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Abstract

This paper studies a lattice-code based multiple-access (LCMA) framework, and develops a package of processing

techniques that are essential to its practical implementation. In the uplink, K users encode their messages with the same

ring coded modulation of 2m-PAM signaling. With it, the integer sum of multiple codewords belongs to the n-dimension

lattice of the base code. Such property enables efficient algebraic binning for computing linear combinations of K

users’ messages. For the receiver, we devise two new algorithms, based on linear physical-layer network coding and

linear filtering, to calculate the symbol-wise a posteriori probabilities (APPs) w.r.t. the K streams of linear codeword

combinations. The resultant APP streams are forwarded to the q-ary belief-propagation decoders, which parallelly

compute K streams of linear message combinations. Finally, by multiplying the inverse of the coefficient matrix, all

users’ messages are recovered. Even with single-stage parallel processing, LCMA is shown to support a remarkably

larger number of users and exhibits improved frame error rate (FER) relative to existing NOMA systems such as

IDMA and SCMA. Further, we propose a new multi-stage LCMA receiver relying on generalized matrix inversion.

With it, a near-capacity performance is demonstrated for a wide range of system loads. Numerical results demonstrate

that the number of users that LCMA can support is no less than 350% of the length of the spreading sequence or

number of receive antennas. Since LCMA relaxes receiver iteration, off-the-shelf channel codes in standards can be

directly utilized, avoiding the compatibility and convergence issue of channel code and detector in IDMA and SCMA.

Index Terms

Multiple access, coded modulation, lattice codes, compute-forward, multi-user MIMO, grant-free random access

I. INTRODUCTION

Beyond 5G (B5G) and 6G systems are envisaged to support a vast range of massive connectivity,

throughput-hungry and latency-sensitive scenarios such as ubiquitous IoT, mobile cloud computing and etc.,

which calls for advanced multiple access (MA) techniques to achieve higher and flexible system loads, higher
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spectral-energy efficiency and lower latency, with affordable complexity and implementation costs. MA is a

pivotal component that distinguishes different generations of mobile systems. In 1G to 4G systems, orthogonal

MA (OMA) schemes are utilized, where K users are allocated with separated frequency bands, separated

time-slots, orthogonal spreading codes, and orthogonal sub-carriers, respectively. OMA endeavors to avoid

the existence of multi-user interference, with the hope that users’ signals can be separated by employing

low-cost receivers. In 5G system, the number of base station antennas that is much larger than the number

of users K is implemented. As such, the spatial signatures of the K users are nearly orthogonal, and OMA

processing can be largely preserved. Nowadays, it is widely realized that OMA is fundamentally limited by

the following aspects. First, the maximum number of supported users is capped at the number of available

orthogonal resources, thus it is not possible to meet the connection density requirement envisaged for B5G and

6G. Second, sophisticated dynamic resource allocation protocols and algorithms are required to guarantee

orthogonality, whose complexity skyrockets as the connection density levels up. Last but not the least,

despite the utilization of orthogonal resources, the wireless channel induces impairments that easily destroy

the orthogonality. This may invoke an orthogonality-restoring process with unaffordable implementation cost.

Non-orthogonal MA (NOMA) has been intensively studied in the past two decades. By allowing the

existence of multi-user interference, the number of users K in NOMA can go beyond the available time,

frequency and spatial resources, and grant-free access becomes possible. The core issue of NOMA is how

to deal with multi-user interference. Accompanying with NOMA, interference cancellation and interference

suppression based techniques were studied, such as successive interference cancellation (SIC) [1], zero-

forcing (ZF) or minimum mean square error (MMSE) filtering. Not long after the discovery of turbo codes

in 1993, the “turbo principle” was introduced and devised to solve the multi-user decoding problem, first

by Wang&Poor in 1999 [2]. Since 2000, turbo-like iterative detection and decoding has been extensively

researched. In “turbo-CDMA” [2], the inner code is a multi-user detector with soft interference cancellation

and MMSE suppression, while the outer code is a bank of K convolutional code decoders. Soft probabilities

are exchanged among these components iteratively until convergence is achieved. In 2006, Li et al. introduced

a chip-level interleaved CDMA, named after interleave division multiple-access (IDMA) [3]. The chip

