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A B S T R A C T   

Network endurance can be regarded as the upper limit of survival time before the system's complete breakdown, 
which is highly related to system resilience. Although network endurance against overload failure is critical for 
network design and operational management, the definition and corresponding evaluation method still remain 
challenging. In this paper, based on the load-dependent overload model, we define network endurance as the 
cascade duration at criticality before the complete network breakdown and develop an approach for endurance 
evaluation. We find that network endurance highly depends on initial disturbance intensity and cascade in-
tensity. The network endurance with a uniform initial load distribution usually monotonically increases with 
decreasing initial disturbance intensity, while for other initial load distributions endurance behaviors are more 
complicated. We also provide theoretical analysis for the network endurance. Our findings may help to un-
derstand the network reliability mechanism against cascading overload failures and design a highly reliable 
network.   

1. Introduction 

Many complex systems such as power grid, transportation, and 
telecommunication system can be modeled as a complex network, 
where nodes represent elements of the system and edges stand for the 
interaction between nodes [1]. With the growing complexity of the 
network, the probability of cascading failure shift to an unprecedented 
level. Many accidents reveal that a small local perturbation can cause 
large-scale damage to the system [2,3]. For example, the major 
blackout of 2003 Northern America, originated from outage of one 
transmission line, has caused a large swath of districts paralyzed with 
more than 4 billion dollars financial loss [4]. For the city traffic system, 
jams have also become a major threat to system operational reliability  
[5]. Under certain conditions, congestion may be up to several kilo-
meters in the highway. In Germany alone, the direct and indirect eco-
nomic costs caused by traffic congestion are estimated at around 37.34 
billion dollars in 2020 reported by Cebr [6]. With various increasing 
internal or external disturbances, large-scale collapse of system draws 
much research attention and is found as a phase transition of cascading 
failures between system function and failure [7]. Cascading failures 

take place under certain initial disturbance, leading to an avalanche of 
overloads on other nodes. As cascading failures continue, the failure 
size gradually or abruptly increases. The system will quickly lose its 
functionality and collapse when the network approaches the critical 
point. From the viewpoint of system reliability, the time from the start 
of the cascading failure to the end, indicates the maximal time oppor-
tunity allowing for repair, which we define as network endurance here. 
For example, D Zhou [8] et al have discussed the length of the cascade 
in a model of interdependent percolation. In this way, system resilience  
[5] is highly dependent on system endurance, and improving network 
endurance can be one of the possible ways to avoid complete system 
collapse against cascading failure. 

For complex systems, system endurance depends on the cascading 
failure mechanism. Different system failure models are presented to 
explain the complicated cascading failures mechanism [9–12]. These 
models can be separated into two categories, i.e., static and dynamical. 
For the first type, studies quantify the reliability of a network by the 
network performance under removal of a fraction of nodes or edges 
without considering flow dynamics and relevant redistribution of load. 
Monte Carlo simulation is a generic method to study the static tolerance 
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to both random and targeted attacks [13,14]. Besides numerical simu-
lations, the problem can also be theoretically solved by percolation 
theory [15], where site and bond percolation are two types of standard 
models [16]. 

For the dynamical model, research mainly focuses on the effect of 
overloads with no visible or direct causality between component fail-
ures [17–19]. Instead, the coupling relation between failures is re-
flected by the redistribution of network flow as a global effect. For 
example in the power grid, when a line trips, its load in the form of 
power flow, will transfer to other functional parts through invisible 
alternative paths. A great number of models, including sand-pile model  
[20], CASCADE model [21], and ORNL-PSerc-Alaska (OPA) model  
[22], are proposed to account for the dynamical aspects of cascading 
overloads. For transportations, Li et al. [1] proposed a new method to 
study the congestion cascade with dynamical percolation. Based on 
geometry analysis, the propagation of cascading overloads is studied 
and predicted with theoretical framework [19]. 

To meet the challenge of cascading failures, system resilience en-
ginnering [23] is proposed to build the ability of adaption and recover 
from perturbations. Meanwhile, resilience is found an intrinstic prop-
erty of complex systems [5], many qualitative and quantitative eva-
luation procedures recently have been presented to describe the con-
ceptual framework and assessment approaches [24–28]. To realize the 
recovery ability, different functional-based and structural-based self- 
healing models are proposed based on cascading failure models to in-
vestigate how recovery strategies can enhance system resilience. For 
example, Liu et al. develop two models of self-healing strategies for a 
single network based on global or local information respectively 
[18,29]. The restoration characteristics of the interdependent network 
are also investigated considering repair resource, timing and load tol-
erance for different coupling strength [30]. These models or strategies 
facilitate recovery in case of system collapse under the threat of cas-
cading overload failure. 

System endurance, measuring the survival time before system col-
lapse, is critical for designing self-healing strategy. However, a valid 
definition for network endurance has not yet been developed. 
Furthermore, the relation between system endurance and cascading 
overloads is essentially unclear. Considering the relevant cascading 
failure model, here we wish to develop the definition of network en-
durance and understanding the relation between system endurance and 
cascading overloads mechanism. 

In this study, we develop a method to analyze the system network 
endurance based on analysis of critical threshold. In Section 2, the 
CASCADE model is described in detail, and three different initial load 
distributions are considered. The proposed method for endurance 
analysis is described in Section 3. Simulation experiments for the en-
durance analysis framework are conducted in Section 4. In Section 5, 
we develop a theoretical method to understand the relation between 
cascading failure process and network endurance. Section 6 concludes 
the work. 

2. Preliminaries 

A cascading overload model is considered to characterize the fea-
ture of network flow redistribution during cascading failures. 

2.1. Cascading failure model 

Overload model is commonly used to capture the basic cascade 
dynamics of component failures in complex systems. Model of 
CASCADE is originally developed by Dobson et al. to study the cas-
cading failure dynamics of power grid [21]. They use Galton-Watson 
branching process to analytically solve the size distribution of blackout. 
Based on this model, we study the network endurance against cascading 
failures due to redistribution of component load. Our theoretical ana-
lysis is for general network structure. Here, we take the square lattice as 

an example for analysis. Each node i has a random initial load Li dis-
tributed in [Lmin, Lmax], where Lmin and Lmax are respectively the lower 
and upper limits of the load distribution. Firstly, an initial disturbance 
D is exogenously imposed on each functional node (the load of a node is 
below load tolerance) to initiate the cascade process. A node fails if its 
load exceeds the limit of operation >L Li i

fail. When a node fails, it af-
fects other nodes in the network through transmitting a fixed amount of 
load I′ to all remaining functional nodes. A failure node can cause re-
distribution of additional loads to other functional nodes, which may in 
turn cause further overloads of other nodes. This cascade process con-
tinues in such a domino effect until no further nodes are overloaded. 
The disintegration of networks depends on the failure mechanism and 
network structures. 

Network endurance is the cascade duration when system is at the 
critical threshold, which has a deep relation with cascading overload 
dynamics. To find this relation, we need two important parameters 
including cascade intensity coefficient λ and initial disturbance coeffi-
cient θ, which are defined as 

=
=

N I
N D

·
· (1) 

where N represents the network size and I′ is the normalized load in-
crement of each remaining functional node. Since the system size N can 
also increase the total overloads for a given cascading intensity, we 
need to scale the system parameters with N. 

The simulation algorithm of the cascade process can be summarized 
as follows:     

(1) For all nodes at stage 0, they are initially assigned with a load 
following certain distribution, with Li ∈ [Lmin, Lmax], 

= =L L L0 1fail
min max . Here, the load distribution can be 

drawn from real systems and several possibilities, such as uni-
form, exponential and Gaussian distributions, will be considered 
in the later Section 2.2;  

(2) Set =T 1, and add an initial disturbance =D D0 of additional 
load to each functional node;  

(3) Test each functional node: for = …i n1, 2, .., , if > =L L 1,i
fail

then the node i fails. Suppose mT nodes fail at step T; 
(4) A load increment = =D m I m· ·T T T N1 1 is added to each re-

maining functional node, where I′ is a normalized parameter 
representing the load transfer strength of a failed node;  

(5) = +T T 1 and return to step (3), the cascade process proceeds 
until no functional nodes fail. 

