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a b s t r a c t

The underactuated hand has the advantage of adaptation for grasping irregularly shaped objects by
combining the active actuators with passive springs to achieving a stable grasp. The design of the spring
parameter will affect the region of the stable grasp. This paper presents a metric to design the spring
stiffness to keep the tradeoff between the adaption of objects and ability of stable grasp. Firstly, the
relationship between the spring stiffness and stable region is qualified and visualized according to grasp-
state plane together with the spring stiffness’s delimiter between regimes. Then, a quantitative way by
analytical equations and graphs is proposed to evaluate the grasp stabilization with respect to spring
stiffness. Finally, applications of designing the optimal spring stiffness by giving the particular conditions
are presented to validate the efficiency of the proposed method.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

On-orbit services usingmechanical arm, such as assembling the
space station, repairing or retrieving the satellite, refueling the
spacecraft are essential for extravehicular activities. As a critical
part of the mechanical arm system, the behavior of the end ef-
fector could decide on-orbit services level to some extent. In the
past few years, various types of end effectors have been studied.
A special emphasis has been placed on underactuated robotic
hands, in which the degrees of freedom (DOF) is more than the
number of actuators and generally uses passive elements in their
unactuated joints [1]. In an underactuated finger, the action of
an active motor on the phalanges is transmitted through suit-
able mechanical instruments, e.g. tendon-actuated mechanisms
and linkage-based mechanisms, etc [2]. Pioneer designs the MARS
and the SARAH hands [3] which have the ability to conform to
various unknown objects of large size. TheMARS handwas the first
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underactuated hand which is built to study grasping strategies,
each finger can be controlled independently to obtain different
grasp types by mounting on top of actuated module. In order
to further reduce actuators’ amount and as a result decrease the
required complexity of controller, SARAH hand is built based on
the coupling between different fingers [3]. The SDM hand [4] has
the same application with the SARAH hand, while Odhner focused
on designing an underactuated finger to pick up small objects from
a flat surface [5]. As for an underactuated hand, its compliance is
not strictly necessary to conform to various objects; moreover, the
null space inherent in underactuation also plays an important role.
Applications in the literature show that the underactuated hands
have the superiorities of cost, weight and controllability compared
with the fully actuated hands [6–8], and can grasp various objects
in diverse tasks as the fingers have the ability of adapting to the
various object by their inherent mechanical property [9]. This
means that the underactuated hands are suitable for implementing
the operations of picking up and placing task for different objects
under unstructured environments.

Due to the underactuated character, many different types
of passive elements were considered [3] to resolve the non-
uniqueness question involvedwith the null space grasp [10], when
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the finger is not in contacting with an object. Therefore, the
problem of grasp stability is the crux of designing an underactu-
ated hand. Generally, form-closure was used to characterize the
grasp’s robustness. Krut focused on it and extended this property
by adding a one-way movement mechanism to implement static
constraint between phalanges and the object [11]. However, this
method is with the assumption that the contact points between
finger and object are fixed in space. When a grasp is exerted by
an underactuated hand, it is impossible to control each phalanx’s
position independently. Although underactuated fingers have a
distinct advantage of grasping various objects, there are only a few
available tools to solve the grasp stability problem numerically,
and the underactuated fingers are designed intuitively. Among a
wide range of underactuated hands in research, adaptability and
stabilization are usually considered to evaluate the effect of grasp-
ing, and improving the level of stabilization is especially important
for on-orbit services.

To achieve a stable operation, a novel design of an adaptive
neuro fuzzy inference strategy (ANFIS) for controlling input dis-
placement of a new adaptive compliant gripper is presented [12].
Dalibor and Danesh presented a adaptive control algorithm using
extreme learning machine (ELM) and support vector regression
(SVR) [13]. Kragten, Herder andGosselin did systematicwork.With
underactuated fingers able to conform to the object in a stable and
multipoint way, they presented a visualized method which called
grasp-state plane to attain the stable and ejection regions. Combin-
ing this method with the isotropy of a grasp, they proposed a rule
to design the underactuated finger [3]. And also there are some
classical theory can be used to design the underactuated finger,
like TRIZ [14]. To solve the grasp stability problem numerically
and produce analytical expressions, Kragten and Herder presented
a method in [9]. They focused on bifurcations between grasps of
different topology to determine the geometrics’ dimensions and
actuators’ parameters of an underactuated hand so that it could
grasp the objects in desired range, since individual joint angles
cannot be set by the actuators in underactuated hands, the contact
point can move. In addition, the effect of the number of contact
points and even contact forces on the stable grasp was pointed
out in [15]. For enveloping, the greater number of these contact
points and forces with uniformity distribution, the better the grasp
capability is. Ciocarlie presented a quasi-static equilibrium for-
mulation to produce the underactuated hand for various grasping
tasks [16] and to predict a given grasp’s stability [17]. [18] pre-
sented one passive compliant joint which have soft contacts with
external objects and measurement capabilities. And conductive
silicone rubber was used asmaterial for modeling of the compliant
segments of the robotic joint. Giannaccini presented a lower cost,
cable driven gripper and showed how its compliance can be varied
passively to ensure an adaptive yet stable grasp [19]. However,
the spring was often neglected in the process of mathematical
modeling, or although it has been used in design of the hand but
the particulars of the spring, such as its stiffness, were not critical.
Under this situation, the spring was usually regarded as a ‘‘weak
spring’’, which only used restraint the finger kinematically and
ensure the adaptation for the shape of the grasped object, while
true spring can make the various grasp types transitioning from
one to another with varying the contact forces.