interleaver enables uncorrelated chip interference, and thus a simple matched filter optimally combines the

chip-level signal to yield the symbol-level soft information. Such an approach exploits the idea of random-like

coding in dealing with the MA problem. Low-density spreading CDMA/OFMDA and sparse code multiple-

access (SCMA) were proposed. It differs from IDMA in that each symbol-level information is spread only

to a small number of chips, which forms a sparse matrix in the representation of the multi-user signal that
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can be depicted using a bi-partite factor graph [4]. SCMA also supports grant-free random access for the

massive-connectivity scenario. Spatially coupled codes were also studied for dealing with the MA problem,

yielding improved performance for fading MA channels thanks to the better universality [5]. For both IDMA

and SCMA, spreading/sparse codes with irregular degree profiles were investigated including the work of

ourselves [4], [6], which yielded improved convergence behavior of the multi-user decoding. Other code-

domain NOMA techniques such as pattern division MA (PDMA), multi-user shared access (MUSA) and

etc. [7] were studied. Rate-splitting MA (RSMA) was studied for closed-loop uplink and downlink systems

[8], [9]. The idea is to superimpose a common message on top of the private messages, which is possible

to enlarge the rate-region. For grant-free random access, the works on active user identification based on

compressive sensing algorithms and coded slotted aloha protocols are also rich in the literature [10]–[12].

Albeit all the potential benefits promised by NOMA, there are several key challenging issues that still

prevent NOMA schemes from being deployed in practice. As the uplink MA often utilizes open-loop

system, pre-determined information rates apply and the system performance over fading wireless channel is

mainly characterized by the frame error rate (FER). In such a setup, NOMA with SIC is subjected to an

intrinsic performance loss in terms of outage probability, and the error propagation also severely affects its

usefulness. Existing code-domain NOMA schemes require the outer-loop receiver iteration mentioned above,

i.e., iterations among the inner multi-user detector and a bank of outer channel code decoders, otherwise

the promised performance cannot be achieved. The outer-loop iteration has the following issues: First, it

requires a good matching between the multi-user detector and decoders, following the well-known extrinsic

information transfer (EXIT) chart principle. As the system load increases, the EXIT curve of the inner

detector varies, and the decoder’s structure has to be modified accordingly to guarantee that the EXIT curves

adapt to each other. Otherwise, the iterative receiver will refuse to converge. This results in the effect that

a certain channel code, e.g. off-the-shelf LDPC codes or polar codes in 5G NR standards, may not work in

code-domain NOMA as the system load varies. Second, Q receiver iterations involve QK times of decoding

operations and Q times of multi-user detection operations, hence the complexity may not be affordable for

many use cases. In addition, the receiver iterations are serially processed, causing significant processing

delay which is also preferred to be avoided.

From an information theoretic perspective, Zhu and Gastpar showed that any rate-tuple of the entire

Gaussian MA capacity region can be achieved using a lattice-code based approach, and the scheme was

named compute-forward MA (CFMA) [13]. Almost at the same time, we investigated using practical linear

physical-layer network coding (LPNC), that borrows the notion of compute-forward [14], for fading MA [15]–
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[17]. In contrast to the random-like coding approaches in existing code-domain NOMA schemes, “structured

codes” based on lattice were proved to achieve a larger capacity region [13]. The idea of using lattice codes

for tackling the MIMO detection and downlink MIMO precoding problems was reported in [18] and [19]

under the name of integer-forcing (IF). The latter borrows the notion of reverse compute-forward [20], [21]

and exploited the uplink-downlink duality. The design of CFMA and LPNC for the Gaussian MA channel

with binary channel codes was studied in [22], [23]. To date, most of the related works have been focusing on

achievable rates by proving the existence of “good” nested lattice codes, whereas the practical aspects are not

yet sufficiently researched. The impacts of lattice codes on the key performance indicators of practical MA

systems, such as the system load, FER, latency , complexity and etc., remain not reported in the literature.