2.2. Initial load distributions 

According to the recent observation, the initial load distribution of 
realistic systems, such as communication network, power grid, and 
traffic network may present different forms and evolve with time 
[31,32]. An example can be found in the power grid, where the load of 
a component is related to the number of transmission lines connected to 
it [33]. For other networks, such as Internet or air transportation net-
work, the load of a node is positively related to the route choice 
[34,35]. We assume three initial load distributions including uniform, 
exponential and Gaussian distributions to study the network endurance 
under different scenarios. To compare the effect of different initial load 
distributions, we use the truncated distribution which restricts the do-
main of a distribution within a specific range for analysis. Under the 
same average load, we show the truncated distributions as follows. 

For a truncated uniform initial load distribution, L ~ U(Lmin, Lmax), 

=f x x L L
elsewhere

( ) , ( , )
0
L L

1
min maxmax min

(2) 

where the average load = = +L xf x dx L L¯ ( ) ( )/2L
L

min maxmin
max . 
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For a truncated Gaussian initial load distribution f(x) ~ N(μ, σ2), 
x ∈ (Lmin, Lmax) 

=f x
x L L

elsewhere
( )

, ( , )

0

e / 2

( ) ( )
min max

x µ
L µ L µ

( )2/2 2

max min

(3) 

where = = +L xf x dx µ f L f L¯ ( ) [ ( ) ( )]L
L 2

min maxmin
max is the average 

load of the truncated Gaussian distribution. μ is the average value of the 
Gaussian distribution and σ is the variance. 

For a truncated exponential initial load distribution f(x) ~ E(ξ), 
x ∈ (Lmin, Lmax) 

=f x x L L

elsewhere
( ) , ( , )

0

e
e e min max

x

L Lmax min

(4) 

where = = +L xf x dx L f L L f L¯ ( ) [ ( ) ( )]L
L 1 1

min min max maxmin
max is the 

average load of the truncated Exponential distribution. ξ is the rate 
parameter of distribution. 

3. Network endurance analysis 

To quantify the effect of cascading overloads, we use the order 
parameter of percolation, i.e., the relative size of the giant component 
G(t), as an indicator of system integrity. Percolation theory is usually 
applied to study the network robustness and vulnerability for complex 
system. Here, the propagation of cascading overloads can be regarded 
as a dynamical percolation process. The giant component here refers to 
the cluster that can span the entire network, which is usually regarded 
as the indicator of network connectivity. For demonstration, we con-
sider a general network for analysis (see Fig. 1 left-hand). As the cas-
cade process proceeds, the giant component gradually fragments into 
many small clusters. When the network reaches the critical point of 
breakdown, the network becomes totally disintegrated. We define the 
system endurance against cascading overload failures as the critical 
cascade duration, i.e. cascade time steps before the network collapse 
(see Fig. 1). 

Definition 3.1. The network endurance, denoted as Tc, is defined as 
follows 

=T T D L Nmax[ ( , , ¯ , )]c (5) 

where T D L N( , , ¯ , ) is the cascade duration under certain perturba-
tions, and endurance Tc is the cascade duration under the critical state 
of system complete breakdown. Here, we obtain network endurance in  
Eq. (5) by changing the value of only one variable and fixing the other 
variables. The critical state of the network is determined by the per-
colation threshold =p pc. This could be marked when SG reaches the 
maximal value according to the percolation theory [1]. For some cases, 
other indicators are more effective to mark the critical point [36]. This 
depends on whether the transition is continuous or discontinuous. We 
use both of them to analyze the network critical point. Endurance is the 
upper limit of survival time, where larger endurance provides more 
opportunities to recover the system, and finally, to improve system 
resilience. 

For the uniform initial load distribution, the cascade intensity 
coefficient λ represents the mean size of cascading failure upon a single 
failure, while θ is the mean size of initial failure [21]. λ and θ are 
respectively two main parameters that determine the relation between 
cascade dynamics and network endurance, which reveal the failure 
dependency relation between nodes. Larger λ indicates more cascading 
overload failures during the failure propagation, while larger θ will 
result in larger initial failure. 

4. Simulation analysis 

In this section, we present numerical results of endurance analysis 
based on cascading overload model mentioned in Section 2.1. 