For the underactuated fingers, the appropriate application of
the spring makes it possible for one input torque to drive a finger
that has more than one DOF [11,20]. The balance between the
contact forces, the motor actuation torque and the spring passive
torque contributes to various grasp type makes great effect on
the stable grasp. If the stiffness of springs is designed too small,
underactuated fingers can adapt the shape of objects easily but
have less stabilization; If the stiffness of springs is designed too
hard, the grasp becomesmore stable but could not adjust itself to a

widely range of irregularly shaped object. That is to say, an opening
ejection or a closing ejection can occur when stiffness is greater or
smaller beyond a limitation, and it will lead to a fail mission [9].
To overcome this lack of interrelated knowledge, the purpose of
this paper is to propose a metric that is useful in the design of
underactuated fingers of the type driven by links. The innovation
of thework here is to explore the possibility of designing the spring
stiffness to keep the trade-off between the ability of conforming to
the object and the stability of grasping. Firstly, an underactuated
finger and the corresponding stable region are deducted through
statics analysis. As a 5-bar link with only one input torque is
indeterminate, a spring which is in a different location from that of
the SARAH hand is used to resolve the indeterminacy so that distal
phalanges can move relative to one another in the parallel manner
with less energy consumption. Then, the paper takes the result of
Kragten and Herder on grasp stability and bifurcations in the grasp
type to obtain the spring stiffness’s delimiter between regimes.
Finally, the relationship between spring stiffness and stable region
can be visualized in order to obtain the proper spring.

The paper is organized as following. In Section 2, the statics
analysis of the underactuated fingers and the stable region in the
grasp-state plane are reviewed. In Section 3, the range of spring
stiffness is figured out to be regarded as a delimiter between
regimes, which is built on the basis of previous analysis. Then,
the relationship between spring stiffness and stable region is con-
firmed in Section 4. Furthermore, the way on how to evaluate the
effect of spring stiffness can be obtained. Finally, conclusions are
given in Section 5.

2. Statics analysis of the underactuated fingers

In order to obtain the configurations where the finger can
realize a stable grasp, this section reviews the statics analysis of the
underactuated fingers. Without loss of generality, the model of the
underactuated handwith two fingers can be shown in Fig. 1(a), and
it has a symmetrical design. Each finger consists of two phalanges
L1 and L2, and the actuation mechanism of each figure consists
of four links a, b, c, and d, wherein link c and phalange L2 are
bounded together with an constant angle ψ , link a and phalange b
are connected together with an varied angle γ , and d is a fixed link.
The motor torque Ta is actuated with link a, which transfers the
actuation torque to the phalanges. Tk is the spring passive torque.

The statics will provide a formulation of the actuating torques
and the contact force on the object. The contact force can be
expressed as [21]:

f = (J0T )−1(J1T )−1(J2T )−1(J3T )−1t, (1)

where f =
[
F1 F2

]T
is the output expression of the contacted forces

exerted on the object, t =
[
Ta Tk

]T
is the input expression of the

active actuating torque and the passive spring torque. Matrix J0 is
the Jacobianmatrix of grasp, while matrices J1, J2 and J3 depend on
the driving mechanism used to propagate the actuating torque to
the phalanges, i.e.,

J0 =

[
p1 0

p2 + L1(cos θ2 + µ sin θ2) p2

]
, (2)

where the friction is considered and µ is the coefficient of static
friction, variables p1 (0< p1 < L1) and p2 (0< p2 < L2) express the
contact points’ locations defined in Fig. 1.

The matrices J1, J2 and J3 are expressed as [22]:

J1 =

[
1 0

−1 1

]
, (3a)
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Fig. 1. Model (A) of the two-finger.

J2 =

[
X1 Y1

X2 Y2

]
=

⎡⎢⎢⎣−
∂ f4/∂ϕ1
∂ f4/∂ϕ4

−
∂ f4/∂ϕ2
∂ f4/∂ϕ4

−
∂ f3/∂ϕ1
∂ f3/∂ϕ3

−
∂ f3/∂ϕ2
∂ f3/∂ϕ3

⎤⎥⎥⎦ , (3b)

J3 =

[
1 0
1 −1

]
, (3c)

where f3 and f4 are obtained owing to the fingers’ closed-loop
device, and

f3 = d2 + a2 + b2 + c2 − L21 + 2da cos(α − ϕ1)
+ 2db cos(α − ϕ2)
+ 2dc cos(α − ϕ3) + 2ab cos(ϕ1 − ϕ2) + 2ac cos(ϕ1 − ϕ3)
+ 2bc cos(ϕ2 − ϕ3)

(4a)

f4 = d2 + a2 + b2 + L21 − c2 + 2da cos(α − ϕ1)
+ 2db cos(α − ϕ2)
− 2dL1 cos(α − ϕ4) + 2ab cos(ϕ1 − ϕ2) − 2aL1 cos(ϕ1 − ϕ4)
− 2bL1 cos(ϕ2 − ϕ4)

(4b)

Hence, one obtains the analytical expressions

f =

⎡⎢⎢⎣
(p2Y2 + L1Y1G)Ta + [p2(X2 + Y2) + L1(X1 + Y1)G]Tk

p1p2(X1Y2 − X2Y1)

−
Y1Ta + (X1 + Y1)Tk
p2(X1Y2 − X2Y1)

⎤⎥⎥⎦ (5)