A. Contributions

This paper advocates exploiting lattice coding techniques, which replace the turbo principle, in dealing

with the MA problem. We study a lattice code-based multiple-access (LCMA) framework, and develops a

package of processing techniques that are essential to its practical implementation. In the uplink, K users

encode their messages with the same lattice code. We put forth to utilize a simplified yet powerful lattice

coding technique, referred to as ring coded modulation (RCM), suitable for widely used 2m-PAM or 22m-

QAM signaling. Each user’s code-modulated sequence may undergo a spreading with its signature sequence

of length-NS . The resultant signal sequences of the K users are transmitted simultaneously. Owing to the

underlying ring code, the integer sum of multiple codewords belongs to the extended codebook of the base

ring code, i.e., an n-dimension lattice. Such property enables efficient algebraic binning for computing linear

combinations of users’ messages. The operations are over the lattice formed by the extension of the base

codebook, which is in contrast to those of existing NOMA schemes.

At the receiver side, a K-by-K coefficient matrix is first selected. To realize algebraic binning, we devise

1) multi-dimenional linear physical-layer network coding with list sphere decoding and 2) linear filtering

based algorithms to calculate the symbol-wise a posteriori probabilities (APPs) w.r.t. the K streams of linear

codeword combinations. The resultant APP streams are forwarded to K single-user decoders, which compute

the K streams of linear message combinations in parallel. Finally, by multiplying with the inverse of the

coefficient matrix, all users’ messages are recovered. Even with single-stage parallel processing without

receiver iteration, LCMA can support a remarkably larger number of users and exhibits improved FER

performance relative to existing code-domain NOMA systems such as IDMA and SCMA.

Further, we propose a new multi-stage receiver. In the first stage, the LCMA receiver is set to compute only

L(1), L(1) < K, linear message combinations. We introduce generalized matrix inversion that can recover a
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subset of the users’ messages from them. Then, the signals of these users are canceled from the received

signal. This gives rise to a MA model with less users in the processing of the next stage, leading to enhanced

performance of LCMA. The multi-stage processing continues until no further improvement can be achieved.

In such a manner, near-capacity performance is demonstrated for a wide range of system loads.

B. Advantages

We demonstrate that the number of users that LCMA can support is no less than 350% of the length

of the spreading sequence or the number of receive antennas. This leads to remarkably increased system

load, improved FER performance and lower implementation costs compared to state-of-the-art code-domain

NOMA schemes. Also, LCMA offers the following advantages that favor the practical implementation:

First, LCMA requires about K single-user decoding operations. In contrast, due to the requirement of

outer-loop receiver iteration, IDMA or SCMA requires Q ·K decoding operations, where the typical value of

iteration number Q is between 4 to 10. In addition, the receiver iterations of IDMA/SCMA are implemented

successively, thus LCMA with parallel processing has much lower decoding latency. The operation memory

size of LCMA is also drastically reduced as there is no soft information to be fedback in the processing.

Second, for uplink LCMA with BPSK/QPSK signaling, off-the-shelf binary codes in various standards

can be directly utilized for any system loads K/N , where N stands for the dimension of the received signal

space. In contrast, from the principle EXIT chart or density evolution, IDMA and SCMA have to devise or

adopt different codes as the system load K/N changes. Otherwise, the convergence of iterative detection and

decoding may not be achieved, leading to overwhelmingly impaired performance or even failed functionality.

This is particularly crucial for grant-free random access setup where the system load itself is random.

Furthermore, LCMA offers a unified framework that applies to code-domain NOMA, spatial division MA

(SDMA), precoding for the downlink broadcast channel and etc.

II. SYSTEM MODEL

Consider a single-cell that consists of K̃ users and a base station (BS), without interference from other

cells1. The following assumptions are made for the clarity and conciseness of the model: 1) The users are

equipped with single-antenna and the BS is equipped with NR antennas. The extension to multi-antenna

users can be treated by allowing multi-streams for each user as treated in [24]. 2) Orthogonal frequency

division multiplexing (OFDM) is presumed for wide-band frequency selective fading channel2, thus there

1Lattice code based methods can also be developed for dealing with inter-cell-interference in a multi-cell setup.
2Other advanced waveform techniques such as generalized frequency division multiplexing and OTFS are beyond the scope of this paper.



6

is no inter-symbol-interference in the model. 3) A block-fading is assumed, where the channel coefficients

remain unchanged for each block while differing over blocks3. This is guaranteed by allocating each user

a segment of sub-carriers which is no greater than the coherent bandwidth. To justify this, consider the

scenario with a large K̃. All users in the cell are divided into non-overlapping groups. Each group contains

K users that are assigned to the same subcarrier segment with flat fading channel coefficients. The users in

different groups have non-overlapping sub-carriers, thus their signals are orthogonal to each other. As such,

we are safe to consider a specific subcarrier segment that contains K users only and subject to block fading.

In the uplink, K users send signals to a BS. The BS aims to decode all users’ messages. Let a row vector

xTi denote a length-n coded-modulated symbol-level sequence of user i, i = 1, · · · , K, with normalized

average signal power E
(
xTi xi

)
/n = 1. The symbol-level signal may be multiplied with its designated

spreading-signature sequence si of length NS , yielding the chip-level signal six
T
i . The chip-level signal may

or may not undergo an interleaving operation. Then all users’ signals are transmitted simultaneously.

Consider coordinated MA and assume receiver-side synchronization4 as in the convention [3]. In the case

with a single-antenna receiver (or single-beam), i.e., NR = 1, the base-band equivalent model is

Y =
K∑
i=1

h̃i
√
ρsix

T
i + Z (1)

where h̃i denotes the channel coefficient (or the gain of the beam) of user i, Y and Z denote the received signal

and additive white Gaussian noise (AWGN) with normalized variance σ2 = 1, respectively. The per-user

SNR is given by ρ. We only consider symmetric SNR. The extension to asymmetric SNR is straightforward.

For a NR-antenna receiver, let h̃i,j denote the channel coefficient from user i to the j-th antenna of the re-

ceiver, and let h̃i =
[
h̃i,1, · · · , h̃i,NR

]T
be called the spatial-signature of user i. Let hi =

[
h̃i,1s

T
i , · · · , h̃i,NRsTi

]T
be the aggregation of the spreading-signature si and the spatial signature h̃i. The length of hi is N = NS×NR.

The signal model is then given by

Y =
K∑
i=1

√
ρhix

T
i + Z =

√
ρHX + Z. (2)

where X = [x1, · · · ,xK ]T , H = [h1, · · · ,hK ]. Note that hix
T
i consists of N = NS ×NR copies of xTi .

When the number of antennas NR is not overwhelmingly small compared to the number of users K,

one may opt to set NS = 1, i.e., removing the spreading operation from the MA system. Then the system

becomes spatial division MA (SDMA), where only the spatial signatures are exploited to support K users.

3This paper focus on presenting LCMA with block fading model, albeit it can be extended to other types of fading models [24].
4Receiver-side synchronization can be realized by allowing each user to adjust its kick-off time based on the estimated path delay in

synchronization signal block (SSB) broadcasted. The remaining asynchrony are incorporated in the channel coefficients of OFDM sub-carriers.
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In this paper we present with a real-valued model. A complex-valued model can be represented by a

real-valued model of doubled dimension as treated in [25], [26].

Remark 1 (Problem Statement in Brief): Given the system model above, the problem can be stated as:

how to design a transceiver architecture and processing algorithms such that the MA system can support a

high number of users whose messages can be reliably decoded in a cost effective manner.

The system model can be slightly modified to depict grant-free random-access (GFRA). Denote by

Kactive ⊂ {1, · · · , K} a random set of indices of the active users. The signal model is given by

Y =
∑
i∈K

√
ρhix

T
i + Z (3)

where hi denotes the aggregation of the channel coefficients and the signature for random access, such as

that in contention resolution diversity slotted aloha (CRDSA) or coded slotted aloha (SA) [12].

In GFRA, whenever new packets arrive, active users just send their signals out subject to slot-synchronization

as in SA. Since BS is not informed of Kactive, i.e. which users are active, it needs to conduct active-user

identification [10]. This is in contrast to the grant-based model where the K users are exactly known. Various

coded SA (CSA) techniques are also suggested for resolving the contention due to random access [11], [12].

III. PRELIMINARIES OF LATTICE CODES AND RING CODED MODULATION

This section presents the coding and modulation upon which LCMA is built. For readers whose expertise

is not information theory and coding, it would be easier to begin with RCM in Section III. B.

Fig. 1. Illustration of a generic nested lattice code. The green dots denote the points in the fine lattice. The red dots denote the points in the

coarse lattice, whose density is smaller than that of the fine lattice points. The fundamental Voronoi regions of the fine and coarse lattices are

also drawn. The fine lattice points that are within the Voronoi region of the coarse lattice are used as codewords for delivering messages.

A. Lattices and Lattice Codes

In comparison to off-the-shelf channel codes and widely known digital modulation schemes, lattice

codes enjoy a more general mathematical representation for code construction, as well as properties that
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favour multi-user communication. A n-dimension lattice Λ is defined by a set of real-valued basis vectors

g1,g2, · · · ,gk. All integer combinations of these basis vectors yield all the lattice points, given by

Λ ,

{
λ =

k∑
i=1

giwi, wi ∈ Z, i = 1, · · · , k

}
. (4)

Since wi ∈ Z, there are infinite number of points in Λ. The basic operations associate with Λ are:

1) The nearest neighbor vector-quantizer w.r.t. Λ is defined as

QΛ (x) , arg min
λ∈Λ
‖x− λ‖ , (5)

which finds in Λ the lattice point that is closed to x.

2) The Voronoi region of Λ is defined as

VΛ , {x ∈ Rn, QΛ (x) = 0} , (6)

which contains all real-valued vectors that are closer to 0 than to other lattice points in Λ. See Fig. 1.

3) The modulo-lattice operation is defined as

x mod Λ = x−QΛ (x) ∈ VΛ, (7)

which computes the difference between x and its nearest neighbor in the lattice Λ.

Let a subset of the lattice points in Λ be denoted by ΛS , ΛS ⊂ Λ, referred to as a “coarse lattice”. The

original lattice Λ is referred to as the “fine lattice”. It is said that ΛS is nested in Λ. Note that the points in

Λ is denser than those in ΛS , and the Voronoi region of ΛS is larger than that of Λ, see Fig. 1.

In a nested lattice code for communication, those fine lattice points that are within the Voronoi region of

ΛS is used as codewords, each is associated with a message. The codebook is given by C = {c ∈ Λ ∩ VΛS},

with codebook size of |C| = |Λ ∩ VΛS | and information rate of 1
2
log2 |C| bits per symbol. During the online

transmission, for a specific message sequence b, the associated codeword c ∈ Λ∩VΛS is picked with mapping

c =φ (b). A random dithering vector d, which is uniformly distributed in the Voronoi region ΛS , is added

to the codeword c. A modulo-lattice operation is then performed to ensure that the resultant vector c + d is

within VΛS . The transmitted signal sequence is

x = (c + d) mod ΛS (8)

which is uniformly distributed in VΛS [27], [28]. With the “Encrypto Lemma” [29], the average signal energy

is given by 1
n
E
[
‖x‖2] ≤ PΛS where PΛS is the second moment per-dimension of VΛS .

For AWGN channel, the received signal is y = x + z. After the reverse of the dithering operation

y′ = (y − d) mod ΛS, (9)
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the receiver finds in the fine lattice Λ the point that is closest to y′, that is,

ĉ = arg min
λ∈Λ
‖y′ − λ‖ . (10)

Then the decision on the message b̂ is obtained from φ−1 (ĉ). It is proved that there exists nested lattices

ΛS ⊂ Λof rate R < max
[

1
2

log2 (ρ) , 0
]

such that Pr
(
b̂ 6= b

)
tends to zero as n → ∞. Moreover, with

minimum mean sequare error (MMSE) scaling, the rate R < max 1
2

log2 (1 + ρ) is achievable [29].

B. Ring Coded Modulation - A Simplified Lattice Code

The aforementioned lattices and nested lattice codes are conceptual notions, as 1) they require the n-

dimension lattice quantization and 2) they are based on the existence of lattices and lattice chains in theory,

without given any clue on the construction that can be practically implemented. There are several existing

works on practical aspects of nested lattice codes, such as low-density lattice codes in [30]. However, low-

density lattice codes are still overly complicated, and its efficient encoding remains largely unsolved. In

this paper, we utilize a simplified lattice code, namely q-ary ring coded modulation (RCM) with q-PAM

signaling, as the underlying coded-modulation for LCMA.

1) Encoding: Let b = [b [1] , · · · , b [k]]T be a column vector denoting a q-ary message sequence5. Each

entry of b belongs to an integer ring Zq , {0, · · · , q − 1}. For a prime q, Zq becomes a Galois field denoted

by GF(q). For a non-prime q, e.g., q = 2m,m = 1, 2, · · · , the addition and multiplication rules of Z2m are

different from those of GF(2m). In this paper we are primarily interested in q = 2m,m = 1, 2, · · · , widely

used in practice. For presentation purpose, q and 2m may be used interchangeably.

A q-ary linear code with generator matrix G is employed to encode b, given by

c = mod (Gb,q) = G⊗qb (11)

where “⊗q” represents the operation of matrix multiplication modulo-q. The generator matrix G is of size

n-by-k and c ∈ Znq . Let Cn denote the codebook which collects all qk codewords w.r.t. (11).

A random vector d ∈ Znq may be generated and added on c for the purpose of random permutation. For

conciseness, the details are omitted and can be found in [31], [32]. Each entry of c is one-to-one mapped

to a symbol that belongs to a constellation of q points. For q-PAM constellation, the mapping is

x = δ (c) =
1

γ

(
c− q − 1

2

)
∈ 1

γ

{
1− q

2
, · · · , q − 1

2

}n
,

implemented symbol-wisely. Here γ is a normalization factor to ensure unit average symbol energy. The

rate of RCM is R = k
n

log2 q bits/symbol. For a complex-valued model, two independent streams of q-level

5The conversion from a binary message sequence to a q-ary message sequence is straightforward.



10

RCM, one for the inphase part and the other for the quadrature part, form a RCM with q2-QAM signaling.

When q = 2, RCM reduces to conventional binary channel coding with BPSK (or QPSK) signaling.

Remark 2: [RCM versus conventional coded-modulation] The RCM differs from conventional binary

coding-oriented schemes such as bit-interleaved coded-modulation (BICM), trellis coded-modulation (TCM)

and multi-level coding with superposition coded-modulation (SCM). In those schemes, binary coded sequence

c is de-multiplexed into m = log2 q streams c(1), · · · , c(m). Then, a many-to-one mapping given by x =

δ′
(
c(1), · · · , c(m)

)
is employed, e.g. the Grey mapping used for BICM.

2) Integer Additive Property: We next present the key property of RCM to be exploited in LCMA.

Property 1: For any K codewords c1, c2, · · · , cK ∈ Cn, RCM satisfies
K∑
i=1

aici, q ∈ C̃n (12)

for any integer-valued coefficients [a1, · · · , aK ], where C̃n=Cn + qZn denotes the extended codebook by

replicating the codewords in the base code Cn over the infinite integer field Zn. Also,

mod

(
K∑
i=1

aici, q

)
∈ Cn. (13)

That is, the integer-sum of K codewords modulo-q remains as a valid codeword.

Note that this property does not hold in conventional schemes such as BICM, TCM and SCM.

Remark 3: [Rings versus Galois Fields] Most existing works on lattice codes and modulation codes

focused on prime q where GF(q) and Zq are equivalent. The integer additive property holds therein. In

practical systems utilizing q-PAM (or q2-QAM) signaling, non-prime q of values q = 2m is required. In this

case, the integer additive property does not hold for GF(2m). To see this, recall that GF(2m) is an extension

field of GF(2), which has elements
{

0, 1, β, β2, · · · β2m−2
}

[33]. The additive rule w.r.t. these elements is

determined based on the primitive element of the polynomials, which is different from the additive rule of

integers as in Z2m . Therefore, to enable the integer additive property for 2m-PAM signaling, the utilization

of ring codes over Z2m is indispensable.

C. Relation between RCM and Lattice Codes

The presented RCM is a simplified version of nested lattice codes. Its fine lattice Λ is given by the

extended codebook C̃n with base code given by c = G⊗qb, i.e.,

Λ =

{
λ : λ = c−q − 1

2
+qZn, ∀c ∈ Cn

}
. (14)
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We will use “extended codebook” and “lattice” interchangeably in this paper. The coarse lattice ