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A B S T R A C T

This paper presents a novel identification method for the intact inertial parameters of an unknown object in
space captured by a manipulator in a space robotic system. With strong dynamic and kinematic coupling
existing in the robotic system, the inertial parameter identification of the unknown object is essential for the
ideal control strategy based on changes in the attitude and trajectory of the space robot via capturing operations.
Conventional studies merely refer to the principle and theory of identification, and an error analysis process of
identification is deficient for a practical scenario. To solve this issue, an analysis of the effect of errors on
identification is illustrated first, and the accumulation of measurement or estimation errors causing poor
identification precision is demonstrated. Meanwhile, a modified identification equation incorporating the
contact force, as well as the force/torque of the end-effector, is proposed to weaken the accumulation of errors
and improve the identification accuracy. Furthermore, considering a severe disturbance condition caused by
various measured noises, the hybrid immune algorithm, Recursive Least Squares and Affine Projection Sign
Algorithm (RLS-APSA), is employed to decode the modified identification equation to ensure a stable
identification property. Finally, to verify the validity of the proposed identification method, the co-simulation
of ADAMS-MATLAB is implemented by multi-degree of freedom models of a space robotic system, and the
numerical results show a precise and stable identification performance, which is able to guarantee the execution
of aerospace operations and prevent failed control strategies.

1. Introduction

On-orbit operation is an extremely important and highly competi-
tive field in space technology, with frequent aerospace operations being
planned for the near future. Unmanned space operation, eliminating
danger to astronauts and greatly reducing operating costs, plays an
indispensable role in space activities including the capture, docking,
repair, and maintenance of space structures on-orbit [1]. Capturing a
space unknown object by a manipulator (or space robotic arm)
mounted on a free-floating spacecraft causes changes in the attitude
and trajectory of the spacecraft, for the reason that there exists strong
dynamic and kinematic coupling between the manipulator and the
free-floating spacecraft [2]. This poses a severe challenge to the
spacecraft control system's ability to satisfy the accuracy requirement
for the orbit and attitude of the spacecraft, considering the uncertain
properties of the captured object. To enable a precise control strategy
and ensure the normal operating condition of the spacecraft, the
inertial parameters (mass, centroid, inertial tensor) of the unknown

object should be acquired for the sake of developing a control strategy
and executing aerospace operations [3].

For identifying the inertial parameters of a space unknown object,
the kinematic properties of the unknown object relative to the inertial-
coordinate frame should be obtainedpreferentially. Considering the
strong coupling and nonlinear characteristics of spatial parameter
identification, schemes of identifying the inertial parameters of a
subaerial object [4,5] become invalid. In [6], Yoshisada Murotsu
proposed two parameter-identification schemes for a space unknown
object based on the momentum conservation equation (MC) and
equations of motion (EM) in the post-capture phase [1], which were
put forward by considering the reason that the system composed of the
spacecraft, manipulator and unknown object (space robotic system [1])
is not subject to external force, so it satisfies the conservation of linear
or angular momentum and the conservation of internal force or
moment. By acquiring the kinematic information of the system using
sensors mounted in the system, the kinematics of the captured
unknown object can be estimated and resolved. Kazuya Yoshida [7]
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proposed a scheme of identifying the inertial parameters of a free-flying
spacecraft using the MC method by considering the gravity gradient
effect. Roberto Lampariello [8] identified the inertial parameters of a
free-flying spacecraft and also an unknown object by an accelerometer
mounted on the spacecraft, based on the EM method. Ou Ma [9]
identified the properties of a spacecraft by changing the inertia
distribution of the spacecraft system using the MC method. Thai
Chau [10] proposed “adaptive reactionless motion” identification on
the basis of the MC method. In the process of the capture and
parameter identification, the motions of the manipulator make a
minimum disturbance to the spacecraft using an adaptive reactionless
control (ARLC) algorithm. Panfeng Huang [11] proposed a takeover
control strategy for the unknown object during the post-capture phase
by using a space robot, and the unknown property of captured object is
coped with the reconfigurable control system. And methods based on
vision with spacecraft-mounted cameras capturing the kinematic
information of the unknown object [12,13] are also used to identify
the centroid and ratios of inertia in the pre-capture phase. A tethered
robotic system identifying the inertial parameters of unknown objects
in the post-capture phase using the EM method is presented in [14],
and the strategy of coordinated control by the orbit and attitude
simultaneously for the tethered robotic system is considered in [15].
The principles mentioned above to identify the inertial parameters of a
space unknown object can be divided into two categories: one based on
solving for the kinematic property (linear or angular velocity) of an
object by the conservation of momentum equation (MC) and the other
focusing on analysing the dynamic property (accelerator or force) of an
object by the equations of Newton-Euler or Lagrange (EM). Both
methods have an identical nature in constructing a linear identification
equation by which to estimate the intact inertial parameters and only
requiring velocity measurements for the inertial parameter identifica-
tion in the post-capture phase. Compared with the EM method
including acceleration measurement, the MC method has superior
measured data without being more susceptible to signal noise.

Generally, the unknown inertial parameters are treated as solutions
of the linear identification equation [6], and the coefficients of the
identification equation determine the validity of the solutions. Based on
the components of the coefficient matrix or vector from the identifica-
tion equation, the solutions, i.e., the inertial parameters of the
unknown object, can be dominated by two factors: the kinematic
property of the unknown object and the inertial property of the
spacecraft and manipulator. Mainly allocated by the linear and angular
velocity, the kinematic property of the unknown object can be obtained
by conventional schemes including the MC and EM methods men-
tioned above, and the inertial property containing the mass, centroid
and inertial tensor of the spacecraft and manipulator is regarded as
prior knowledge. To the best knowledge of the authors, most existing
reports [6–16] assume the ideal acquirement of the kinematic and
inertial properties without measured or estimated errors, which does
not represent the practical condition of parameter identification. In
fact, with inevitable disturbances from the complicated outer space
environment and uncertainties in the measurements of the sensors, the
errors caused by the kinematic measurement are directly introduced to
the identification equation and induce poor precision in the inertial
parameters to be identified. In addition, the inertial parameters of a
spacecraft are not always constant with frequent aerospace operations,
e.g., fuelconsumption, and a measurement or estimation process for
spacecraft is needed in the aerospace condition [7–9], which can also
be accompanied by estimation error. Therefore, two errors need to be
considered in the identification equation of an unknown object,
including errors from the measured kinematic information of the
unknown object and errors from the estimated inertial parameters of
the spacecraft and manipulator. In [8], an error estimation for
identifying the inertial parameters of a spacecraft is illustrated by the
error-bound estimation method. However, there has been no specia-
lized study on the influence of measurement or estimation errors on the

identification precision of a captured unknown object. An analysis of
the effect of errors to the identification process is essential, and a
scheme is required for practical implementation.