Fig. 2. Model (B) of the two-finger.

where G = cos θ2 + µ sin θ2, Tk is related to the spring stiffness K
and expressed as

Tk = K △ γ = K (γ − γ0), (6)

where γ0 is the initial value of γ .
For the sake of further analysis, internal torques should be

expressed, which can be considered as a series of links redistribute
the actuation torque to the joint space (Fig. 2(a)). The parameter
of the proximal phalanx’s length L1, distal phalanx L2, and the
palm width L0 are called as the geometrical parameters in this
kind of statics analysis model. The other design parameters of
the fingers related to the actuating mechanism are called as the
actuation parameters. The actuation mechanism of each figure
distributes the active actuating torque Ta and the passive spring
Tk to the phalanges, which can be characterized by T1 (acting on
the proximal phalanx) and T2 (acting on the distal phalanx). The
following ratio is defined:

R =
T2
T1
. (7)

This ratio is not necessarily fixed, but it relies on the actual angle
of the joints.

To simplify the calculations, the reference objects’ shape is
circular, and the object initial location is enforced at the line of
symmetry about the palm, so only the right finger is considered.
For grasp equilibrium, the net wrench must be zero. However, we
consider the situation with force balance only in this paper, the
phalanges bring a compressed contact force for the object which is
characterized by the radius robj. The contact forces’ amplitude relies
on the contact points’ position and the distal phalanx’s angle [9]:

f =

⎡⎢⎣
T1
p1

(1 − R(
p2 + L1G

p2
))

T1R
p2

⎤⎥⎦ (8)

T1, T2 are the identical effects of Tk and Ta combining and
dispersing to each joint of the phalanges. Therefore, making cor-
responding items between Eqs. (5) and (8) equal with each other,
one can obtain

T1 =
(Y2 − Y1)Ta + (X2 + Y2 − X1 − Y1)Tk

X1Y2 − X2Y1
(9)

T2 = −
Y1Ta + (X1 + Y1)Tk

X1Y2 − X2Y1
(10)

As mentioned above, combining (9) and (10) and substituting
(6) yields the spring stiffness

K = −
[R(Y2 − Y1) + Y1]Ta

[R(X2 + Y2 − X1 − Y1) + X1 + Y1](γ − γ0)
(11)
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(a) 2-point. (b) 3-point. (c) 4-point. (d) 5-point.

Fig. 3. Different patterns of grasping.

Fig. 4. Free body sketch of the object and the right finger.

Notice that the spring is useful for holding the finger with an
expectedmotion. Four different patterns of grasping are illustrated
in Fig. 3 including power (3-point, 4-point, 5-point) and pinch (2-
point) grasp when R is changed [9]. That is to say, the existence of
grasp equilibrium is decidedby the spring stiffness. For a planar un-
deractuated gripper composed of two phalanges, it can smoothly
adapt to contact forces to different objects in the grasping process,
and there will be a stability region where the objects are moved
toward to the stable grasping equilibrium. For a grasp process, the
contact will still be remained with the distal phalanx by sliding
against the object. This sliding proceeding will continue until a
force equilibrium stable configuration is achieved, until a stable
situation with joint limitation is met (the adaptation of shape is
less effective), or until the object is curled away or loosed contact
with the last phalanx (ejection). Fig. 4 shows the free body sketch
of the object and the right finger, which is in equilibrium, if the
resultant of the contact forces is zero.

Only the y-direction’s resultant force is considered with the
assumption of the symmetric grasp.

Fobj,y = 2F1CF1 + 2F2CF2 + Fpalm, (12)

where

CF1 = cos θ1 + µ sin θ1, (13)
CF2 = cos(θ1 + θ2) − µ sin(θ1 + θ2). (14)

It is common to emerge a slide by the phalanxes of the finger
in contacting with the object, and an balanced position can be
attained in the distal phalanx but just for one and unique particular
contacting position p2 = e, where e is the location of p2 at grasp
equilibrium, whichmeans the distance between a contact point on
a distal phalange and its joint.

5-point grasp:
For 5-point grasp type, the object contactwith both phalanx and

palm, as shown in Fig. 5. According to the geometric relationship

Fig. 5. Geometric relationship in 5-point grasp type.

(∆OC0O1 ∼= ∆OC1O1,∆OC1O2 ∼= ∆OC2O2), the equilibrium point
can be obtained, i.e.

e = L1 − L0. (15)

4-point grasp:
For 4-point grasp pattern, the object lose contact with the palm,

so the Fpalm = 0. Substituting Fpalm = 0 and (5) into (14), the
equilibrium point can be obtained, i.e.

e =
L1(CF2 − CF1G)[Y1Ta + (X1 + Y1)Tk]

(Y2CF1 + Y1CF2 )Ta + [(X2 + Y2)CF1 + (X1 + Y1)CF2 ]Tk
. (16)

3-point grasp:
The location of p2 at grasp equilibrium corresponds to the

solution of Eq. (5) (F1(p2) = 0), i.e.

e = −
L1Y1Ta + L1(X1 + Y1)Tk
Y2Ta + (X2 + Y2)Tk

G. (17)

2-point grasp:
Pinch grasp type has difficulty in achieving stability [23]. Due

to the potential energy of the system, the equilibrium point is not
local minimum.

