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In this paper, a robust gain-scheduling attitude control scheme
for spacecrafts with large rotational appendages is proposed.
First, by introducing the higher-order singular value decomposi-
tion (HOSVD) method, a polytopic linear parameter varying
(LPV) model with a family of weighting coefficients is developed
based on the kinetics of a flexible spacecraft. This model elimi-
nates the need of verifying all the gridding points, which is
required in conventional controller synthesis process, and reduces
the calculation complexity. Second, a generalized plant is derived
to guarantee both the system robust stability and the tracking per-
formances. Based on the LPV control theory, a less conservative
controller synthesis condition for the polytopic LPV system is
deduced. With an online tuning unit, the convex combination of
every vertex controller is obtained. For control implementation,
the present scheduling parameter is taken as an input for the tun-
ing unit. Numerical results demonstrate the effectiveness and effi-
ciency of the proposed control scheme. [DOI: 10.1115/1.4041752]

1 Introduction

The stabilization and disturbance attenuation have been the
critical objectives in controller design for spacecrafts. With
the wide use of large flexible appendages and payloads, the
analogous problem is further complicated because of the extra
introduction of more external disturbances and system
uncertainties. Furthermore, as the solar paddle rotates, modal

parameters in low-frequency range show obvious variation [1].
These issues cannot be neglected when high control precision
and stability are demanded [2]. However, conventional control
schemes based on the linear time invariant (LTI) model exert
limitations in practical application. Hence, there is a need for
developing more precise model and corresponding control meth-
ods to guarantee the closed-loop stability as well as to possess
required performances.

Several control strategies have been developed to resolve these
problems. The main approach of Refs. [3–5] is to describe the
system uncertainty brought by the moment of inertia and external
disturbances. By introducing the variable structure in the control-
ler, the uncertainty can be regarded as a perturbation, and its influ-
ence on the system response is eliminated through the robustness
of the proposed methods. Compared with Refs. [3] and [4], an
adaptive sliding mode strategy has been developed in Ref. [5],
which guarantees the system exponential convergence without a
prior knowledge about the upper bound of the uncertainty.
Another alternative solution is to design observers estimating the
unknown external torques and uncertain moment of inertia [6–8].
Thus, the estimated information can compensate the correspond-
ing terms in the dynamic model.

Among these advanced control theories, the gain scheduling
linear parameter varying (LPV) control was developed about 30
years ago [9]. With the introduction of varying Lyapunov function
[10], the controller is less conservative, making it possible to
describe the system changing in larger parameter intervals. To fur-
ther decrease the controller conservativeness, the switching con-
trol technique is introduced based on multiple parameter-
dependent Lyapunov functions [11–14]. Various switching laws
are investigated to pursue a more robust stability performance and
transient responses. For instance, the smoothness condition
[12–14] is added as an amelioration for nonsmooth transient
responses [11]. Due to its characteristics in simplifying difficult
nonlinear problems with relatively low computational complexity
when conducting online control, the LPV control technique has
been a widespread scheme for its effectiveness and low cost, espe-
cially in autopilots [15–17] and offshore wind turbine control sys-
tems [18–20]. With the introduction of bounded real lemma
(BRL), the controller synthesis problem can be transformed into a
convex optimization problem in a family of linear matrix inequal-
ities (LMIs) [10]. One great challenge in controller synthesis is
the infinite number of LMIs to be verified. The most commonly
used method is to grid the value set of system varying parameters
[10]. Although without the loss of generality, this process
can have high computational complexity in the controller
synthesis process, especially when there are several scheduling
parameters [21].

Hence, it is expected that the original plant can be approxi-
mated in a special form to bypass the gridding phase. Through the
tensor product model transformation, the N dimensional tensor is
simplified into a series of singular values and the corresponding
singular matrices, in which the core tensor is extracted by cutting
off some small singular values. With this technique, the derived
LPV system can be decomposed into convex combination terms
with varying parameters as weighting coefficients [22]. Conse-
quently, it is not complicated to design a controller for the
obtained polytopic model because of the large decrease in the
LMIs number. Inspired by this, we propose a new LPV control
strategy based on higher-order singular decomposition (HOSVD).
Considering that the system moment of inertia and coupling mat-
rices are functions of the rotational angle of flexible appendages
[2], we set the rotational angle as the scheduling parameter. Based
on the polytopic LPV model obtained via HOSVD, the controller
synthesis condition is derived to guarantee the closed-loop stabil-
ity and robustness against disturbances, uncertainties and high
vibration mode. Compared with other advanced control
approaches, this method demands fairly low online computational
complexity, which can be more practical for real-time
implementation.
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2 Preliminaries

DEFINITION 1. Given the tensor A 2 RI1�I2�����IN, this tensor can
be rewritten as the product of [23]

A ¼ S�1Uð1Þ�2Uð2Þ�3…�NUðNÞ ¼ S b
N

n¼1

UðnÞ (1)

where UðnÞ ¼ ½uðnÞ1 ;u
ðnÞ
2 ;…;u

ðnÞ
In
� represents the ðIn � InÞ matrix in

which n ¼ 1; 2;…;N. u
ðnÞ
i is the ith n mode singular vector. S rep-

resents a ðI1 � I2 � � � � � INÞ tensor and its subtensors Sin¼i have
the following properties:

(1) Any two arbitrary subtensors of S are orthogonal

hSin¼a;Sin¼bi ¼ 0; ða 6¼ bÞ (2)

(2) All subtensors are ordered in accordance with their Frobe-
nius norms

kSin¼1k � kSin¼2k �… � kSin¼In
k � 0 (3)

Remark 1. By applying the above concepts to the LPV sys-
tem, the original system with time varying parameter that
changes in the closed hypercube, X ¼ ½a1; b1� � ½a2; b2� � � � � �
½aN ; bN �, can be transformed into a polytopic LPV form. First,
the closed hypercube is gridded into Ii in each ½ai; bi�;
i ¼ 1;…;N, through which a tensor with the size of I1 � I2 �
� � � � IN is derived. Thus, the system plant in high-order tensor
form can be obtained by substituting the gridded varying param-
eters into the original plant.

3 Problem Formulation

This section discusses the derivation process for the attitude
dynamic model, which is based on the hybrid coordinate method
[24]. It is assumed that the variation of the attitude angle is
relatively small, so the linearization of kinematics equation is
employed to simplify the kinetics [25]. Considering a rigid body
with two rotational flexible appendages, the system dynamic
model can be written as follow [1]:

JðdÞ€h þ
X2

i¼1

DiðdÞ€gi ¼ uþ d

€gi þ 2niXi _gi þX2
i gi þ DT

i ðdÞ€h ¼ 0

8>>><
>>>:

(4)

where i¼ 1, 2 are the north/south rotational appendages. d repre-
sents the rotational angle. J(d) represents the inertia matrix vary-
ing with d. h denotes the Euler angles of the spacecraft, Di(d), gi,
ni, and Xi represent the coupling coefficient matrices for the
appendages vibration and spacecraft rotation, modal coordinates,
modal damping ratios and the modal frequencies of the ith
appendage, respectively. u represents the control torque, and d is
the disturbance torque.

If we define vector xp ¼ ½hT ;gT
1 ;g

T
2 �

T ; g1 2 Rn1�1, and
g2 2 Rn2�1. As in Ref. [25], it is assumed that the attitude angles
and attitude velocities can be measured by sensors. Thus, if we
denotes yp as the measurements, then the state equation of Eq. (4)
can be synthetically written by

_xp ¼ Apxp þ Bpðuþ dÞ

yp ¼ Cpxp

(
(5)

where

Ap ¼
03þn1þn2

I3þn1þn2

�MðdÞ�1
K �MðdÞ�1

D

2
4

3
5; Bp ¼

0ð3þn1þn2Þ�3

MðdÞ�1
H

2
4

3
5;

Cp ¼
HT 0

0 HT

2
4

3
5; MðdÞ ¼

JðdÞ D1ðdÞ D2ðdÞ

DT
1 ðdÞ In1

0n1�n2

DT
2 ðdÞ 0n2�n1

In2

2
6664

3
7775;

D ¼

03�3 03�n1
03�n2

0n1�3 2n1X1 0n1�n2

0n2�3 0n2�n1
2n2X2

2
6664

3
7775;

K ¼

03�3 03�n1
03�n2

0n1�3 X2
1 0n1�n2

0n2�3 0n2�n1
X2

2

2
6664

3
7775; H ¼

I3

0n1�3

0n2�3

2
6664

3
7775

I3 represents a unit matrix with three dimensions. The subsequent
discussion is based on Eq. (5). Here, we rewrite the original plant
described by Eq. (5) into a system matrix. After applying
HOSVD, the obtained high-order tensor can be transformed as
follows:

GpðdÞ ¼
Ap Bp

Cp 0

" #
¼ GE

pn �N
n¼1 rnðdnÞ

GE
pn : ¼

AE
pn BE

pn

CE
pn 0

" #
2 RI1�I2�����IN�m�l

(6)

where Gp(d) is the parameter varying plant with the size of m� l,
d (rotational angle) represents the varying parameter vector, GE

pn

represents the ith subtensor of the core tensor with the size of
I1 � I2 � � � � � IN � m� l, and rnðdÞ is the weighting coefficient
of each subtensor, which satisfies the properties described in
Ref. [23]. With the earlier process, the derived polytopic
LPV form reduces the computational complexity when solving
the controller synthesis condition. This transformation can be
regarded as an approximation to the original plant when some
modes with small norms being truncated. The bound of this
error is quantified by the quadratic sum of the abandoned modes
singular values.

4 Gain Scheduling Controller Synthesis

4.1 Generalized Plant. The main focus of this section is to
implement the attitude tracking as well as to guarantee the robust-
ness against disturbances and residual modes. Consider that the
controller gain can be calculated in the analogous structure of
Eq. (6). Inspired by the weighting function design techniques pro-
posed in Ref. [26], the generalized plant is depicted in Fig. 1.

In Fig. 1, Gpðd; tÞ is the approximation of the original LPV sys-
tem based on HOSVD. W1 is a weighting function accounting
for high frequency modes. W2 is related to the error between refer-
ence signals and measured values. d and d are the disturbance tor-
ques and varying parameters, respectively. The inputs of the
controller are the error between the reference signal r and the sys-
tem output in Eq. (5), while its outputs are the torques applied on
the body axes of the spacecraft. Figure 1 shows that the controller
is self-scheduling via an online tuning unit. Every vertex control-
ler is time invariant, while the coefficient of each one is a function
of d corresponding to the output of the online tuning unit. It is
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noted that both weighting functions W1(s) and W2(s) are assumed
to be a sixth-order system with the model structure of

_xi ¼ Atixi þ Btixi

zi ¼ Ctixi
; ði ¼ 1; 2Þ

�
(7)

where ðAti;Bti;CtiÞ are the constant system matrices and xi repre-
sents the corresponding inputs. With the aforementioned informa-

tion, if we denote x ¼ ½xT
p ; x

T
1 ; x

T
2 �

T
as the system state, the

generalized plant can be represented by

_x ¼ AðdÞxþ B1ðdÞxþ B2ðdÞu
z ¼ C1x

y ¼ C2xþ D21x

8<
: (8)

AðdÞ ¼
ApðdÞ 0 0

0 At1 0

�Bt2C 0 At2

2
64

3
75; B1ðdÞ ¼

BpðdÞ 0

Bt1 0

0 Bt2

2
64

3
75;

B2ðdÞ ¼
BpðdÞ

Bt1

0

2
64

3
75; C1 ¼

0 Ct1 0

0 0 Ct2

" #
;

C2 ¼ �C 0 0
� �

; D21 ¼ 0 I
� �

where z is the controlled output, y is the measurements, and u is
the control input. It should be noted that the zero in system
matrices represents a null matrix with appropriate dimensions.
Equation (8) provides the basic LPV model in Sec. 4.2.

4.2 Controller Synthesis. Consider an LPV system in the
state-space form as Eq. (8). Replace ðAp;Bp;Cp; 0Þ from Eq. (6)
into Eq. (8). When the N in Eq. (6) equals 1, the polytopic plant of
the generalized system is derived as follows:

Gg 2 { �
Ai B1i B2i

C1 0 0

C2 D21 0

2
4

3
5; i ¼ 1; 2;…; e

8<
:

9=
; (9)

where Ai;B1i;…, represent the system matrices of each LTI ver-
tex. e is the number of LTI vertexes. Similarly, with N¼ 1, the
controller can be described in the following form:

AkðdÞ BkðdÞ
CkðdÞ DkðdÞ

� �
¼
Xe

i¼1

riðdðtÞÞ
Aki Bki

Cki Dki

� �
(10)

where ðAki;Bki;Cki;DkiÞ denotes the ith vertex of the controller.
riðdÞ is the weighting coefficient, which is a function of d.

The aim of this section was to derive the controller synthesis con-
dition when the closed-loop LPV system satisfies internal stability
and to guarantee the controlled output z has a L2-gain bound c against
disturbance x [10]. It is assumed that the time-varying parameter and
it variation rate are bounded. The given LPV plant is in the form of
Eq. (8) with a control value depicted by Eq. (10). By extending the
general H1 suboptimal control synthesis theorem, this LPV control
synthesis problem can be resolved with the following Theorem:

THEOREM 1. For the system (9) with a feedback controller, the
closed-loop LPV system is quadratically stable and the L2 gain of
jjzðtÞjj2=jjxðtÞjj2 is bounded, if and only if there exists a continu-
ously differentiable matrix function PðdÞ ¼ PTðdÞ > 0, a positive
scalar c and continuous matrix functions ðAk;Bk;Ck;DkÞ satisfy-
ing the following LMIs:

PAcl þ AT
clPþ _P PBcl CT

cl

	 �cI DT
cl

	 	 �cI

2
664

3
775 < 0 (11)

where ðAcl;Bcl;Ccl;DclÞ represent the state-space matrices of
the closed-loop system. Every matrix except I in this theorem
varies with d. The symbol * denotes corresponding symmetrical
matrices.

Proof. Denote a Lyapunov function as V ¼ 1
2

xTPðdÞx. From

Eq. (11), it can be deduced that PAcl þ AT
clPþ _P < 0, the closed-

loop system is quadratically stable. By applying the Schur com-
plement, Eq. (11) can be rewritten as follows:

CT
cl

DT
cl

" #
½CclDcl� þ

AT
clPþ PAcl þ _P PBcl

BT
clP �c2I

" #
< 0 (12)

By multiplying the left side of the inequality with ½xTxT � and

½xTxT �T , it can be transformed into zTz� c2xTxþ
xTP _x þ 1

2
xT _Px. Integrate the result from 0 to T. Then, Eq. (12)

can be transformed as follows:ðT

0

½zTz� c2xTxþ _V�dt < 0 (13)

Thus, with the zeros initial assumption, it is obvious that the sys-
tem output z and input x satisfy jjzjj2 < cjjxjj2.

Remark 2. Generally, a conservative but commonly used tech-
nique is to assume P(d) to be a constant matrix. That is to say,
every varying parameter value corresponds to the same matrix P.
To reduce this conservativeness, P is defined with a similar struc-
ture as matrix A(d). Consequently, when the controller is substi-
tuted by a polytopic one with the assumption that B2, C2 are
simultaneously parameter-independent, then the aforementioned
theorem can be rewritten as

THEOREM 2. For the system (9) with the control law (10), the
closed-loop LPV system is quadratically stable and the L2 gain of
jjzðtÞjj2=jjxðtÞjj2 is bounded, if and only if there exists parameter-
dependent symmetric matrix functions XðdÞ :¼

P
riðdÞXi > 0;

YðdÞ :¼
P

riðdÞYi > 0, parameter-dependent matrices ðÂki; B̂ki;

Ĉki; D̂kiÞ and a positive scalar c satisfying the LMIs in Eqs. (14)
and (15). Consequently, the synthesis problem can be modified as
follows:

min c

subject to (14) and (15) hold; 8ðd; _dÞ 2 ½d; �d� � ½ _d; �_d�

Xi I

I Yi

" #
> 0; ði; j ¼ 1;…; eÞ

(14)

Fig. 1 The generalized plant with online tuning unit
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AjXi þ B2Ĉj þ ð	ÞT 	 	 	
Âj þ ðAj þ B2D̂jC2ÞT YiAj þ B̂jC2 þ ð	ÞT 	 	

BT
1 þ ðBT

2 D̂jD21ÞT ðYiB1 þ B̂jD21ÞT �cI 	
C1Xi þ D12Ĉj C1 þ D12D̂jC2 D11 þ D12D̂jD21 �cI

2
666664

3
777775 < 0 (15)

Proof. Due that G(d) is defined of polytopic structure, the system state-space matrix can be depicted as G :¼
Pe

i¼1 riðdðtÞÞGi. It is
noted that ri represents the weighting coefficients varying with d(t) satisfying

Pe
i¼1 riðdÞ ¼ 1. By substituting the polytopic LPV state-

space matrices into Eq. (11), there exists the following equation:

Xe

i¼1

r2
i PiAcli þ

Xe

i;j¼1;i 6¼j

rirjPiAclj þ ð	Þ þ _P
Xe

i¼1

r2
i PiBcli þ

Xe

i;j¼1;i 6¼j

rirjPiBclj CT
cl

	 �cI DT
cl

	 	 �cI

2
666664

3
777775 < 0 (16)

Consider 1 ¼ ð
Pe

i¼1 riÞð
Pe

i¼1 riÞ. Equation (16) is rewritten as the following equation:

Xe

i¼1

r2
i

PiAcli þ ð	Þ þ _P PiBcli CT
cl

	 �cI DT
cl

	 	 �cI

2
664

3
775þ Xe

i;j¼1;i6¼j

rirj

PiAclj þ ð	Þ þ _P PiBclj CT
cl

	 �cI DT
cl

	 	 �cI

2
664

3
775 < 0 (17)

Thus, if the following condition exists at every vertex, Eq. (17) is satisfied simultaneously:

PiAclj þ ð	Þ þ _P PiBclj CT
cl

	 �cI DT
cl

	 	 �cI

2
64

3
75 < 0; ði; j ¼ 1; 2;…; eÞ (18)

Partition Pi and P�1
i as follows:

Pi ¼
Yi Ni

NT
i S

� �
; P�1

i ¼
Xi Vi

VT
i Zi

� �

where Xi, Yi are symmetrical matrices and Ni, Vi are in fit dimension. Denote that

C1i ¼
Xi I

VT
i 0

� �
; C2i ¼

I Yi

0 NT
i

� �

There exits PiC1i ¼ C2i. Pre- and postmultiply Eq. (18) by diagfCT
i ; I; Ig and diagfCi; I; Ig, respectively. If ðÂkj; B̂kj; Ĉkj; D̂kjÞ are

derived as in Ref. [10], then Eq. (15) can be deduced easily. With the constraint of Eq. (14), Pi> 0 is guaranteed.
Remark 3. Although this theorem requires a parameter-independent B2, which is different from the derived LPV system in Eq. (8), it

can be realized by adding postfiltering with the control inputs u [27]. The mathematic model of this filter is given by

_xf ¼ Af xf þ Bf u

uf ¼ Af xf

(
(19)

where Af is stable, u is the input, and uf is the output. With this modification, the original dependence on d in the control input matrix is
eliminated. The original plant is depicted in Fig. 2.

5 Numerical Example

This section presents numerical simulations on a flexible spacecraft attitude control problem. The overall inertia can be calculated
with the following equation as in Ref. [28]:

Fig. 2 The modified generalized plant with online tuning unit
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JðdÞ ¼ Jb þ
X2

i¼1

JaiCiðdÞ �
X2

i¼1

mair
�
air
�
ai; ði ¼ 1; 2Þ

where Jb, Jai, and mai are the rigid body inertia, rotating
appendages inertia, and the mass of appendages, respectively.
Ci(d) and Jai are the appendages coordinate transformation matri-
ces and cross product matrices of the corresponding installation
position, respectively. The varying parameter is defined in
X ¼ ½0 deg; 90 deg�, which is divided into 150 discretized grids. It
is noted that the varying parameter is in periodic variations, and
the condition when rotation angle in other intervals resembles that
of X. Thus, it is reasonable to restrict the parameter domain. Con-
ditions in other intervals can be easily derived. After implement-

Fig. 4 Roll, pitch, and yaw angles when tracking reference signal

Fig. 5 Roll, pitch, and yaw angles when disturbed by square wave torques

Fig. 6 Roll, pitch, and yaw control inputs for signal tracking

Fig. 3 Weighting function value changing with varying
parameters
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ing HOSVD, the original LPV system can be converted into the
polytopic form as Eq. (9). The variation regulation of the weight-
ing coefficients is shown in Fig. 3.

From Fig. 3, it is noted that the vertex number is 4, which is the
result of e in Eq. (9). The value of the weighting function denotes
the proportion of every LTI system at certain varying parameter
values. These weighting values are used in the convex combina-
tion of vertex controllers when applying control missions. When
receiving the input parameter, the online tuning part outputs the
real-time weighting coefficients by interpolating the obtained
coefficient group.

By solving the controller synthesis condition in Eqs. (14) and
(15), each vertex controller gain can be obtained. To verify per-
formances of the proposed control scheme, the simulations are
carried out under the following cases:

Case 1. Reference tracking control, in which the reference atti-
tude angle commands are set, as shown in Fig. 4 with solid lines.

Case 2. Square wave interference, in which the disturbances are
set as 0.5 N�m, 0.5 N�m, and 0.3 N�m corresponding to roll, pitch,
and yaw axes.

It is noted that both solar panel rotations and the environmental
disturbances are considered in the earlier conditions. The space
environmental disturbance torque d is set as

d ¼ 0:001�
0:3 cosð10x0tÞ þ 0:4 sinð3x0tÞ � 1

0:3 cosð5x0tÞ � 0:2 sinð2x0tÞ þ 1:5

0:3 sinð10x0tÞ � 0:8 sinð4x0tÞ þ 1

8><
>:

The initial Euler angles and the angle rates are set at [0, 0, 0, 0,
0, 0]T. In addition, the initial first-order modal coordinate and its
time derivative are set at 0.1 and 0.01, respectively.

In the first case, Fig. 4 shows the time response of pitch, roll,
and yaw attitude angles tracking reference commands. Compared
with the given proportional-derivative (PD) control result, the pro-
posed method provides faster convergence and higher stabiliza-
tion precision. By calculating the root-mean-square of the results
after 3550 s, the attitude control accuracy and stability of the pro-
posed method are 3� 10�5 deg and 2� 10�7 deg/s, compared
with the 9� 10�5 deg and 3� 10�7 deg/s using PD control.

In the second case, according to Fig. 5, it is clear that the gain-
scheduling LPV control resists the square wave interference with
less fluctuation and faster stabilization. In this case, the proposed
method is 2� 10�6 deg in attitude control accuracy and 6� 10�7

deg/s in stability, while the conventional PD control is 9� 10�6

deg in attitude control accuracy and 1� 10�7 deg/s in stability.
As illustrated in both Figs. 6 and 7, the proposed control tech-

nique reduces chattering in the output torques with a reasonable
amplitude, although it entails larger control torques than the con-
ventional PD control. From Figs. 8 and 9, it is obvious that the
proposed method can suppress modal vibration.

6 Conclusions

This paper proposes a self-scheduling controller to solve the
attitude control problem for large flexible satellites with rotational
appendages. It is found that the introduction of HOSVD technique
successfully provides a model transformation process to derive a

Fig. 7 Roll, pitch, and yaw control inputs when disturbed by square wave torques

Fig. 8 Roll, pitch, and yaw angular rates in proposed methods when tracking ref-
erence signal
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polytopic LPV model with varying weighting values. The control
performances can be realized by adding corresponding weighting
functions into a generalized plant. With the introduction of LPV
H1 control theory, the controller synthesis problem is trans-
formed into a convex optimization problem with a family of LMIs
to solve. Analysis shows that the controller conservativeness is
reduced by using a parameter-dependent Lyapunov function,
instead of a single constant one.

Numerical results demonstrate that the proposed controller out-
performs a conventional PD controller, with better settling time
and precision. Moreover, the proposed control method exhibits
less computational complexity in comparison with conventional
methods of controlling a flexible satellite. Further research is
required to examine the measurement error and optimize the con-
troller gain in future.
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