a good per-
formance since it can capture the direction of ship running.

Our method can capture both the direction of the ship run-
ning and its positions. It is much helpful in practice to use this
method. At any time , this method needs to update particles,
and further, it will increase computation time a little. However,
this can be compensated by using a small number of particles.
In the simulation, observation results have small noise, which is
true in reality.
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