4.1. Analysis of the critical threshold 

Each node in the network is perturbed by an additional external 
load disturbance D. As shown in Fig. 2a, in the beginning, a small 
perturbation cannot result in system collapse. With the increasing of 
disturbance added to the network, the system undergoes a phase 
transition from functional state to collapsed state once it reaches the 
critical point. As shown in Fig 2a, the size of failure nodes continues to 
increase with increasing initial disturbance D and network becomes 
completely collapsed at Dc (Dc corresponds to the dashed line in  
Fig. 2b). Moreover, with more and more nodes disconnected from the 

Fig. 1. . A framework for endurance analysis considering cascading failure. G represents the giant component and SG stands for the second largest component. Here, 
we take the maximal SG for example to determine the critical state. 
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giant component, the size of the second largest component SG gradually 
increases to its maximum value at Dc in Fig. 2b, indicating that the 
network reaches the critical state. In particular, we find that the curves 
of G and SG collapse into a single curve for varying network size when 
D is scaled by 1 , suggesting that network performance (G and SG) is 
independent of network size under the new indicator D/(1 ). This 
transformation is intuitive and will be explained in Section 5 by theo-
retical analysis. 

Moreover, we show the phase diagram of G and SG under different 
cascade intensity coefficient λ and the initial disturbance coefficient θ 
in Fig. 2c and d. When λ increases for = 0, there is a critical threshold 
close to = 1,c above which the system usually has no giant component 
(see Fig. 2c). Small λ indicates fewer cascading failure nodes induced by 
a single failure node in the next step of cascading overloads. In other 
words, the system with λ < 1 can withstand cascading overload and 
stay in a stable state, for the cascading failures will die out finally. 
Meanwhile, contour line in Fig. 2d shows the complementary effect of θ 
for λ. When the pair of variables (λ, θ) change along the dashed line in  
Fig. 2d, the system remains in a critical state when the size of SG 
reaches its maximal value at this dashed line. 

4.2. Endurance under different initial disturbance levels 

To study how the network endurance is influenced by initial dis-
turbance, we impose different initial disturbance intensities on the 
network. As shown in Fig. 3a–c, we assume three types of initial dis-
turbance intensity: (1) small disturbance ( =D 0.01), (2) medium dis-
turbance ( =D 0.1), and (3) large disturbance ( =D 0.7). For small dis-
turbance in Fig. 3a, endurance is marked with a dashed line and is 
found to increase with increasing cascade intensity coefficient λ. One 

can also notice that for a given D and λ the duration of failure spreading 
first increases with the average load, and becomes decreasing after 
reaching the maximum near the critical point (see Fig. 3a). For the case 
of = 1, there is only decrease of duration with the increase of average 
load. The main reason for the maximum duration is due to the termi-
nation condition of the cascade process, which will be further discussed 
in Section 5 by theoretical analysis. 

For medium disturbance in Fig. 3b, the maximum of the duration T 
has similar tendency. For a given λ, maximal duration is usually smaller 
than that in Fig. 3a, suggesting larger initial disturbance intensity leads 
to smaller system endurance. Moreover, when the initial disturbance 
intensity continues to increase, as shown in Fig. 3c, the system collapses 
even within a few steps, due to the large amount of initial overloads 
breaking the network. From the above results, initial disturbance D is 
found to have a significant effect on network endurance. To further 
observe the effect of D, we show the endurance as a function of D for a 
given cascade intensity in Fig. 3d. For each D value, when we change 
the average load, we can find the maximal T value that can be regarded 
as the endurance Tc under this D value. Therefore, Tc is a function of D 
accordingly. The increase of D could make more nodes overloaded in-
itially. This will in turn generate smaller giant component, which per-
mits short duration for cascading overloads after the initial disturbance. 

In fact, these effects can be understood by the interaction of static 
percolation effect and dynamical overload effect. For small component 
dependence (low λ), network will only break when the failure from 
initial disturbance is enough, due to percolation effect. To the contrary, 
for large λ, it is suggested that system has more failure interactions and 
spreading easily among them due to overload effect. Therefore, network 
endurance is determined by the combination of these two effects. 

