
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2971586, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Modulated Autocorrelation Convolution
Networks for Automatic Modulation
Classification based on Small Sample
Set
DUONA ZHANG1, WENRUI DING2, CHUNHUI LIU2, HONGYU WANG1, AND BAOCHANG
ZHANG3.
1School of Electronics and Information Engineering, Beihang University, Beijing, China (e-mail: zhangduona@buaa.edu.cn, buaawanghongyu@buaa.edu.cn)
2Unmanned Systems Research Institute, Beihang University, Beijing, China (e-mail: ding@buaa.edu.cn, liuchunhui2134@buaa.edu.cn)
3School of Automation Science and Electrical Engineering, Beihang University, Beijing, China and Shenzhen Academy of Aerospace Technology, Shenzhen
100083, China (e-mail: bczhang@buaa.edu.cn)

Corresponding author: Chunhui Liu (e-mail: liuchunhui2134@buaa.edu.cn) and Baochang Zhang (e-mail: bczhang@buaa.edu.cn).

This work was supported by the National Defense Basic Scientific Research Project (Grant no. JCKY2017601C006), the Beijing Natural
Science Foundation (Grant no. 4204102), National Natural Science Foundation of China (Grant no. 61672079) and Shenzhen Science and
Technology Program (Grant no. KQTD2016112515134654).

ABSTRACT For modulation classification, hand-crafted approaches can generalize well from a few
samples, yet deep learning algorithms require millions of samples to achieve the superior performance
with purely data-driven manner. However for many practical problems only with small sample set (SSS)
available, there still remains a challenge for deep learning. In this paper, we employ deep learning to
solve the modulation classification task in a more practical setting, particularly suffering from the SSS
problem and with low signal-to-noise ratios (SNRs). Novel modulated autocorrelation convolution networks
(MACNs) are introduced to capture periodic representation for automatic modulation classification (AMC).
In MACNs, modulated communication signals are classified with the periodic local features under an auto-
correlation convolution criterion. Modulation filters are utilized to enhance the capacity of the convolution
filters and compress the model. On a challenging SSS learning task in low SNRs, MACNs achieve state-
of-the-art performance that outperforms the existing algorithms for AMC, while compressing the size of
required storage space of convolutional filters by a factor of 8 compared with convolution neural networks
(CNNs).

INDEX TERMS Autocorrelation convolution, modulation filters, small sample set, automatic modulation
classification, deep learning.

I. INTRODUCTION

SOFTWARE Defined Radio (SDR) has attracted a great
deal attention given its ability to provide effective so-

lutions to multipurpose communication devices. Automatic
modulation classification (AMC) of SDR has itself led to
a growth in interest of classification tasks in the field of
the communication [1]. Despite remarkable results in ar-
tificial intelligence and machine learning for AMC, two
aspects of practical reasons have limited the application of
deep learning [2] algorithms on it. First, for classical signal
processing algorithms, modulation features are extracted by
hand-craft methods to achieve noise reduction, whereas deep

learning algorithms learn robust representations in a purely
data-driven pattern. Although the effect of deep learning
algorithms is superior to hand-craft features, they suffer from
poor performance in the application with low signal-to-noise
ratios (SNRs). Second, deep learning algorithms have drawn
much attention on their capability to extract high-quality
feature representations directly from the raw data, thereby
achieving favorable performance on object, speech and net-
working recognition benchmarks [3]–[10]. However, they
generally require millions of samples to learn the models of
a satisfactory performance which makes them impractical for
small sample size (SSS) problem. Particularly, radio signals
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are intangible waves with complicated interference which are
difficult to collect in a real-world environment.

In the initial stage of development, AMC is accomplished
by likelihood-based methods with the prior knowledge of
signals. The likelihood function is calculated for all candidate
modulations to make decision by maximum likelihood ratio
test while minimizing the probability of misclassification.
Likelihood-based methods are optimal in terms of classifi-
cation performance, however they suffer from computational
complexity problem. Afterwards, AMC technologies depend
heavily on hand-crafted filters for signal processing to extract
modulation features. Statistical modulation features such as
higher order statistics [11] and cycle-stationary moments
[12] are the most widely used features to achieve robust
classification for signals with periodic components. Then
machine learning or decision theory can be utilized to trans-
late the features into a modulation label. Popular approaches
include support vector machines (SVMs) [13], decision trees
(DTrees) [14], neural networks (NNs) [15] and ensemble
approaches which compromise classifiers to improve per-
formance. Recently, convolution neural networks (CNNs)
[16] and long short term memory networks (LSTMs) [17]
which rely on back-propagation to optimize large parametric
neural network models have become mainstream with the
advancement of deep learning.

Despite deep learning algorithms have achieved a superior
performance for AMC, they generally require millions of
samples in a purely data-driven pattern. The challenges are
still significant for deep learning in many real life cases. To
cope with SSS and low SNR in AMC, we settle the problems
by model compression and essential feature extraction of
communication [18]–[20]. Modulation and autocorrelation
are rolled into CNNs to construct a novel framework, termed
modulated autocorrelation convolution networks (MACNs),
which capture periodic representation of communication sig-
nals with refining model parameters. On one hand, autocorre-
lation convolution increases the representational capabilities
of the periodic signals and suppresses thermal noise. On the
other hand, the compression based on modulation filters can
allow us to improve the filter efficiency during the convo-
lution procedure, enabling to complete the training process
with a few samples.

The MACNs introduced in this paper are capable of learn-
ing a large class of modulation modes with a few samples
in low SNRs as shown in Fig. 1. Modulation modes are
represented as simple yet essential features—that is, MACNs
expressed as modulation modes in a periodic local regularity.
Meanwhile, we incorporate modulation filters into convolu-
tion so as to significantly reduce the number of parameters.
Both the modulation filter and autocorrelation convolution
can be jointly optimized and obtained in an end-to-end
learning framework, leading to a compact and exclusive deep
learning architecture. Thanks to the essential representation
with low model complexity, such an architecture is less prone
to be overfitting and suitable for periodic communication
signals. On a challenging SSS learning task in low SNRs,

MACNs reduce the required storage space of CNNs by a
factor of 8, while achieving the best performance so far, as
compared to the existing algorithms for AMC. In summary,
the contributions of this paper are as follows:

(1) MACNs can take advantages of both model-based and
data-driven methods to improve the representational capa-
bilities of modulation. A new framework is proposed for
AMC to capture periodic characteristics via autocorrelation
convolution that is insensitive to thermal noise. The experi-
mental results indicate that MACNs achieve state-of-the-art
performance.

(2) The modulation filters are employed to compress the
model to avoid over-fitting and improve the filter efficiency
during the convolution procedure, leading to a new architec-
ture to calculate CNNs. As a result, the modulated networks
compress the convolutional filters by a factor of 8, compared
with the standard CNNs, while the performance is compara-
ble to the original networks.

The rest of this paper is organized as follows. Section
II describes the details of the modulated autocorrelation
convolution networks. The experimental results are presented
in Section III. Finally, we give the conclusion in Section VI.

II. MODULATED AUTOCORRELATION CONVOLUTION
NETWORKS

We design the architectures in MACNs based on the autocor-
relation convolution and modulation filters. Autocorrelation
convolution is particularly designed to increase the represen-
tational capabilities of the periodic signals in the end-to-end
framework. The convolutional feature maps are processed by
correlation at multiple intervals which leads to the random
noise suppression even with low SNRs. To alleviate the
disturbance caused by overfitting, the model compression
based on the modulation filters is deployed to improve the
convolution efficiency. With two measures mentioned above,
MACNs achieve advanced performance with a few samples
in low SNRs.

A. AUTOCORRELATION CONVOLUTION IN MACNS

In order to enhance CNNs to learn periodic representa-
tion, we introduce novel autocorrelation convolution layers
in MACNs. Two aspects are considered: the convolutional
feature maps are intensified based on periodic learning; the
random thermal noise is suppressed by correlation which
is distinct from periodic signal. Autocorrelation is a math-
ematical representation of the degree of similarity (Pearson
Correlation Coefficient) between a given time series and a
lagged version of itself over successive time intervals. It is
the same as calculating the correlation between two different
time series, except autocorrelation uses the same time series
twice: once in its original form and once lagged one or more
time periods. For a time series Y = {y (1) , · · · , y (t)}, the
autocorrelation coefficient is given by (τ < t):
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FIGURE 1. Pipeline of the modulated autocorrelation convolution networks (MACNs). MACNs are implemented by the autocorrelation convolution and the
modulation filters. As a result, MACNs achieve state-of-the-art performance that outperforms the existing algorithms for automatic modulation classification (AMC) in
low signal-to-noise ratios (SNRs), while compressing the convolutional filters by a factor of 8 compared with convolution neural networks (CNNs).

φ (τ) =
1

(t− τ)σ2

t−τ∑
τ=1

(y (t)− µ) · (y (t+ τ)− µ) (1)

where µ and σ2 are the mean and variance of the time
series. To simplify the deep structure, the autocorrelation in
this paper can be estimated as:

φ (τ) =
1

N

N−1∑
n=0

c (n) · c (n+ τ) (2)

where c (n) is the convolutional feature map of commu-
nication signal, τ is lag number (τ = 1, 2, · · · , N − 1)
and n is time step of discrete feature map. The property of
φ (τ) is that φ (τ) shows a peak value when c (n) is similar
with c (n+ τ). If c (n) has a period of T , then φ (τ) has
peaks at gT where g is an integer. Essentially, autocorrelation
coefficient is symmetric in τ , that is, φ (τ) = φ (−τ).
Accordingly, only half the result of φ (τ) is needed (τ ≥ 0)
whose dimension is same as the convolutional feature map.

As mentioned above, c (n) is the convolutional feature map
of communication signal s (n) that is given by:

c (n) = C (s (n)) = C (x (n) + w (n)) (3)

where C is convolution procedure. x (n) is a clean communi-
cation signal and w (n) is the background noise. In this case,
we have an autocorrelation coefficient given by:

φ (τ) = C (s(n) · s(n+ τ))
= C (φxx (τ) + 2φxw (τ) + φww (τ))

(4)

where φxx (τ) is the autocorrelation coefficient of x (n),
φxw (τ) is the cross-correlation function of x (n) and w (n),

FIGURE 2. Model compression based on the modulation filters.

φww (τ) is the autocorrelation coefficient of w (n). For com-
munication signals, x (n) does not correlate with w (n),
then φxw (τ) = 0. Furthermore, w (n) is uncorrelated, then
φww (τ) = 0. In such a case, the relation:

φ (τ) = C (φxx (τ)) (5)

is valid. Based on these properties, the autocorrelation coef-
ficient provides robust performance against noise with peri-
odicity in low SNRs. Moreover, autocorrelation convolution
has the ability of learning local characteristics which inherits
from the unique network structure of CNNs.

B. MODEL COMPRESSION OF MACNS WITH
MODULATION FILTERS
Owing to the one-dimensional waveform, the 2D filters
across all convolution layers with the size of K × W are
deployed, which have K planes and each of the planes is a
1 × W -sized 1D filter. For multiple convolution filters, the
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FIGURE 3. Generation of modulation filters.

size of convolution filter in MACNs isK×W×N . Note that
the dimensions of K and W are exchanged in practice, by
doing so, we can easily implement MACNs in the Tensorflow
platform. To reduce the number of parameters, we introduce
a modulated process based on the modulation filters (Fig.
2). The modulation filter is a constant matrix serving as the
weight of the original convolution filters, which is also with
the size of K ×W ×N . The operation � is defined as:

C = Ĉ �M =
K∑
j

Ĉ ·Mj (6)

where C is the convolution filter in MACNs, Ĉ is the original
filter, M is the modulation filter, Mj is the jth plane of
the modulation filter, · is the element-wise multiplication
operator, also named Schur product operation. Note that the
size of Ĉ is K × W . In this paper, W is defined as 5, K
and N are both defined as 8 and each layer shares only
one modulation filter, leading to significant reduction of the
network model. In addition, the operation � results in a new
matrix which is elaborated as:

Qij = Ĉ ·Mj (7)

Qi = {Qi1, · · · , QiN} (8)

As mentioned above, the high-performance modulation
filter is the critical success factor. In essence for modulation,
the operation of convolution and correlation is similar, the
convolution operation is defined as:

ϕ (τ) =
1

N

N−1∑
n=0

x (n) · y (τ − n) (9)

Compared to Eq. 2, the convolution operation is almost
identical to the cross-correlation operation which has sim-
ilar attributes, but the filter is reversed in convolution. To
achieve the correlation between convolution filter and signal

waveform, the modulation filter is pre-defined based on sine
function for the original filter. Meanwhile, multiple initial
phases and sampling frequencies are utilized to generate the
modulation filter. The modulation filter is calculated as (Fig.
3):

m (t) =
2π∑
t=0

sin (2πft+ θ) · δ
(
t− n2π

fs

)
(10)

where fs is sampling rate, θ is initial phase and δ is sampling
pulse. In this paper, θ = 0, 2/5π, 4/5π, 6/5π, 8/5π and fs =
4f, 8f, 16f, 32f .

The advantage of modulation filter is that the number of
input and output channels in each feature map are the same,
making the filter to be replicated and implemented easily.

C. DATASET GENERATION APPROACH
The datasets are generated for MACNs investigation by
building upon the open-source software development toolkit
GNU Radio [21] and the universal software radio peripheral
(USRP) [22] B210 SDR.12 different digital modulators are
used that cover a range of single carrier modulation schemes.
Several propagation scenarios are considered in the context
of this work. Accordingly, the communication signal s (n) in
Eq. 3 can be expressed as:

s (n) = (Ac + jAs) e
j[2π(fc+∆fc)t+θ]·δ (t− ε− nT ) (11)

where Ac and As are the amplitudes on in-phase and quadra-
ture branch of the signal respectively, fc and ∆fc are the
carrier frequency and its offset, θ is the initial phase, δ is
the digital sampling pulse and ε is the timing offset. The
background noise is additive white Gaussian noise (AWGN)
in this paper and the signal-to-noise ratio (SNR) is -20∼10
dB.

We use the wireless channel on the 845 MHz unmanned
aerial vehicle (UAV) band, the symbol rate on 200 KHz and
off-tune the signal by around 1 MHz to avoid direct current
(DC) impairment. The sampling rate in this work is 10 MHz.
When modeling a wireless channel, many compact stochastic
models for propagation effects can be used [23]. Primary
impairments in wireless channel include:

(1) Carrier frequency offset: carrier frequency offset dues
to local oscillators and motion.

(2) Delay Spread: delay spread dues to delayed reflection,
diffraction and diffusion of emissions on multiple paths
(Rayleigh fading in this paper).

(3) Thermal Noise: additive white-noise impairment at the
receiver dues to physical device (AWGN in this paper).

For each sample in the data sets, we independently draw a
value for each of the variables shown in Table 1. This results
in a random channel initialization for each sample.

The specific modulations considered within the dataset
types are as follows:

OOK, 4ASK, 8ASK, 2FSK, 4FSK, 8FSK, BPSK, QPSK,
8PSK, 16QAM, 64QAM, 128QAM.
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This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2971586, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. Network architectures of CNNs and MACNs.

TABLE 1. Random Variable Initialization

Random Variable Distribution
∆fc N (0, σclk)
θ U (0, 2π)
ε N (0, σclk)
Multi-path Fading

∑
i δ (t−Rayleighi (τ))

The dataset in this work is publicly available in
https://github.com/bczhangbczhang.