Based on the further study in this paper, in the accumulative
calculation process from the spacecraft to the end of the manipulator
(end-effector), even a faint disturbance to the nominal kinematic values
of a spacecraft can have an immense influence on the ultimate
identification results of the unknown object. In the construction of
the coefficient matrix or the vector of the identification equation by the
measured information, the accumulated kinematic measurement er-
rors and inertial estimation errors mainly account for the poor
performance of parameter identification. Therefore, to weaken the
accumulation of the kinematic measurement errors of the unknown
object and the inertial estimation errors of the spacecraft, a straight-
away mode of measurement without too much accumulation is
accommodated to improve the identification accuracy. In this paper,
based on the momentum theorem, information on a contact force
acting on the surface of a space unknown object attached to the force/
torque information of the end-effector is employed to modify the
conventional identification equation, for the reason that the contact
force information directly reflects the state of stress of the captured
unknown object, without theoreticaldeduction by the accumulated
kinematic information from the spacecraft and manipulator. The
force/torque information of the end-effector has the “closest” access
to the rotational motion information of the unknown object, enabling
the identification of the inertial tensor of the unknown object without
too much accumulated calculation. According to the momentum
theorem, the increment of the linear/angular momentum of an
unknown object from the MC method can be replaced by the linear/
angular impulse, i.e., the integration by the resultant force or torque of
the unknown object, which can be obtained by the measured informa-
tion of the contact force as well as the force/torque of the end-effector.
The use of the integration of the force or torque to replace the linear/
angular momentum from the MC method effectively weakens the
components of the calculated momentum of the unknown object in
the conventional identification equation, avoiding excessive measured
and estimated information from the spacecraft and thereby reducing
error sources in the identification process. It is valuable to mention that
the detection and application of the contact force has the feature of
flexibility [17], and the detecting system incorporating the measured
contact force accompanied by the force/torque of the end-effector has
been adopted by many end-effectors in practice [18,19] and has been
proven to be a practical and feasible measuring mode for use in
aerospace operation.

In this paper, a novel identification scheme based on the contact
force information of the unknown object along with the force/torque
information of the end-effector is proposed, in which the calculated
momentum information from the MC method is replaced by the
integration of the contact force together with the force/torque of the
end-effector to improve the identification precision by weakening the
accumulated kinematic measurement errors of the unknown object as
well as the inertial estimation errors of the spacecraft and manipulator.
The innovation of the work includes the following three points: the first
is a systematic analysis of the effect of the kinematic measurement
errors on the identification precision of the space unknown object from
the conventional method; the second is a modification of the identifica-
tion equation by incorporating the contact force and force/torque
information of the end-effector to improve the precision; and the third
is the use of the hybrid immune algorithm of RLS-APSA to decode the
modified identification equation and ensure a stable identification
property.

Section 2 first describes the basic theory of identification, including
the kinematics of the robotic system with an n-degree-of-freedom (n-
DOF) manipulator and the conventional identification equation.
Followed by a description of the process of error estimation, a
systematic analysis of the effect of kinematic measurement errors on
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the identification precision of the conventional method is illustrated.
Then, a modified identification equation incorporating the contact
force and force/torque of the end-effector is presented in Section 3 to
improve the precision. The hybrid immune algorithm of RLS-APSA is
proposed to decode the modified identification equation and ensure the
stability of identification, considering a severe disturbance condition
with various measured noises. In Section 4, to verify the validity of the
proposed identification scheme, the dynamic model of the space
robotic system (with the 3-DOF and 7-DOF manipulator) is established
by ADAMS, and the identification process is implemented by a
constructed ADAMS-MATLAB co-simulation platform. The numerical
simulation results prove the improved stability and accuracy achieved
with the proposed scheme. Section 5 presents the conclusions and
suggests future research work.

2. Analysis of the kinematic measurement errors

2.1. Basic theory of identification

A rigid robotic system composed of a spacecraft, manipulator (n-
degree-of-freedom) and space unknown object in the post-capture
phase is derived in this section, as shown in Fig. 1. The condition of
conservation of momentum can be fulfilled with a space robotic system
[6,10], considering a spacecraft in a free-floating state and neglecting
the effect of microgravity in a short time. From Fig. 1, ΣI , ΣB, Σi, ΣUare
the inertial coordinate frame and the body coordinate frames of the
spacecraft, link i and unknown object, respectively; pB(p0), pi, pU(pn+1)
are the positions vector of the reference point of the body frame
onthespacecraft, joint i and unknown object, respectively, expressed in
ΣI ; rB(r0), ri, rUare the position vectors of the centroids ofthe spacecraft,
link i and unknown object, respectively, expressed in ΣI ; ωB(ω0), ωi, ωU
are the angular velocity vectors of the spacecraft, link i and unknown
object, respectively, expressed in ΣI ; and θi is the angle vector formed
by the output of the encoder installed in joint i, expressed in ΣI . There
exists a geometric relationship of aB(a0), bB(b0), ai, bi, aU from Eqs. (1)–
(3)[6,16].

a r p i n= − ( = 0, 1, … )i i i (1)

b p r i n= − ( = 0, 1, … )i ii+1 (2)

a r p= −U U U (3)

ω ω θ i n= + ̇ ( = 1, 2,…, )i i i−1 (4)

r p ω a i ṅ = ̇ + × ( = 0, 1,…, )i i i i (5)

p r ω b i ṅ = ̇ + × ( = 1, 2,…, )i i i i−1 −1 −1 (6)

ω ω=U n (7)

p r ω ḃ = ̇ + ×U n n n (8)

r p ω ȧ = ̇ + ×U U U U (9)

Considering the kinematics of the space robotic system in the post-
capture phase, Eqs. (4)–(9) are expressed briefly in the inertial frame.
Here, it is assumed that the system consists of rigid bodies only with no

external forces or torques existing in the system. The employment of
the reaction wheels and other momentum-exchange devices is not
considered in this study. And the unknown object is grasped firmly by
the manipulator in the post-capture phase, with the relative position
and orientation of the unknown object to the manipulator not chan-
ging. From [6,16], the linear and angular momentums of the whole
space robotic system are supposed to be zero. Therefore, the Eqs. (10)–
(12) can be illustrated as follows.

P r r rm Σm m= ̇ + ̇ + ̇B i UB
i

n
i U

=1 (10)

L I ω I ω I ω r r
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From Eqs. (10) and (11), P and L denote the linear momentum and
angular momentum of the whole space robotic system, respectively,
expressed in the inertial frame; m m( )B 0 , mi, and mU are the masses of
the spacecraft, link i and unknown object, respectively. I I( )B 0 , Ii, and IU
are the inertial tensors relative to the individual centroids of the
spacecraft, link i and unknown object, respectively. From the linear
identification Eq. (12), mU , aU and IU are the inertial parameters of the
unknown object to be identified, and PK

U , LK
U , pU̇

U , ωU
U , aU

U , and IU
U

are matrices (vectors) of PK , LK , pU̇, ωU, aU , and IU in the inertial frame,
expressed in ΣU . From [6,16], PK , LK , ωU

×, ω# U, and IU#can be described
by Eqs. (13)–(17) as follows.
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I I I I I I I= [ , , , , , ]U Uxx Uxy Uxz Uyy Uyz Uzz
T# (17)

Eq. (12) can be decomposed into the form of Eq. (18).

p P ω a ω a

p P ω a ω a

p P ω a ω a

− ̇ = ⋅ − ⋅ + ⋅

− ̇ = ⋅ + ⋅ − ⋅

− ̇ = ⋅ − ⋅ + ⋅

Ux Kx m Uz Uy Uy Uz

Uy Ky m Uz Ux Ux Uz

Uz Kz m Uy Ux Ux Uy

1

1

1

U

U

U (18-a)

L P a P a ω I ω I ω I
L P a P a ω I ω I ω I
L P a P a ω I ω I ω I

= − ⋅ + ⋅ + ⋅ + ⋅ + ⋅
= ⋅ − ⋅ + ⋅ + ⋅ + ⋅
= − ⋅ + ⋅ + ⋅ + ⋅ + ⋅

Kx Kz Uy Ky Uz Ux Uxx Uy Uxy Uz Uxz

Ky Kz Ux Kx Uz Ux Uxy Uy Uyy Uz Uyz

Kz Ky Ux Kx Uy Ux Uxz Uy Uyz Uz Uzz (18-b)

From Eq. (18), two crucial conclusions can be illustrated.
First, to ensure that the coefficient matrix of the linear identification

Eq. (12) is in a non-singular state, there must exist kinematic
information on all the translational and rotational motions from the
three orthogonal axes in the inertial frame to maintain the integrity of
the identification for all inertial parameters. On account of that theFig. 1. Spacecraft-manipulator-unknown object system (Space robotic system).
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motions of the three orthogonal axes in the inertial frame can be
decomposed into the motions of three axes from an arbitrary body
frame in the space robotic system, also incorporating ΣU , the necessary
condition of intact identification can be stated using existing transla-
tion and rotation motions in all three orthogonal directions from the
body frame of the unknown object, which can be ensured by actuating
joints of various directions in the post-capture phase [6] or by the
collision motivation [10] in the capture-collision phase for the identi-
fication of the unknown object.

Second, linear Eq. (12) contains ten inertial parameters (mU ,
a a a, ,Ux Uy Uz, I U

# ) to be identified, with strong coupling features of
unknown parameters. The ten inertial parameters can be ideally
obtained by the perfect coefficient matrix (or vector) of linear Eq.
(12), which determines the accuracy of the identified parameters.
However, as they are inevitably impacted by measurement or estima-
tion errors, inaccurate coefficients cause poor accuracy of the coupling
of the inertial parameters by the coupling Eq. (12). To address the
strong coupling of linear Eq. (12), a practical decoupling procedure is
essential, andthe linear identification Eq. (12) can thus be decomposed
into Eqs. (19) and (20). Therefore, a two-step procedure of identifica-
tion can be implemented, as shown in Fig. 2, to improve the accuracy of
the inertial parameter identification.

p P ω a
m

− ̇ = ⋅ 1 + [ ]⋅U K
U

U U
×

(19)

L P a ω I− [ ]⋅ = [ # ]⋅[ ]K K U U U
× # (20)

From Fig. 2, the mass and centroid of an unknown object can be
first obtained by Eq. (19) based on the acknowledged PK , ωU, and pU̇,
and the identified values aU can be transferred into Eq. (20) as priori
knowledge, together with the acknowledged LK and ωU to acquire the
inertial tensor of the unknown object. Compared with Eq. (12), which
contains ten unknown parameters, the expression of Eq. (19) has fewer
coupling features, with only four unknown parameters to identify. The
expression of Eq. (20) decreases the coupling of equations by contain-
ing six unknown parameters, which is determined and improved by the
superior identification result of aU by the lower coupling equation (19).

2.2. Effect of kinematic measurement errors on the identification
precision

From Eqs. (19) and (20), a two-step identification can be performed
by the coefficient matrixesωU

×, ω# U and coefficient vectors PK , pU̇,
L P a− [ ]⋅K K U

× . From Eqs. (4)–(9), ωU,pU̇can be acquired by kinematic
deduction from the space robotic system via informationωB, pḂ, θi̇,
which can be measured by a rate gyroscope and accelerometer installed
on the spacecraft and encoders mounted in all joints of tge manipulator
in practice. From Eqs. (13) and (14), PK , LK depend on inertial
parameters and kinematic parameters of the spacecraft and manip-
ulator in the robotic system, of which the inertial parameters can be
estimated in aerospace and the kinematic parameters can be calculated
from Eqs. (4)–(9) via ωB, pḂ, θi̇. Therefore, the kinematic measured
information of ωB, pḂ, θi̇ and the inertial information of the spacecraft
and manipulator provides all the data needed to construct the
coefficients of the linear Eqs. (19–20), and the measurement errors

of ωB, pḂ, θi̇ and the estimation errors of the inertial parameters from
the spacecraft and manipulators dominate the accuracy of the identi-
fied parameters of mU ,aU , IU .

To realize the individual effects of the identified inertial parameters
by the kinematic measurement errors from the measured data ωB,pḂ,θi̇,
the inertial estimation errors will be ignored in this section, i.e., the
inertial parameters of the spacecraft and manipulator are assumed as
prior knowledge owning ideal properties without estimation errors in
the process of identification.