Fig. 2. . The critical threshold of the network with a uniform initial load distribution. (a) The relative size of the giant component (G) and (b) the second largest 
component (SG) as a function of disturbance D. The insets show the curves of G and SG when D is scaled by 1 . Note that all the rescaled curves collapse into a 
single curve for varying network size (0 < λ < 1). Here, cascade intensity is fixed with =I 10 4 with different system sizes. The dashed line represents the critical 
threshold of the system with the maximal value of SG; (c) and (d) are respectively the heat map of G and SG versus θ and λ when =N 2500. The results are averaged 
over 500 realizations on a square lattice. 
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4.3. Endurance with different initial load distributions 

In general, real networks operate at different initial load distribu-
tions. For the comparison between different initial load distributions, 
we set the same value of average load L for different initial load dis-
tributions, as well as the load tolerance Lfail. It can be found in Fig. 4 
that the network has different failure behaviors with distinct initial load 
distributions. For different distributions, we show how the duration T of 
the network depends on the cascade intensity coefficient λ. It is found 
that T usually first increases with λ and gradually decreases after 
reaching maximal T, where we consider network endurance as the 
maximal T. 

As shown in Fig. 4a, for the uniform initial load distribution, the 
endurance increases with the decrease of D. In this case shown in  
Fig. 4b, network usually experiences a continuous collapse with the 
failure propagation. Unlike uniform initial load distribution, the net-
work endurance under Gaussian initial load distribution does not have 
monotonic increase with the change of D. Instead, there is a single peak 
for certain D in Fig. 4c, which means that the largest network en-
durance is under a combination of initial disturbance intensity and 
cascade intensity. For large D, large part of network is initially frag-
mented, and failure only needs short cascade duration to destroy the 
remaining network. For smaller D, network is almost intact at first, high 
cascade intensity is required to disintegrate the network. However, 
large cascade intensity can lead to short cascade duration with large 
number of overloads, which spreads over the network. For exponential 
initial load distribution in Fig. 4e, behaviors of network endurance are 
similar to the case of Gaussian initial load distribution. 

As shown in Fig. 5, single curves without average of result in  
Fig. 4(d, f) shows that the network with an uniform initial load dis-
tribution seems a continuous transition. However, the network with a 
Gaussian or an exponential initial load distribution seems to collapse in 

a discontinuous manner. It is suggested that abrupt type of collapses for 
certain load distributions occur because the load is more concentrated 
within the characteristic interval under exponential and Gaussian initial 
load distribution. Therefore, there could be combination of model 
parameters leading to abrupt transition, including Gaussian and ex-
ponential initial load distribution. These different results will be ex-
plained theoretically in Section 5. 

5. Theoretical analysis 

There are two types of conditions in which the cascading overload 
process can be ended. The first case is that the failure size at a single 
step decreases to be 1, i.e. =m 1T (see Fig. 6a, the red lines). The other 
case is that all the nodes fail at the end of the process, i.e. =M N ,T also 
indicating that there are no further failures and the process ends (see  
Fig. 6a, the green lines). These two driving conditions are determined 
by initial disturbance intensity and cascade intensity. For example, for 
uniform initial load distribution (see Fig. 4a), two driving conditions 
cause the cascade duration curve to increase first and then decrease, 
where the peak of the curve happens at the boundary of the two con-
ditions. 

We first start with a simple case of uniform initial load distribution. 
Given the initial condition of =D D0 and = =M m ND,0 0 the total 
failure size MT at step T can be calculated in Fig. 6b, 

= =
=

M NS N DT T
i

T

i
1 (6) 

where ST is the cumulative overload and the disturbance DT is the in-
cremental overload at step T. 

For the cascading failure size of a single step, based on Eq. (6), we 
have = =m M M NDT T T T1 . Furthermore, according to the overload 

L LL

DL

Fig. 3. The endurance Tc under different initial disturbances. (a), (b), (c) When disturbance D increases from small to large, the duration varies with average load 
levels. The corresponding endurance for each curve is drawn with the dashed line. (d) Tc as a function of disturbance D. Here, the network size is fixed with =N 2500
and 0 ≤ Lmin ≤ Lmax ≤ Lfail. In order to find the critical point, we change the average load L̄ by changing Lmin and fixing Lmax. The results are averaged over 500 
realizations. 
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model, the disturbance = =D m I m ·T T T N1 1 . Hence, we can easily 
obtain the relation 