D. IMPLEMENTATION DETAILS
In the experiments, we use MACNs with six modulated
convolutional layers on the dataset. MACNs are effective
for the periodic signal and the modulation process can be
applied to any CNNs. The size of each modulation filter
and convolutional filter is 5× 8× 8. We adopt Max-pooling
and rectified linear unit (ReLU) after the convolution layers,
and a dropout layer after the fully connected layer is used.
The Adam optimizer [24] is used and the initial value of
learning rate is set to 0.001 which attenuates 0.05 every 200
cycles. Fig. 4 shows the details of the network architectures
of MACNs in this paper.

III. EXPERIMENTS
In this section, the results of the experiments are included
to compare MACNs with classical approaches. The experi-
ments are implemented with few training samples (1, 5, 10,
20 in this paper) for each modulation mode (described in
section 2.C). Meanwhile, the impairments of the wireless
channel are taken into consideration in the experiments.

A. PARAMETERS EVALUATION
The number of convolution filters and layers in CNNs are
related to the performance of modulation mode classification.
In order to achieve the optimal parameters, the effects of filter
number and convolution layer are evaluated on the dataset
for CNNs without autocorrelation. With different values of
parameters, the performance of the CNNs is shown in Fig. 5
and Fig. 6.

B. SSS LEARNING RESULTS
MACNs are evaluated in various SSS learning tasks. The
experimental results are summarized by Fig. 7 ∼ Fig. 10,
and the modulation modes of all behavioral experiments are
described in section 2.C. In this paper, we choose 20, 10,

FIGURE 5. Classification accuracy of CNNs with convolution filters 4, 8 and
16.

FIGURE 6. Classification accuracy of CNNs with convolution layers 4, 8 and
16.

5 and 1 training samples per modulation learning tasks to
evaluate MACNs for the SSS problem with SNR from -20
dB to 10 dB. MACNs achieve average classification accuracy
of 53.85%, 45.57%, 40.62%, and 32.16% with 20, 10, 5, and
1 training samples per modulation respectively, and obtain
59.19% on large dataset with 4096 training samples per
modulation.

Table 2 shows the parameters and delay results of MACNs
and CNNs with convolution filter size of 5. With the little
difference in time delay, the parameters of the MACNs are
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FIGURE 7. 20 training samples per modulation learning results of MACNs.

FIGURE 8. 10 training samples per modulation learning results of MACNs.

FIGURE 9. 5 training samples per modulation learning results of MACNs.

much fewer, but the performance is better.
Owing to large amounts of parameters, conventional

CNNs suffer from overfitting caused by the SSS problem,
which affects the generalization performance of our model
on the new data. To address this issue, few efficient methods

FIGURE 10. 1 training sample per modulation learning results of MACNs.

FIGURE 11. Comparison between MACNs and the relation network with 20
training samples for each modulation mode.

are introduced for the SSS problem. Fig. 11 shows the
comparison between MACNs and the relation network [25]
with 20 training samples for each modulation mode.

C. COMPARISON RESULTS ON VARIOUS
CLASSIFICATION ALGORITHMS
After a long period of development, there are many mature
techniques for AMC as described in section 1. Owing to the
inapplicability of the popular deep learning algorithms for
SSS learning, MACNs are compared with conventional al-
gorithms in the case of sufficient samples (4096 samples per
modulation mode). Fig. 12∼Fig. 14 show the performance
with channel impairments of MACNs in comparison with
high-order moments (C40), wavelets (db10) [26], CNNs and
long short-term memory networks (LSTMs) based on the
same dataset with SNRs -20∼10 dB. Apparently, MACNs
outperform the previous algorithms that rely on prior knowl-
edge of communication or purely data-driven patterns. The
basic nature of hand-craft features is open-loop operation
which is limited by degradation in performance caused by
interference. By contrast, deep learning solves this problem

6 VOLUME 4, 2016
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TABLE 2. Parameters and Delay of MACNs and CNNs with Convolution Filter Size of 5

Convolution filters Parameters (M) Training time (s) Testing time (s)

CNNs (Conv layers 3) 8 1.540 0.032 0.011
16 3.084 0.041 0.014

CNNs (Conv layers 6) 8 1.986 0.048 0.016
16 4.072 0.067 0.019

MACNs (Conv layers 3) 8 0.202 0.054 0.012
16 0.390 0.071 0.015

MACNs (Conv layers 6) 8 0.291 0.093 0.029
16 0.576 0.166 0.033

FIGURE 12. Comparison results on various classification algorithms.