From Eqs. (19) and (20), with the presence of measurement errors
in the process of identification, Eqs. (19) and (20) become Eqs. (21)
and (22), respectively,

p P ω a
m

− ̇ = ⋅ 1 + [ ]⋅͠∼ ∼
U K

U
U U

×
(21)

L P a ω I− [ ]⋅ = [ # ]⋅[ ]͠∼ ∼
K K U U U

× # (22)

where

p p pΔ̇ = ̇ + ̇∼
U U U (23)

P P P P P P P PΔ Δ Δ= + , = ( + ) = + ( )∼ ∼
K K K K K K K K

× × × × (24)

ω ω ω ω ω ω ω ω
ω ω

Δ Δ Δ

Δ

= ( + ) = + ( ) , # = #( + ) = #

+ #( )

͠ ͠U U U U U U U U

U U

× × × ×

(25)

L L LΔ= +∼
K K K (26)

The coefficient matrixes ωΔ U
×, ωΔ# U and coefficient vectors PΔ K ,

LΔ K , pΔ U̇ are errors of ωU
×, ω# U, PK , LK and pU̇, which are caused by the

kinematic measurement errors of ωB,pḂ,θi̇, namely, ωΔ B, pΔ Ḃ, θΔ i̇ respec-
tively. Therefore, Eq. (4)–(8) can be rewritten by Eqs. (27)-(35) using
the method of induction and also considering thegeometric relation-
ship of Eq. (1)–(3).
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B B B (27)
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(33)Fig. 2. Two-step identification.
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∑ ∑ω ω ω ω θ ω ω θΔ Δ Δ Δ= = + + ̇ = + + ̇͠ ͠U n n B
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From Eqs. (13) and (14), one can obtain P∼K , L∼K from Eq. (36) and
(37) as follows.
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Upon substituting Eqs. (27)–(35) into Eq. (36) and (37), one can
obtain Eqs. (38) and (39) as follows.
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Comparing Eqs. (34)–(35) and (38)–(39) with Eqs. (23)–(26), the
errors ωΔ U, pΔ U̇, PΔ K and LΔ K from Eqs. (23)–(26) can be induced and
formed by Eqs. (40)–(43) as follows, respectively.
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The above Eqs. (40)–(43) show that the errors of the coefficient
matrixes or vectors ( ωΔ U, pΔ U̇, PΔ K , LΔ K) are gradually accumulated
from the measurement errors pΔ Ḃ, ωΔ B and θΔ i̇ (even in a faint way),
with the increase of the legends (ai, bi) and amounts (n) of links from
the spacecraft to end-effector and also the ideal inertial properties of
the spacecraft and manipulator. The measurement errors pΔ Ḃ, ωΔ B and

θΔ i̇ cannot be completely eliminated in the practical scenario, and the
errors of ωΔ U, pΔ U̇ , PΔ K and LΔ K directly impact the accuracy of the
identified parameters of mU , aU , IU ,with accumulated calculation from
the spacecraft to end-effector.

Furthermore, compared with ω͠B and p∼̇B measured by the rate

gyroscopes and accelerometer installed on the spacecraft, θ
∼̇

i needs
measured information of the encoder mounted on joint i, with digital
signals of smooth output. And compared with ωΔ B and pΔ Ḃ, θΔ i̇ has
little effect in Eqs. (40)–(43). Then, ignoring the effect of θΔ i̇, one can
obtain a group of new equations, (44)–(47), from Eqs. (40)–(43).
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From Eqs. (44) and (45), the errors of ωΔ Uand pΔ U̇ cannot be
notably accumulated by resolving the process from the spacecraft to
end effector, compared with PΔ K and LΔ K containing the accumulations
of both the kinematic and inertial properties of the spacecraft and
manipulator, which have the greatest distortion impact on the identi-
fied inertial parameters of mU , aU and IU .

3. Identification scheme incorporating information of
contact force together with force/torque of end-effector

3.1. Modified identification equation

From Eqs. (35) and (38), PΔ K , LΔ K and pΔ U̇ could be accumulated
by the measurement errors of pΔ Ḃ, ωΔ B and θΔ i̇ through accumulated
calculation from the spacecraft to the end-effector. In fact, there also
exists inertial estimation errors of the spacecraft and manipulator that
can be accumulated to the coefficient matrix or vectors of the
identification equation in a similar way as the accumulation by
measurement errors. Therefore, compared with acquiring coefficient
information through indirect deduction from the spacecraft and
manipulator, with the error accumulation process introducing more
uncertainty, a straightaway mode of measurement without too much
accumulated calculation is essential and can improve the identification
accuracy. From Eqs. (46) and (47), PΔ K and LΔ K cause the greatest
distortions to the identified inertial parameters, containing accumu-
lated errors of both the kinematic and inertial properties of the
spacecraft and manipulator. To reduce the errors of PΔ K , LΔ K caused
by the accumulated calculation from measurement or estimation
errors, a new identification scheme incorporating the contact force
together with the force/torque of the end-effector is employed to
improve the identification precision, as shown in Fig. 3.

In Fig. 3, fU , nU denote the contact force and torque acting on all the
contact points of the surface of the unknown object, respectively, and
fn, nn are the force and torque acting on joint n (end-effector),
respectively. f , n denote the resultant force and torque of the unknown
object acting on the centroid of the unknown object, and nE denotes the
resultant torque of the end-effector acting on the centroid of the end-
effector. In practice, f∼U , f∼n and n∼n can be measured by a tactile sensor
[20,21] and force/torque sensor, with measurement errors of fΔ U , fΔ n

and nΔ n, and n∼U ,n∼E , f∼ and n∼ can be derived by the Newton-Euler

equation via the acknowledged IEand measured f∼U , f∼n and n∼n. The
derivation process is presented as Eqs. (48)–(51).

f f=∼ ∼
U (48)

n n a f= − ×∼ ∼ ∼
U U U (49)

n n n a f b f= − − × − ×∼ ∼ ∼ ∼ ∼
U n E n n n U (50)

n I ω ω I ω
ω ω ω

= ̇ + × ( )
= =

∼ ͠ ͠ ͠
͠ ͠ ͠

E E E E E E

E U n (51)

After acquiring the essential information of the force and torque
from Eqs. (48)–(51), a modified identification equation can be
constructed as follows.

From Eqs. (10)–(11) and (13) and (14), the momentum of system
can be decomposed by Eqs. (52) and (53),

P P P
P rm
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∼ ∼ ∼
∼
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L I ω
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K U

U (53)

where P∼U and L∼U denote the actual linear and angular momentums of
the unknown object with errors, respectively, expressed in the inertial
frame. Using the conservation of momentum in the robotic system,
derivative forms of (52) and (53) can be acquired as Eqs. (54) and (55),
respectively.
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d
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Using the momentum theorem, one can obtain Eq. (56) and the
integrated form of (56) over a period of δt , i.e., Eq. (57), in which f∼and
n∼ can be acquired by Eqs. (48)–(51). From Eq. (57), Pδ ∼

U and Lδ ∼
U

denote the increments of P∼Uand L∼U in the period of δt , respectively.
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0
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Hence, by combining Eqs. (54)–(57), one can realize Eqs. (58) and
(59), in which the Pδ∼

K and Lδ∼
K denote the increments of P∼K and L∼K in

the period of δt , respectively.
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0
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Based on the incremental MC method [9,10] to avoid considering
the initial momentum of the system, the conventional identification
Eqs. (21) and (22) can be replaced by Eqs. (60) and (61), also in a
period of δt , and pδ∼̇

Uand ωδ ͠ U similarly denote the increments of p∼̇Uand
ω͠Urespectively. By combining Eqs. (59)–(61), a modified linear
identification equation is presented by Eqs. (62) and (63).

p P ω aδ δ
m

δ− ̇ = ⋅ 1 + [( ) ]⋅͠∼ ∼
U K

U
U U

×
(60)Fig. 3. Force analysis of end-effector.
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L P a ω Iδ δ δ− ([ ]⋅ ) = [ #( )]⋅[ ]͠∼ ∼
K K U U U

× # (61)

∫p f ω aδ dt
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∫ n ω Idt δ⋅ = [ # ( )]⋅[ ]∼ ͠ U
δ t

U
0

#
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From Eqs. (62) and (63), compared with the conventional incre-
mental equation Eqs. (60) and (61), the identification scheme incor-
porating the information of f∼and n∼ eliminates the main distortions of

PΔ K and LΔ K by substituting the integration of f∼and n∼ for the parts of
P∼K and L∼K , which dominate the main components by the accumulated
calculation from the spacecraft to end-effector in the identification
equation. Therefore, the main disturbances to the accuracy of identified
parameters by PΔ Kand LΔ K become the integration of errors from f∼and
n∼, namely, ∫ fΔ and ∫ nΔ , respectively. The effect of errors from fΔ and

nΔ on the identification is presented as follows.
Based on Eqs. (48)–(51), Eqs. (62) and (63) can be replaced by Eqs.

(64) and (65), and one can also define the errors of the coefficient
vectors of ∫ fΔ and ∫ nΔ by Eqs. (66) and (67).
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∫ ∫f fΔ Δ dt= ⋅
δ t

U
0 (66)

∫ ∫n n a f b a f I ωΔ Δ Δ Δ dt Δ= ( − × − ( + ) × ) − ⋅
δ t

n n n n U U E U
0 (67)

From Eqs. (66) and (67), compared with PΔ K and LΔ K from Eqs.
(46) and (47), which incorporate the accumulated kinematic measure-
ment errors from pΔ Ḃ, ωΔ B, θΔ i̇ and the inertial estimation errors from
the inertial properties of the spacecraft and manipulator, ∫ fΔ and ∫ nΔ
are only affected by the measurement errors of fΔ U , fΔ n, nΔ n and not
notably by the accumulated error of ωΔ U , via the faint accumulated
process with an, bn, IE and identified aU from joint n to the unknown
object. Therefore, the main distinction between the conventional
identification scheme from Eqs. (60) and (61) and the proposed
identification scheme incorporating the information of f∼U , f∼n and n∼n

from Eqs. (62) and (63) is that the proposed scheme weakens the
process of accumulated calculation with “direct” measured information
of f∼U , f

∼
n and n∼n and thereby improves the accuracy of identification. The

residual errors of the modified identification equation are pΔ U̇,
ωΔ U

×and ωΔ# U from Eqs. (62) and (63), whereas the errors of ωΔ U

and pΔ U̇ cannot be significantly accumulated from Eqs. (44) and (45).
Therefore, the modified identification presents improved accuracy by
incorporating the contact force and the force/torque of the end-
effector.

There exist two crucial considerations for the practical scenario:

(1) The error analysis considered in this section is in the inertial
coordinate frame by all the vectors and matrixes to simplify the

expressions of the analysis process. In fact, the measured data of
the contact force and the force/torque of the end-effector are
always obtained and expressed in the body coordinate frames of ΣU

and Σn, respectively. The rotation matrix converting vector expres-
sions from various coordinate frames into the identical frame is
needed for the composition of vectors. Therefore, there is also a
need for the Euler angles φ ψ η( , , )∼∼ ∼ of the spacecraft's attitude and

the driven angles θ
∼̇

i of all joints to construct essential rotation
matrixes, and the errors of the rotation matrixes are inevitably
introduced into the identification process, also in the conventional
identification scheme. Hence, how to reduce the error effect of the
rotation matrix on the identification process is still a problem to be
solved.

(2) The integrations in Eqs. (62) and (63) require continuous-time
signals of f and n, which is impossible in a discrete state of the
measuring process. In practice, the integral of the force and torque
can be approximated from a known time history in a period
ofδtfrom Eqs. (62) and (63), and the integration method and also
the sampling rate of γ from Eq. (68) dominate the accuracy of the
terms by integration, e.g., the implicit trapezoid method. From the
integration method, a lower γ is superior to the integral process,
which means a longer period ofδt for the inherent sampling
frequency of sensors by force or torque. However, from Eqs. (66)
and (67), the integral errors produced by the measurement errors
of fΔ U , fΔ n, nΔ n will be increased with a long period of δt , which
directly leads to a larger deviation by the errors of ∫ fΔ and ∫ nΔ and
thus influences the accuracy of the identified parameters.
Therefore, a suitable δt is employed to improve the accuracy of
identification.

γ
τ
δt

= (:sampling period of force and torque information)f n,

(68)

3.2. Solution of the modified identification equation using the hybrid
RLS-APSA algorithm

From (62) and (63) of the modified identification equation, one can
construct linear regression forms of Eqs. (69) and (70). Eqs. (69) and
(70) can be simplified into the form of a linear equation as (71). In Eq.
(71),θ denotes the vectors composed of the unknown inertial para-
meters to be identified, and A and b denote the coefficient matrix and
vector of the identification equation, respectively.
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∫
A θ b

A ω b n a f b f a f

I ω θ I

δ

dt

=

= [ # ( )] = ( − × − × − × )

− = [ ]

U
δ t

n n n n U U U

E U U

2 2 2

2 2 0

2
#

(70)

A θ b= (71)

In Eqs. (69) and (70), the singular linear equation needs to be
resolved by constructing normal or overdetermined equations through
multi-set coefficient matrices (A, b) that are gathered by the kinematics
of various moments from the robotic system. A linear regression
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algorithm or an adaptive filter algorithm is adopted to resolve the
modified identification equation in Eq. (71). Conventional identifica-
tion schemes use the LS (Least Squares) or RLS (Recursive Least
Squares) algorithm to obtain the identification results. However, the LS
or RLS cannot address the coloured noise or intense spike pulse noise
that occurs in practice. To solve this problem, a hybrid algorithm [22–
24] is introduced by combining the RLS and APSA (Affine Projection
Sign Algorithm). The RLS maintains the speed and reduces the
correlation of measured data [25], which can rapidly obtain approx-
imate results for identified parameters with a high computation
complexity, and the APSA (affine projection sign algorithm) [26] is
immune to coloured noise and impulse noise and also has a low
computation complexity but maintains a slow rate of convergence. The
standard regression forms of RLS and APSA are presented by Eqs. (72)
and (73), respectively.

θ θ K b A θ

K

P I K A P

ˆ = ˆ + [ − ˆ ]

=

= [ − ]

P A
I A P A

k k k k k k
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( +1) ( ) ( +1) ( +1) ( +1) ( )

( +1) +

( +1)
1

( +1) ( +1)
T
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k k

k k k

( ) ( +1)

( +1)
T ( ) ( +1)

(72)

θ θ
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= [ ; ; ... ]
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X E

E X X E
k k
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k k k k k M

k k
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( ) ( ) ( −1) ( −2) ( − +1)

( ) ( ) ( ) ( )

k k
T k k T k k

( ) ( )

( ) ( ) ( ) ( )

(73)

In Eqs. (72) and (73), A k( ), b k( ) are the coefficient matrix and vector
of A, b from Eq. (71), respectively, measured at the kth moment from
the robotic system, and θ̂ k( ) is an estimate of θ from (71) at iteration k.
From Eq. (72), the forgetting factor λ adjusts the rate of convergence
and weakens the effect of the previous data information [25]. In Eq.
(73), the step-size parameter μ and the regularization parameter ε (a
small positive number) adjust the convergence rate of APSA, and M
denotes the Mth previous moment from moment k. The RLS algorithm
contains matrix inversion from matrix K in Eq. (72), which is replaced
by a square root operation of a positive number from APSA to decrease
the complexity of the calculation.

To combine the RLS and APSA during the process of identification,
a switching mechanism to detect and decide when to switch between
RLS and APSA is needed. Inspired by [24], the switching mechan-
ismcan be achieved by Eq. (74).

ed
dt

APSA ρ|| || >
<k

RLS
( ) 2

2
0

(74)

where

e b A θ= − ˆk k k k( ) ( +1) ( +1) ( ) (75)

In Eq. (74), ρ0 is the detection threshold for the change rate of
errors from Eq. (75), which determines the algorithm used for
identification in the current status. Generally, the RLS algorithm will
initially converge quickly and can be used in the initial process of
identification. Once it has converged with a gradually slowing rate due
to the accumulated noise, the estimated θ̂ k( ) changes slowly, and the
change rate of the norm of e k( ) can be slower than that ofρ0, so one can
switch over to the APSA to continue converging at a slower rate,
maintaining the stability of the identification process via the immune
performance for coloured noise and impulsive noise. Therefore, the
decision to choose the algorithm is based on the threshold ρ0, by the
change rate of e k( ). One can also obtain the relationship by Eq.(76), in
which the ρ1 denotes the threshold of the change rate of the identified
parameters.

θ θk k APSA ρ|| ˆ ( + 1) − ˆ ( )|| >
<

RLS
2
2

1 (76)

It is important to note that μ from Eq. (73) controls the conver-
gence level of the APSA, and it should be much smaller than 1 to
guarantee the convergence during the identification process [26]; it can
be set in the range of (0,1] to achieve a small steady-state misalign-
ment. The deviation θ θk kˆ ( ) − ( ) also maintains an upper bound
proportional to ( λ1 − ) from constant λ ∈ (0,1] and increases with
the data correlation of ( A k( ),b k( )) [25]. Hence, one should decrease the
value of ( λ1 − ) to maintain the deviation below an admissible level and
ensure convergence. As a result, a faster convergence of tge identifica-
tion process can be realized by using the RLS from the beginning, with
a suitable constant λ from (0,1], and the end of the convergence of the
RLS induces the change of the algorithm by switching from RLS to
APSA to maintain an immune and stable performance in the identifica-
tion process, with a much smaller μ.

4. Numerical simulation

To verify the validity of the identification method proposed in this
paper, a simplified dynamic model of a space robotic system with a
manipulator (3-DOF/7-DOF) is established by ADAMS, with orthogo-
nal joints installed on the manipulator, as depicted in Fig. 4. The
geometric and inertial parameters of the space robot model are
displayed in Tables 1 and 2, expressed in the body frame of all the
parts of the robotic system. The robotic system maintains a zero-
momentum initial condition, with the initial linear or angular velocity
of all the parts of the robotic system maintained at zero. To ensure the

Fig. 4. Dynamic model of space robotic system.
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adequate motion condition for identification from Eq. (18), the
orthogonal joints installed on the manipulator were simultaneously
driven by cosine signals of acceleration, while maintaining the motion
of the robotic system in a period of 100 s in the post-capture phase, as
displayed in Table 3. The identification process is implemented by a
constructed ADAMS-MATLAB co-simulation platform in an off-line
state, with a data sample period τ of 0.005 s and an integration period
δt o f 0.1 s, i.e., a sampling rate γ of 0.05.

On account of the severe disturbance condition not solely from
Gaussian white noises in space, the measurement errors in the
simulation from the Gaussian white noise v1, Gaussian coloured noise
v2 and impulsive noise v3 in all measured data must be added, i.e.,

φ ψ η( , , )∼∼ ∼ , p∼̇B, ω͠B f∼U , f∼n, n∼n ( θΔ i̇ is ignored by the digital output of θ
∼̇

i), in
which the Gaussian white noise an Gaussian coloured noise are

presented by Eqs. (77) and (78), respectively, and the impulsive noise
is presented in Table 4. From Eqs. (77) and (78), the random signal
x1(t), x2(t) has a zero mean value and a standard deviation that is 1% of
the signal magnitude.

Considering aerospace operation by fuel consumption, the estima-
tion errors of the prior knowledge of the spacecraft's mass and centroid
are 5% of the nominal values in the process of identification [8].

v x t= ( )1 1 (77)

v x t x t= ( ) + 0.01 × ( − 0.1)2 2 2 (78)

Based on Eqs. (60)–(63), a perfect parameter setting by the
algorithm of conventional RLS or RLS-APSA is essential and distinct
by identifying the mU , aU by Eqs. (60) or (62) and IU by Eqs. (61) or
(63) for the organization form of the coefficient matrix and vector
incorporating various kinematic and inertial information. Therefore, a
suitable setting is employed in the simulation and presented as Table 5.

Therefore, to compare the advantage from the modified identifica-
tion with the conventional identification, the comparisons of modified
identification and conventional identification with the 3-DOF manip-
ulator via the algorithms of RLS and RLS-APSA are presented in the
Fig. 5 and Table 6. Among in, to verify the superior accuracy of the
modified identification equation by Eqs. (62) and (63), incorporating
the contact force as well as the force/torque of the end-effector, a
comparison process is implemented by identifying the inertial para-
meters of an unknown object using the modified identification Eqs.
(62) and (63) and also the conventional identification Eqs. (60) and
(61) via the identical algorithm of APSA by parallel parameter setting
from Table 5. In addition, to confirm the stability of the identification
process resulting from the proposed RLS-APSA, another comparison
process is implemented by identifying the inertial parameters using the

Table 1
Geometric and inertial parameters of space robot model with 3-DOF manipulator.

Link i Mass/kg mi Length/m Inertia tensor/kg m2

ai bi Ii(1,1) Ii(2,2) Ii(3,3) Ii(1,2) Ii(1,3) Ii(2,3)

0 1000.0 0.0 0.0 0.0 1.0 0.0 0.0 1000.00 1000.00 500.00 0 0 0
1 5.0 0.2 0.0 0.0 0.2 0.0 0.0 0.10 0.10 0.05 0 0 0
2 10.0 0.2 0.0 0.0 0.2 0.0 0.0 0.10 0.20 0.20 0 0 0
3 5.0 0.2 0.0 0.0 0.2 0.0 0.0 0.10 0.10 0.05 0 0 0
Unknown object 100.0 0.5 0.0 0.0 – – – 10.00 20.00 10.00 0 0 0

Table 2
Geometric and inertial parameters of space robot model with 7-DOF manipulator.

Link i Mass/kg mi Length/m Inertia tensor/kg m2

ai bi Ii(1,1) Ii(2,2) Ii(3,3) Ii(1,2) Ii(1,3) Ii(2,3)

0 1606.0 0.0 0.0 0.043 0.135 0.0 0.0 9.05e+2 2.34e+3 2.55e+3 0.00 0.00 0.00
1 6.75 0.0 0.0 0.043 0.135 0.0 0.0 0.028 0.028 0.0116 0.00044 0.00 0.00
2 6.75 0.0 0.0 0.032 0.135 0.0 0.0 0.028 0.028 0.0116 0.00044 0.00 0.00
3 16.5 0.0 0.891 0.041 0.0 0.891 0.139 5.96 5.96 0.609 0.00 0.00 0.2537
4 16.5 0.891 0.0 0.041 0.891 0.0 0.139 5.96 5.96 0.609 0.00 0.00 0.2537
5 6.75 0.0 0.0 0.041 0.0 0.0 0.139 0.028 0.028 0.0116 0.00044 0.00 0.00
6 6.75 0.0 0.0 0.05 0.0 0.0 0.135 0.028 0.028 0.0116 0.00044 0.00 0.00
7 6.57 0.0 0.0 0.045 0.0 0.08 0.0 0.0085 0.0055 0.01 0.00 0.00 0.00
Unknown object 500.0 0.0 -0.25 0.0 – – – 100.00 200.00 200.00 0.00 0.00 0.00

Table 3
Actuating signals of joints.

Time/s Joint 1/ Joint 2/ Joint 3/

rad s−1 rad s−2 rad s−1 rad s−2 rad s−1 rad s−2

0 0 π πt2 cos( ) 0 π πt2 cos( ) 0 π πt2 cos( )
0–100 – π πt2 cos( ) – π πt2 cos( ) – π πt2 cos( )

Table 4
Impulsive noises v3.

Time/s 0–30 30 30–35 35 35–40 40 40–55 55 55–100

Impact
strength

0 1 0 −0.5 0 1 0 −0.5 0

Table 5
Parameter settings.

Parameter λ μ ε M ρ1

am ,U U IU am ,U U IU am ,U U IU am ,U U IU am ,U U IU

Value 0.999 0.9995 0.00001 0.01 1 1 2 2 0.0005 0.01
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hybrid RLS-APSA and also conventional RLS via an identical scheme of
a modified identification equation by (62) and (63). The attached
hybrid measured noises meeting the Eqs. (77) and (78) and Table 4 is
followed in the simulation.

From the Fig. 5, the identification scheme incorporating contact
force and the force/torque of the end-effector presents notably superior
results in identification compared with the conventional scheme via

both the algorithm of RLS and RLS-APSA, except that aUy, aUz were
not clearly distinct. And the RLS-APSA algorithm shows the perfor-
mance of stability during the process of identification both in modified
method and in conventional method, through the various noises
including Gaussian white noise, Gaussian coloured noise and impulsive
noise. There also exist fluctuations in the identified values in the initial
phase of the identification process for both identification schemes and
also a break point from fluctuations to a stable process, which is
determined by the detection thresholdρ1 switching the algorithm from
RLS to APSA to maintain the stability of the identification process.

From Table 6, the identification scheme incorporating the contact
force and the force/torque of the end-effectorvia RLS-APSA has major
deviations of 2.57% and 1.80% from mU and IUxx, compared with the
conventional identification scheme having major deviations of 14.20%
and −98% from mU and IUxx, respectively. Therefore, a remarkable
performance improvement in terms of accuracy is achieved by intro-
ducing the measured information of the contact force and force/torque
of the end-effector into the conventional identification scheme.

Actually, the precision of the tactile sensors and force/torque sensor

Fig. 5. Comparisons of modified identification and conventional identification via algorithm of RLS and RLS-APSA.

Table 6
Simulation results of modified identification and conventional identification via
algorithm of RLS and RLS-APSA.

Inertial
parameter

Nominal
value

Modified identification
method

Conventional
identification method

Identified mean
value(90–100 s)/
Error(%)

Identified mean value
(90–100 s)/ Error(%)

RLS RLS-APSA RLS RLS-APSA

mU/kg 100.00 -/- 102.57/
2.57%

-/- 114.20/
14.2%

aUx/m 0.50 -/- 0.485/-3% -/- 0.452/9.6%
aUy/m 0.00 -/- 0.002/- -/- 0.021/-
aUz/m 0.00 -/- -0.004/- -/- -0.004/-
IUxx/kg m2 10.00 -/- 9.82/1.8% -/- -9.80/-98%
IUxy/kg m2 0.00 -/- 0.50/- -/- 13.50/-
IUxz/kg m2 0.00 -/- 0.12/- -/- 9.60/-
IUyy/kg m2 20.00 -/- 19.85/0.75% -/- 13.20/34%
IUyz/kg m2 0.00 -/- 0.72/- -/- -5.01/-
IUzz/kg m2 10.00 -/- 9.75/2.5% -/- 4.8/48%

Table 7
Rank of Gauss white noise.