=m mT T 1 (7)  

This also indicates that λ represents the branching size of cascading 
failures. From Eqs. (6) and (7), the cumulative and incremental failure 
size can be shown as follows 

= =

= = ==
+

m m ND

M NS ND ND( ) ·
T

T T

T T i
T i

0

0
1

1
T 1

(8)  

As shown in Eq. (8), the total failure size =
+

M ND·T
1

1
T 1

. When 
cascading overload process ends, the cascade steps can be regarded as 
T → ∞. Thus, we have M

N
D

1
T when 0 < λ < 1. The value of G 

and SG depend on the failure proportion, which is not related to net-
work size. It explains why rescaled curves collapse into a single curve in 

Fig. 4. Impact of different initial load distributions on endurance. (a, b) is the case of uniform initial load distribution, and (c, d) is the case of Gaussian initial load 
distribution with = =µ 0.5, 0.22 and (e, f) is the case of exponential initial load distribution with rate parameter = 4.2. All nodes are initially loaded by the 
independent load L1, L2, ......, Li in [Lmin, Lmax], where for uniform and Gaussian load distribution = =L L0, 1min max , while for exponential distribution 

= =L L0.3, 1min max . The mean load of all above cases is =L 0.5. T, G, and λ respectively represent the cascade duration, the size of the giant component, and 
cascade intensity coefficient. The network is also with =N 2500 nodes. Here, some curves in (d, f) seem not discontinuous because the averaging procedure of 
simulation removes the appearance of discontinuity. 

Fig. 5. G vs. λ under different initial load distributions for single realizations. Other parameters are the same as those in Fig 4. It is suggested that uniform distribution 
has a continuous transition while Gaussian and exponential distribution seem to have an abrupt breakdown. Here, we only show 20 realizations for clarity. 
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the inset of Fig. 2a and b. 
The cascade duration T is determined by two driving conditions 

according to the above analysis. Hence, let =m 1T or =M NT in Eq. (8), 
then we can calculate the duration as follows 

= = < <

= = < <

T m M N

T M N m

, 1, , 0 1

1, , 1, 0 1

ND
T T

T T

1
ln( )
ln

2
ln(1 )

ln
D

1

(9) 

from which T1 and T2 are theoretical cascade duration with the term-
inal condition =m 1T and =M NT respectively. 

When the condition reaches = =T T T,1 2 we have 
= N D N( 1)/(1 ) according to Eq. (9). Then the cumulative and 

incremental failure size can be calculated by Eq. (8) as follows: 

= = = =

= = = = =
+ +

m ND ND NDe

M ND ND ND N

1

· · ·

T
T

T
ND

·ln

1
1

1
1

1

1 1

ND ND

T
ND

ND

ln( )
ln

ln( )
ln

1
ln( )
ln 1

(10)  

We find that the total cascading failure size MT exactly equals to the 
network size N at =T T1 2. The cascade duration T increases to its 
maximal value and thus we can determine the endurance Tc at =T T1 2. 

Cascade process is a site percolation process on a network. The 
value of endurance Tc is determined by the critical threshold which can 
be calculated from network percolation, where the critical probability 
of square lattice is =p 0.5927c [15]. For the process ends with network 
endurance, we have the equation 

=
=

m
M N p

1
(1 )

T

T c

c

c (11)  

By solving the Eq. (11), we get the network endurance Tc and λc of 
the network for a given initial disturbance D 

=

=

Tc
ND

c
D p

p

ln( )
ln

(1 )

(1 )

c

c

N c
1

(12)  

It can be found from Eq. (12) that λc ≈ 1 when =D 0 and N → ∞. 
As for a general form of initial load distribution, we can also obtain 

the following self-consistent recursion equations based on the above 
analysis 

=

=
=

+

=M N f x D dx

m M M
D m

( )

·

T

S

i
T

i

T T T

T T N

1

1

0

1

1

T

(13) 

subject to the initial condition =D0

= = = …
+

D m M N f x D dx T, ( ) , 1, 2, 3,
D

0 0
1

1

0
0

. Here, the value of 

T is determined by the terminal condition of cascade process =m 1T
and =M NT .f(x) is the probability density function of the initial load 
distribution. For truncated exponential initial load distribution in this 
paper, the pdf is =f x( ) ,e

e e

x

L n Lmi max whereas the pdf of truncated 

Gaussian initial load distribution is =f x( ) e

( ) ( )

x µ
L µ L µ

( )2/ 2

max min . We can 

calculate the endurance Tc with the same Eq. (11). 
In general, it is usually hard to get a closed form of analytical ex-

pression except for the case under uniform initial load distribution. 
However, we can still calculate the cascade duration T and giant 
component G by iteratively solving the self-consistent recursion  
Eq. (14). The equations can always have solution from one of the two 
termination rules. Here, we take the case of initial disturbance =D 0.2
for an example. As can be seen in Fig. 7, the numerical results have 
good agreement with the experimental results for the cascade duration. 

From the above theoretical analysis, we can better understand the 
continuous and abrupt transition for different initial load distributions. 
The slope of curves in Fig. 4b, d and f at criticality are calculated as 
following the differential equation 

=dG
d

dG
dq

dq
d

·
(14) 

where q is the fraction of failure nodes with =q M N/T . As dG/dq has 
the same value for different initial load distributions, the transition is 
determined by dq/dλ, which can be calculated by iteratively solving the  
Eq. (12). As shown in Fig. 8, the value of dq/dλ for Gaussian and ex-
ponential initial load distribution is much greater than that for uniform 
initial load distribution at the critical point, indicating that a small 
increase of λ at criticality will result in greater increase of node failures 
for Gaussian and exponential initial load distribution. Therefore, from 
the aspect of initial load distributions, a continuous phase transition can 
be observed for uniform initial load distribution, rather than an abrupt 
transition for Gaussian or exponential initial load distribution 

Fig. 6. Cascading failure size of different conditions. (a) Failure size vs. cascade duration T for two types of driving conditions. The dashed line represents two 
conditions: the total failure size =M NT (green arrow) or the failure size for a single step =m 1T (red arrow). Here =N 2500. (b) A schematic diagram for the 
calculation of cascading failure size under uniform initial load distribution. = =S DT T

T
i0 stands for the cumulative incremental load of a node from the beginning to 

step T. With the initial disturbance D added to the network, the shaded area represents the cumulative overload ST. 
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6. Conclusions 

Network robustness refers to the ability of a system to resist per-
turbation and maintain its function. Endurance refers to the temporal 
scale for a network to withstand the cascading failures, which allows to 
perform certain healing activities to recover. Therefore, endurance is a 
basic and important concept for many complex systems, which is highly 
related to system resilience. Larger endurance provides more opportu-
nities for system healing. Recent studies have proposed different fra-
meworks including deterministic and probabilistic measures to describe 
system resilience, neglecting the study of system endurance. Many self- 
healing strategies also put forward to investigate system resilience after 
perturbation. However, the definition and corresponding endurance 
evaluation method remain challenging. 

In this paper, taking into account cascading overload failure, we 
develop a general method to investigate network endurance by both 
numerical and theoretical approach. The endurance here is defined as 
the cascading failure duration when the network is close to its critical 
point. We find that the endurance highly depends on the initial dis-
turbance intensity and cascade intensity. Initial load distribution also 
has a great impact on network endurance. It is found that the network 
endurance with a uniform initial load distribution monotonically in-
creases with the decreasing initial disturbance, while for other initial 
load distributions endurance has a maximum with the certain combi-
nation of both initial disturbance intensity and cascade intensity. 
Moreover, two different transitions are also found, where a continuous 
transition usually occurs on uniformly distributed network, while for 
Gaussian and exponential initial load distributions network has an 
abrupt transition. 

For effectiveness of self-healing strategy, the endurance analysis 
method presented in this paper can be used to help to design and assess 
recovery strategies of network resilience after perturbation. While the 

relation between endurance and network topology is unclear, future 
work is needed to extrapolate. Moreover, networks usually interact 
with each other. For example, the smart power grid is highly spatially 
and temporally interdependent with communication networks. 
Therefore, interdependency of the system will also affect the analysis of 
network endurance. We may extend our work to temporal network and 
interdependent network in the future. 
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