FIGURE 13. Confusion matrix of MACNs with SNR 10dB.

with back propagation. Although the conventional neural
networks achieve high performance on object and speech
recognition benchmarks, they ignore the periodic feature in
communication. In this paper, a periodic learned framework
with back propagation is more applicable to modulation
classification.

Table 3 shows the classification result of MACNs for each
modulation mode with SNR 5dB and -5dB. The experimental
results indicate that the higher-order phase modulations are
confused in low SNRs.

FIGURE 14. Confusion matrix of MACNs with SNR -10dB.

FIGURE 15. The 128QAM signal feature map of MACNs with SNR 0 dB.

Fig. 15 and Fig. 16 show the autocorrelation convolution
feature map of MACNs with the same 128QAM signal at
SNR 0 dB and 10dB. The approximate results confirm that
MACNs can suppress thermal noise.

D. CHANNEL IMPAIRMENTS
In real world scenario, wireless channels are impaired by a
number of factors. While AWGN is widely used for wireless
signals in simulation, the factors described in section 2.C
are present almost universally. It is necessary to consider the
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TABLE 3. Classification Result of MACNs for Each Modulation Mode with SNR 5dB and -5dB

OOK 4ASK 8ASK 2FSK 4FSK 8FSK BPSK QPSK 8PSK 16QAM 64QAM 128QAM
5dB (%) 95.1 95.6 95.6 93.1 91.0 89.6 92.1 89.6 89.9 90.0 85.3 84.6
-5dB (%) 75.3 72.2 72.0 69.8 63.3 59.9 65.3 60.0 54.1 52.6 51.2 50.9

FIGURE 16. The 128QAM signal feature map of MACNs with SNR 10 dB.

FIGURE 17. Frequency offset results of MACNs with SNR -20∼10 dB.

effects of such impairments to the performance of MACNs.
In Fig. 17 and Fig. 18, we show the performance of MACNs
under the considered impairment model. This includes back-
ground noise (AWGN), frequency offset (σclk) and multi-
path fading (Rayleighi (τ)).

IV. CONCLUSION
We have developed a novel deep learning model, termed
MACNs, which capture periodic representation for SSS in
AMC. MACNs are implemented by the autocorrelation con-
volution and the proposed filter modulation operation. In
MACNs, the signals are represented as periodic local features
which best classify modulation modes under an autocorrela-
tion convolution criterion. Modulation filters are used to en-
hance the capacity of the convolutional filters and compress
the model. As a result, MACNs achieve advanced perfor-

FIGURE 18. Multi-path fading results of MACNs with SNR -20∼10 dB.

mance that outperforms state-of-the-art AMC algorithms in
low SNRs and compress the convolutional filters by a factor
of 8 compared with CNNs.

As a general learning framework, MACNs can be utilized
for efficient feature extraction to obtain periodic character-
istics, which represent the essential attribute of time-series
signal in the real world. We will explore the possibility to
deal with the signals in the UCR time series archive [27] by
MACNs and further enhance the model performance in the
future.
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APPENDIX
1) Back-propagation Updating
In MACNs, the original filters Ĉ are learned and updated. We
define the gradient of the original filters Ĉ as γĈ :

γĈ =
∂L

∂Ĉ
=
∂L

∂Q
· ∂Q
∂Ĉ

=
∑
j

∂L

∂Qij
·Mj (12)

Ĉ ← Ĉ − ηγĈ (13)

where L is the loss function, η is the learning rate. The
above derivations show that MACNs are learnable with the
back-propagation algorithm.
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