Rank A B C
mean value mean value mean value
/standard deviation /standard deviation /standard deviation

– 0/0.1% of the 0/1% of the 0/10% of the
Signal magnitude Signal magnitude Signal magnitude
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Fig. 6. Comparisons of modified identification via various ranks of measured noises of the force and torque.

Table 8
Simulation results of modified identification via various ranks of measured noises of the
force and torque.

Inertial
parameter

Nominal
value

Modified identification
method

Conventional
identification method

Identified mean
value(70–80 s)/
Error(%)

Identified mean value
(70–80 s)

with noise A with noise
B with noise C

/Error(%)

mU/kg 100.00 100.94/0.94% 101.23/
1.23% 102.34/2.34%

107.98/7.98%

aUx/m 0.50 0.498/-0.4% 0.497/-
0.6% 0.494/-1.2%

0.482/-3.6%

aUy/m 0.00 0.0017/- 0.0018/-
0.002/-

0.006/-

aUz/m 0.00 0.00005/- -0.00007/-
-0.00009/-

0.0035/-

IUxx/kg m2 10.00 10.02/0.2% 10.03/
0.3% 10.06/0.6%

11.8/18%

IUxy/kg m2 0.00 0.12/- 0.13/- 0.15/- 0.2/-
IUxz/kg m2 0.00 0.04/- 0.6/- 0.9/- -0.18/-
IUyy/kg m2 20.00 20.2/1% 20.3/1.5%

20.7/3.5%
23.8/16%

IUyz/kg m2 0.00 -0.21/- -0.27/- -0.72/- 1.3/-
IUzz/kg m2 10.00 10.1/1% 10.15/1,5%

10.35/3.5%
12.1/21%

Table 9
Simulation results of modified identification and conventional identification via
algorithm of RLS and RLS-APSA.

Inertial
parameter

Nominal
value

Modified identification
method

Conventional
identification method

Identified mean
value(90–100 s)/
Error(%)

Identified mean value
(90–100 s)/Error(%)

RLS RLS-APSA RLS RLS-APSA

mU/kg 500.00 -/- 510.12/
2.02%

-/- 519.72/3.94%

aUx/m 0.00 -/- -0.002/- -/- 0.026/-
aUy/m -0.25 -/- -0.252/0.8% -/- -0.29/16%
aUz/m 0.00 -/- 0.005/- -/- 0.023/-
IUxx/kg m2 100.00 -/- 101.12/

1.12%
-/- 162.81/

62.81%
IUxy/kg m2 0.00 -/- -0.52/- -/- -24.58/-
IUxz/kg m2 0.00 -/- -5.71/- -/- -26.9/-
IUyy/kg m2 200.00 -/- 201.33/

0.67%
-/- 222.12/

11.06%
IUyz/kg m2 0.00 -/- 3.28/- -/- 6.45/-
IUzz/kg m2 200.00 -/- 200.94/

0.47%
-/- 145.37/-

27.32%
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plays a fundamental role in the modified identification. And to show
the identification under various accuracies of tactile sensor and force/
torque sensor, the different ranks of Gauss white noises is defined in
Table 7 and employed as measured noises in tactile sensor and force/
torque sensor in the process of simulation. And from the identified
results from Fig. 6 and Table 8, the modified identification including
measured force and torque shows the better performance of precision
compared to conventional identification. Furthermore, the precision of
identified results can be slightly enhanced with the accuracy improve-
ment of measured force and torque. Analogously, the simulated
conditions are parallel to the space robotic system with the 7-DOF
manipulator, and simultaneously the simulated results are presented in
Tables 9 and 10, Figs. 7 and 8. In conclusion, the identification scheme
incorporating the measured information of the contact force and the
force/torque of the end-effector can significantly overcome the effect of
above mentioned accumulated errors caused by accumulative calcula-
tion process from spacecraft to the end-effector, and improves the
precision of the identification of the inertial parameters, and the
proposed hybrid RLS-APSA algorithm effectively ensures the stability
of the identification process.

5. Conclusions

An intact inertial parameter identification scheme using contact
force information for a space unknown object captured by a manip-
ulator is proposed in this paper, which includes a two-step identifica-
tion process of mass and centroid estimation and then inertial tensor

Table 10
Simulation results of modified identification via various ranks of measured noises of the
force and torque.

Inertial
parameter

Nominal
value

Modified identification method Conventional
identification
method

Identified mean value(70–80 s)/
Error(%)

Identified mean
value(70–80 s)/
Error(%)

With
noise A

With
noise B

With
noise C

mU/kg 500.00 503.08/
0.62%

503.09/
0.62%

503.11/
0.63%

504.17/0.83%

aUx/m 0.00 0.001/- 0.002/- 0.004/- 0.008/-
aUy/m -0.25 -0.240/

4%
-0.239/
4.4%

-0.237/
5.2%

-0.230/8%

aUz/m 0.00 -0.021/- -0.022/- -0.0024/- -0.031/-
IUxx/kg m2 100.00 102.02/

2.02%
102.04/
2.04%

102.13/
2.13%

90.8/-9.20%

IUxy/kg m2 0.00 -0.12/- -0.13/- -0.15/- 2.83/-
IUxz/kg m2 0.00 1.12/- 1.10/- 1.31/- -2.01/-
IUyy/kg m2 200.00 202.24/

1.12%
202.27/
1.13%

202.35/
1.18%

203.57/1.79%

IUyz/kg m2 0.00 -0.31/- -0.32/- -0.37/- 1.13/-
IUzz/kg m2 200.00 199.95/-

0.03%
199.92/-
0.04%

199.83/-
0.09%

202.13/1.07%

Fig. 7. Comparisons of modified identification and conventional identification via algorithm of RLS and RLS-APSA.
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estimation. The conventional identification scheme that only employs
measured information of the spacecraft and manipulator will exhibit
poor identification performance due to accumulated kinematic mea-
surement errors and inertial estimation errors, as shown in the analysis
of errors in this paper. Based on the MC method and momentum
theorem in the post-capture phase, the contact force reacting on the
surface of the unknown object together with the force/torque of the
end-effector is used by modifying the conventional identification
equation, reducing the accumulation of kinematic measurement errors
and inertial estimation errors, and thereby improving the precision of
the parameter identification. To ensure the stability of the identifica-
tion process, a hybrid RLS-APSA algorithm is proposed and employed
to decode the modified identification equation, considering various
measured noises. Numerical simulation results verify the validity of the
proposed method, effectively guaranteeing the execution of aerospace
operations and preventing failed control, with the accuracy improve-
ment achieved by introducing the contact force together with the force/
torque of the end-effector and improving stability by employing the
RLS-APSA algorithm.
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