In addition, it can be seen that, from the distal phalanx, the
contact location will be introduced to analyze whether a sliding
motion bring a stable position or not. It can be also easily shown
through considering the triangle which is constituted by O1, O2,
and the contact point (illustrated in Fig. 2(b)), and if this contact
location exists and is fixed in space, one has

p22 − p22i + 2L1(p2 cos θ2 − p2i cos θ2i) = 0, (18)

where p2i and θ2i are an arbitrary initial configuration respectively.
This equation formulates that the distance between the finger base
point and the location of contact is invariant for any pair (p2i, θ2i).
The contact curves can be tracked in the (p2, θ2) plane, which
was regarded as the grasp-state plane [3], examples with certain
parameters will be illustrated in Section 4.

From (18), the finger has one DOF while it is in contaction with
the object. This motion can be precisely described and referred
to as a self-adaptive motion. Indeed, the contacting trajectory is
a curve in the contacting plane (p2, θ2), and if the contacting tra-
jectory crosses an equilibrium curve, the grasp will finally stable,
otherwise the contact with the object will be lost, namely due to
the kinematic evolution, one obtains the ejection phenomenon.

In conclusion, depending on the contact trajectory (18) and
the equilibrium curve (15)–(17), different final stability region can
be obtained by defining different parameters of the mechanism
including geometric parameters and spring stiffness and so on.
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Fig. 6. Scheme of an underactuated gripper.

3. Bifurcations between grasps of different topology

From the statics analysis above, one can attain the function of
spring stiffness K and express the stable region for a two-finger
underactuated hand. Due to the performance of the stabilization
affected by spring stiffness, the relationship between spring stiff-
ness and stable region needs to be confirmed. Beyond that, the
spring stiffness’s delimiter between regimes should be figured out
tomake sure the spring is appropriate for the underactuated finger,
and it can be attained based on (11) by analyzing the radius of
grasped object and the value of R in different grasp type. The
method to analyze the value of radius and R in different grasp type
in based on [9] and presented by following.

3.1. The range of object sizes under various grasp types

When the underactuated finger makes contact with an object,
various mechanism characteristic parameters lead to various ob-
ject sizes and contact points. As illustrated in Fig. 4, two constraint
equations describing contact between phalanges of the right finger
and the object are as follows [9]:(

L0 + p1 cos θ1
p1 sin θ1

)
=

(
robj sin θ1
Yobj − robj cos θ1

)
(19)(

L0 + L1 cos θ1 + p2 cos(θ1 + θ2)
L1 sin θ1 + p2 sin(θ1 + θ2)

)
=

(
robj sin(θ1 + θ2)
Yobj − robj cos(θ1 + θ2)

)
(20)

where Yobj is the distance between the object’s center and the palm
(Yobj = robj), θ1 is the proximal joint’s rotation with respect to the
palm, and other signs were defined in Section 2. Equation of the
left finger is similar but mirrored with regard to the vertical axis
(see Fig. 6).

5-point grasp mode:
For a 5-point grasp mode, the equations (Eqs. (19), (20)) and

Yobj = robj must be satisfied. Such a grasp mode can only exist if:

L0 ≤ L1 ≤ L0 + L2. (21)

As shown in Fig. 5, the magnitude of θ1 and θ2 is deduced by
applying the cosine rule, which can be attained that:

cos θ1 =
r2obj − L20
r2obj + L20

, (22)

cos θ2 =
r2obj − (L1 − L0)2

(L1 − L0)2 + r2obj
. (23)

Substituting Eq. (22) and θ1+θ2 = π /2 into Eq. (20) and the grasped
object sizes with 5 contact points is yielded through solving for robj

robj,5 ≤
1
2

(
L1 +

√
L21 − 4L20 + 4L0L1

)
. (24)

4-point grasp mode:
For the 4-point graspmode, Eqs. (19) and (20) are satisfied with

Yobj > robj. This grasp mode can only exist if:

L1 > L0. (25)

The object sizes in this grasp type is:

robj,4 ≤⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

(
L1 +

√
L21 − 4L20 + 4L0L1

)
if L0 ≤ L1 ≤ L0 + L2

3

√
H1 +

√
H2

1 + H3
2

+
3

√
H1 −

√
H2

1 + H3
2 +

1
3
L0 if L1 > L0 + L2

(26)

where

H1 =
1
27

L0(L20 + 9L1L2 + 9L22), (27)

H2 =
1
3
L2(−2L1 + L2) −

1
9
L20. (28)

3-point grasp mode:
With the 3-point grasp mode, only the constraint equation of

the distal phalanx (20) has to be satisfied. Such a grasp mode can
only exist if [9]:

L1 ≤ L0 + L2 (29)

The largest grasped object with this mode is obtained by sub-
stituting Yobj = robj and θ1 + θ2 = π /2 into (20) (because when the
fingers are splaying to the greatest degree in a 3-point graspmode,
it is in a critical state of the 2-point grasp type, and the requirement
about θ1 + θ2 = π /2 is workable at this situation). Solving it for robj
and θ1 yields:

robj

≤

⎧⎨⎩L0 + L1 if L1 ≤ L2 − L0
1
2
(L2 + L0 +

√
2L21 − (L2 − L0)2) if L2 − L0 < L1 ≤ L0 + L2

(30)

2-point grasp mode:
For the 2-point grasp mode, the maximal object size corre-

sponds to the results of robj,3 and robj,4:

robj,2 <
{
robj,3 if L1 ≤ L0 + L2
robj,4 if L1 > L0 + L2

(31)

The object smaller than robj,2 can be grasped with 2-point grasp
mode, while L1 < L0. Then the object size should satisfy:

robj,2 >
{
L0 − L1 if L1 ≤ L0 + L2
0 if L1 > L0 + L2

(32)

Therefore, based on the geometric parameters of the finger’s
link, as well as the contact points between the object and the
phalanges, one can attain the maximum grasped object size. Then,
to achieve the static equilibriumof the systemwith a 3-point grasp,
the rate of the finger’s actuation torques should be analyzed as it is
not determined yet.

Through (8), the existence of grasp equilibrium and the amount
of the contact points are determined by R. If R increases, the
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Fig. 7. Bifurcations between various grasp types.

magnitude of F2 will also increase whereas F1 will decrease. The
object will be pushed against the palm. If R further increases, F1
will become zero, the phalanx will lose contact, and the contacting
point on the distal phalanx will move toward to the finger’s tip. In
addition to the situation of stability, two different types of ejection
namely opening- and closing-ejection have been identified [11].

3.2. The transition of various grasp types

When the underactuated fingers grasp an object, the grasp type
is not fixed until the grasp is completed. Observations of Eqs. (8),
(12) shows that the number of contact points is determined by R.
Therewill be a transition of various grasp typeswhen R is increased
or decreased, as shown in Fig. 5. For different grasp types, the
range of R is different. The range of R for different grasp types are
discussed in the following (see Fig. 7).

5-point grasp mode:
When an object is grasped in a 5-point grasp, the geometric

relations are determined, as shown in Fig. 5. The cos θ1 and cos θ2
are given in Eqs. (22), (23), and sin θ1 and sin θ2 can be found that:

sin θ1 =
2L0robj
r2obj + L20

, (33)

sin θ2 =
2(L1 − L0)robj

(L1 − L0)2 + r2obj
, (34)

When R approaches the upper limit R5,max, the proximal pha-
langes’ contact force becomes zero, which can be obtained from
(8):

1 − R(
p2 + L1(cos θ2 + µ sin θ2)

p2
) = 0. (35)

Solving the equations Eqs. (19), (20) with Yobj = robj, and
Eq. (35), the R5,max can be attained:

R5,max =
L1 − L0

L1 − L0 + L1(cos θ2 + µ sin θ2)
. (36)

When the R approaches the lower limit R5,min, the contacting
force between the object and palmbecomes zero. Solving Eqs. (19),
(20) with Yobj = robj, and Eq. (12) with Fpalm = 0, the R5,min can be
deduced:

R5,min

=

⎧⎨⎩> 0 if robj ≤ L0
(L1 − L0)cF1

(L1 − L0 + L1(cos θ2 + µ sin θ2)) cF1 − L0cF2
if robj > L0

(37)

4-point grasp mode:
At the upper limit R4,max,

R4,max = R5,min if L1 ≤ L0 + L2. (38)

When L1 > L0+L2, the upper limit is caused by the closing ejection.
At the lower limitation R4,min, the fingers envelope the object

(θ1+θ2 = π /2). Solving Eqs. (19), (20) with θ1+θ2 = π /2, it can be
attained:

cos θ1 = sin θ2 =
robj − L0

L1
, (39)

sin θ1 = cos θ2 =

√
L21 − (robj − L0)2

L1
, (40)

p2 = robj tan
θ2

2
=

robj

(
L1 −

√
L21 − (robj − L0)2

)
robj − L0

, (41)

Thus, R4,min can be attained according to Eq. (12) with Fpalm = 0

R4,min =
p2(cθ1 + µsθ1 )(

p2 + L1(cθ1 + µsθ1 )
)
(cθ1 + µsθ1 ) + µ(L1 − p2)

. (42)

3-point grasp mode:
As for the 3-point graspmode, the distal phalanges constrict the

object against the palm, and the proximal contact force becomes
zero (Eq. (35)).

When R reaches the upper limit R3,max, with constraint condi-
tions of L1 > L2− L0 and L1>L0, the contact point is located on the
distal phalanges’ tip where p2 = L2 or with constraint conditions
of L1≤L2− L0, the upper limitation is deduced by the boundary
condition that θ1 ≥ 0. Respectively, one can obtain the following
analytical equation according to Eq. (35):

R3,max =
p2

p2 + L1(cos θ2 + µ sin θ2)
. (43)

If L1≤L2 − L0, the upper limit occurs when θ1 = 0. In this
situation, the condition p2 = L0 + L1 is satisfied. Solving Eqs. (19),
(20) with θ1 = 0, p2 = L0 + L1 and Yobj = robj, the following
equations can be attained:

cos θ2 =
r2obj − (L0 + L1)2

r2obj + (L0 + L1)2
, (44)

sin θ2 =
2robj(L0 + L1)

r2obj + (L0 + L1)2
. (45)

If L1 > L2−L0 and L1 ≥ L0, the upper limit occurswhen p2 = L2.
Substituting p2 = L2 and Yobj = robj into Eqs. (19), (20), it can be
attained that:

cos θ2 =
L2(L20 − L21 − L22) + robjH3

2L1(L22 + r2obj)
, (46)

sin θ2 =
robj(−L20 + L21 + L22) − L2H3

2L1(L22 + r2obj)
, (47)

where

H3 =

√
−(L20 − L21 − L22)2 + 4L21(L

2
2 + r2obj). (48)

When R reaches the lower limit R3,min, the proximal phalanges
move to touch the object or the contact force between the palm
and the object becomes zero (Fpalm = 0). It is determined by
the object size whose contact point is lost. As illustrated in Fig. 5,
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the first situation is actually transform to a 5-point grasp mode
(i.e. R3,min = R5,max); the second situation is the transform to a
2-point grasp mode or opening ejection. For the second scenario,
to obtain an analytical expression of R3,min, substitute Yobj = robj
into (20) and (35), respectively, with a requirement of 0< θ1 < π ,
and one can obtain the following analytical equations:

cos θ2 =

√
1 +

−L20 − 2L0robj + 2robjH4 − robj(1 + 2µ2)
L21(1 + µ2)

, (49)

sin θ2 =
L21r

2
obj(1 + µ)2 − H4

L31robj(1 + µ2)2
, (50)

p2 =
−L0µH5 − L31r

2
objµH6 + robj

(
H5 − L0L31H6

)
L21robj(L0 + robjµ)(1 + µ2)2

, (51)

where

H4 =

√
(L0 + robjµ)(1 + µ2), (52)

H5 =

√
L41r

2
obj(L0 + robjµ)(1 + µ)3, (53)

H6 = (1 + µ2)2 cos θ2, (54)

Thus the R3,min can be obtained according to (29):

R3,min =

⎧⎨⎩R5,max if robj ≤ robj,5
p2

p2 + L1(cos θ2 + µ sin θ2)
if robj > robj,5

(55)

where robj,5 is defined by Eq. (24).

2-point grasp mode:
As for 2-point grasp mode, the object touches the distal pha-

langes only (Eq. (35)) and the object lose contact with the palm
(Yobj>robj and Fpalm = 0). When the R approaches the upper limit
R2,max, the contact point is at the distal phalanx’s tip (p2 = L2).
Substituting Fpalm = 0 and p2 = L2 into Eqs. (35) and (20), the
following equations can be attained:

cos θ2 =

L21µH8 − L0L1µH7 −

√
−L21(1 + µ2)H7H9

L31(robj − L2µ)(1 + µ2)2
, (56)

sin θ2 =

L21H8 − L0L1(1 + µ2)H7 + µ

√
−L21(1 + µ2)H7H9

L31(robj − L2µ)(1 + µ2)2
, (57)

where

H7 =

√
L21(robj − L2µ)2(1 + µ2), (58)

H8 = (robj − L2µ)2(1 + µ2), (59)

H9 =

√
L20L1(1 + µ2) − 2L0H7 + L1

(
(robj − L2µ)2 − L21(1 + µ2)

)
L1

.

(60)

Thus, the R2,max can be obtained according to Eq. (35):

R2,max =
L2

L2 + L1(cos θ2 + µ sin θ2)
. (61)

At the lower limit R2,min, the object is very close to contact the
proximal phalanges or the palm. The first situation is actually a
transform to the 4-point grasp mode, and the second situation is a
transform to the 3-point grasp mode. According to that, the R2,min
can be determined as:

R2,min =

⎧⎨⎩
> 0 if robj ≤ L0
R4,min if L0 < robj < robj,5
R3,min if robj ≥ robj,5

(62)

(a) 3-point grasp type.

(b) 4-point grasp type.

(c) 5-point grasp type.

Fig. 8. Relationship between K, robj and µ.

The previous analysis on R can be seen as a formulation of the
geometric parameters and the maximum object size. Note that the
term γ is the functions of θ2. Hence, as shown in Eq. (11), when
R is regarded as constant and the range of θ2 is confirmed, the
spring stiffness K is related to the angle γ . That is to say, R and
θ2 decide the extent of the envelope grasping, which means the
contact points’ number and locations. If the designer confirms the
size of an object and the extent of the envelope grasping, the range
of spring stiffness K can be obtained.

4. A metric to design spring stiffness

4.1. The ranges of spring stiffness

According to Eq. (11), the stiffness of spring can be expressed by
R, γ , Ta and the geometric parameter of the finger. The parameter γ
related to the pose of the fingers, and the pose usually depends on
the radius of the grasped object. The input torque Ta is a parameter
one can control. To have a better understanding for evaluating the
spring stiffness, without losing the generality, the value of Ta is
given as 1 N m. The ranges of R and radius of object in different
grasp type have been analyzed in Section 3. And also the maximal
R and minimal R in different grasp type have been attained in
Section 3, which rely on the radius of the grasped object. Based
on that, the relationships between K, friction and radius of grasped
object in different grasp type are attained and presented in Fig. 8.

The spring stiffness in maximal R are shown in the left figures,
while the spring stiffness in minimal R are shown in the right
figures. The ranges of the spring stiffness is the value between the
stiffness in maximal R and the stiffness in minimal R. The spring
stiffness should be design to satisfy the ranges of the stiffness.
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Fig. 9. The equilibrium curves in 3-point grasp type.

Table 1
Geometric parameters.

L0 L1 L2 ψ A b c γ 0

0.5 1.5 2 120◦ 0.8 1.1 0.6 90◦

4.2. Relationship between spring stiffness and stable region based on
grasp-state plane

This subsection will focus on a graphical method with associ-
ated metric on the relationship between spring stiffness and the
size of the stable region. The 3-point grasp mode, the 4-point
grasp mode and the 5-point grasp mode will be discussed in the
following. Because that 2-point grasp mode is critical stable, so
this grasp type is not discussed any more in the following dis-
cussion. According to (15)–(17), the equilibrium point depends on
the input torque Ta, the stiffness K, the object’s radius and the
finger’s geometric parameters. Giving the condition of Ta = 1 N
m, robj = 1.5 and the geometric parameters presented in Table 1,
the equilibrium point can be expressed by the stiffness K and angle
θ2, which are shown in Figs. 9, 12 and 15, where e/L2 means the
relative position of contacting point on the distal phalange, and
it is the phalange’s physical condition for successfully grasping an
object.

3-point grasp mode:
Fig. 9 shows the equilibrium curves in 3-point grasp type

(Eq. (17)). Note that Fig. 9 includes two different types of equilib-
rium curves: the one truncated by geometer restrain (L2) and the
integrity one, which lead to two types of stability regions.

The stability regions shows in Fig. 10 with different static coef-
ficient of friction (µ = ±0.2, µ = ±0.5). The stability regions, as
shown in Fig. 10(a) and (b), can be attained under the following
steps. Firstly, the point of intersection (θi2) between equilibrium
curve (17) and contact trajectory (18) whose slopes are equal
should be found. Then, these two kinds of curves together with
geometer restrain (0< p2 < L2) would form a closed curve. Si is the
area of the stability region, which corresponds to the white area,
and can be calculated as follows:

Si =

∫ θi2

θi1

f (θ2i)dθ2 +

∫ θi3

θi2

g(θ2i)dθ2 +

∫ arccos(− L2
2L1

)

θi3

dθ2

−

∫ arccos(− L2
2L1

)

π
2

g(θ2i)dθ2 (63)

where θik (k = 1, 2, 3) represent the changes of the angle θ2, and
θi1 is the point between equilibrium curve and geometer restrain
that is located at p2 = 0; θi2 is intersection point as above; θi3 is the
point between the contact trajectory and geometer restrain that is
located at p2 = L2. In addition, g(θ2i) is the segment of contact

(a) K = 3.

(b) K = 5.

Fig. 10. Stability regions with different parameters.

trajectory (18) between θi2 and θi3 in the grasp-plane, which is
defined as follows

g(θ2i) =
p2
L2

=

√
p2i + 2piL1 cos θ2i + L21 cos2 θ2 − L1 cos θ2

L2
(64)

where f (θ2i) is the segment of equilibrium curve (17) between θi2
and θi3 in the grasp-plane, which is defined as follows

f (θ2i) =
e
L2

=

−
L1Y1Ta+L1(X1+Y1)Tk

Y2Ta+(X2+Y2)Tk
G

L2
. (65)

Therefore, according to (63), the contrast of Fig. 10(a) and (b)
is shown that same geometric parameters with different spring
stiffness will deduce different stability region. In other words,
as shown in Fig. 10, the equilibrium curves are the intersecting
surfaces of Fig. 9, and the stability regions are the visualization of
(63) to express the relation between the spring stiffness and the
stable region.

Corresponding to different spring stiffness, various stability
regions as shown in Fig. 10 can be calculated by (63). Thus, one
can obtain a curve about the relationship between spring stiffness
and stability regions as shown in Fig. 11. If the spring stiffness is
too soft, the grasp would become less stabilized, and the stability
region (soft interval) would become small as well. If the spring is
too stiff, the finger would be similar to a fully actuated one, even
the performance of stabilization would get better for some objects
with specified size, and it would not be suitable for the majority.
As a result, the performance of adaptability would degenerate and
the stability region (stiff interval) will also become small. Thus, the
spring shall be designed with a moderate stiffness. In a practical
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Fig. 11. Area of stability region in 3-point grasp type.

Fig. 12. The equilibrium curves in 4-point grasp type.

application, it is a guideline to choose the appropriate K, which can
affect the trade off between the ability of adaptive to the object and
the stability of grasp.

4-point grasp mode:
Fig. 12 shows the equilibrium curves in 4-point grasp type

(Eq. (16)). The distal phalanx is just considered to attain the area
of stability region.

Similar to themethod of the 3-point grasp type, the intersecting
surfaces of Fig. 12 and the contact trajectory (18) are shown in
Fig. 13 with different friction.

Variable stability regions are shown in Fig. 13. Similar to the
3-point grasp, there are two different type stability regions. One
type of stability regions is shown in Fig. 13(a), and another type of
stability regions is shown in Fig. 13(b), its areas of stability region
can be attained by Eq. (63).

Considering the variable friction, the relationship between the
spring stiffness and the stability regions is shown in Fig. 14.

5-point grasp mode:
As shown in Fig. 15, the equilibrium curves (18) in 5-point grasp

type is constant which relies on the mechanism parameters (L0,
L1). Therefore, it is difficult to find the relationship between spring
stiffness and stability regions like 3-point grasp mode and 4-point
grasp mode.

In this subsection, the relationships between spring stiffness
and stability regions in 3-point graspmode and4-point graspmode
are attained, as shown in Figs. 11 and 14. A spring stiffness should
be design tomaximize the area of stability regions. However, there
is a delimiter of stiffness determined by Eq. (11), which must be
taken into consideration to design the stiffness.

(a) K = 3.

(b) K = 5.

Fig. 13. Stability regions with different parameters.

Fig. 14. Area of stability region in 4-point grasp type.

Fig. 15. The equilibrium curves in 5-point grasp type.
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Fig. 16. The area of stability regions.

Fig. 17. The ranges of the spring stiffness.

5. A numerical example to design spring stiffness

A rule to design the spring stiffness given in Section 4.1 is that
the stiffness should satisfy the ranges of the stiffness. Another rule
to design the spring stiffness given in Section 4.2 is that stiffness
maximizes the area of stability regions. This two rules give ametric
to achieve appropriate spring stiffness. An example to design a
spring stiffness is presented by following.

Considering the µ = 0.5 and the robj = 1.5 with Ta = 1 N m,
the area of stability regions is shown in Fig. 16 and the ranges of
stiffness is shown in Fig. 17.

There are three types of ranges of spring stiffness in Fig. 17. First
type is with upper limit 1.093 and lower limit 0.8097, which lead
to the 5-point grasp type. Second type is with upper limit 3.099
and lower limit 0.8097, which leads to the 4-point grasp type. The
last one is with upper limit 5.355 and lower limit 1.093, which
leads to the 3-point grasp type. A proper spring stiffness is the
one which not only satisfies the ranges of the spring stiffness, but
also maximize the area of stability regions. As shown in Fig. 18, the
stiffness range of 2.5–3 maximize the area of stability regions in 4
point grasp type. The stiffness range of 2–2.5 maximize the area of
stability regions in 3 point grasp mode. Thus, for the 4 point grasp
mode, the stiffness in the range of 2.5–3 is the optimal selection.
For the 3 point grasp type, the stiffness in the range of 2–2.5 is the
optimal. For the 5 point graspmode, the equilibrium curves rely on
the mechanism parameters (as shown in Fig. 15), thus the stiffness
in the range of 0.8097–1.093 can be chosen arbitrary.

A metric to design the spring stiffness is presented in this
subsection with the fixed value of Ta, µ and robj. When the finger
grasp an object, the µ and robj are known and constant. The input
torque Ta is a artificial control parameter. In order to show the
effect of Ta on spring stiffness, the design results with different Ta
are presented as following.

Fig. 18. The results of the evaluation.

Fig. 19. The area of stability regions.

Fig. 20. The ranges of the spring stiffness with Ta = 0.5 N m.

Considering another condition of Ta = 0.5 N m, then, the
corresponding ranges of stiffness is shown in Fig. 19, and the design
result is presented in Fig. 20. It can be seen that, for the 4 point
grasp mode, the stiffness in the range of 1.25–1.5 is the optimal.
For the 3 point grasp mode, the stiffness in the range of 1–1.25 is
the optimal. For the 5 point grasp mode, the stiffness in the range
of 0.4068–0.5465 can be chosen arbitrary (see Fig. 21).

Considering the condition of Ta = 1.5 N m, then, the cor-
responding ranges of stiffness is shown in Fig. 22, and the de-
sign result is presented in Fig. 23. From these figures, it can be
seen that, for the 4 point grasp type, the stiffness in the range
of 3.5–4.5 is the optimal selection. For the 3 point grasp mode,
the stiffness in the range of 3–3.5 is the optimal. For the 5 point
grasp type, the stiffness in the range of 1.215–1.639 can be chosen
arbitrary.

In this way, an optimal spring stiffness is attained according
to the proposed method by giving the particular conditions. The
procedure and algorithm is as follows:
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Fig. 21. The results of the evaluation with Ta = 0.5 N m.

Fig. 22. The ranges of the spring stiffness with Ta = 1.5 N m.

Fig. 23. The results of the evaluation with Ta = 1.5 N m.

Inputs:
(1) The input torque: Ta.
(2) The mechanism parameters: L0, L1, L2, a, b and c .
(3) The static friction’s coefficient: µ.
(4) The grasped object’s radius: robj.
Outputs: the optimal spring stiffness.
Procedure:
Step 1:

According to Eq. (11), establishing the relationship between the
spring stiffness K, the static friction’s coefficientµ and the grasped
object’s radius robj.
Step2:

For an object, one can know the µ and robj.Thus the ranges of K
can be calculated by the relationship obtained from the Step1.

Step3:
Calculating the relationship between the area of stability re-

gions and the spring stiffness K according to Eq. (63).
Step4:

Finding the value of K (or a range of K ) from ranges of K (Step2)
which maximize the area of stability regions. Thus, the optimal
spring stiffness is obtained.

In addition, comparing the design results with Ta = 1 N m,
0.5 N m and 1.5 N m, one can see that the evaluation of stiffness
with Ta = 1.5 N m is the maximal and the evaluation of stiffness
with Ta = 0.5 Nm is the minimum. From that, one can know that
the spring stiffness relies on the input torque Ta. In fact, there is a
balance between the input torque Ta, contact force f and the spring
torque Tk, as shown in Eq. (5), and the Tk canbe expressedby Tk = K
△γ (as shown in Eq. (6)). The contact force f and spring torque Tk
will increase when the input torque Ta increase, and a larger spring
stiffness K is necessary because a small spring stiffness K may lead
to excessive rotation of γ , which cause an unstable grasp. However,
it is difficult to find the specific relationship between the Ta and K
based on the statics analysis. Future work will focus on seeking an
analytical interpretation between the Ta and K through dynamic
method and so on.

6. Conclusion

This paper presents ametric to achieve appropriate spring stiff-
ness for underactuated fingers. To simplify the analysis, the shape
of the reference objects is circular. Based on statics analysis, this
method can quantify and visualize the relationship between the
spring stiffness and stable region according to grasp-state plane to-
getherwith the spring stiffness’s delimiter between regimes. Then,
the grasp stabilization with respect to spring stiffness could be
evaluated in a quantitativeway by analytical equations and graphs,
meanwhile objects are enveloped adaptability to some extent.
Finally, an application is presented to design the optimal spring
stiffness based on the proposed method by giving the particular
conditions. Future wok will focus on implementing experiments
to test the verification of the approach.
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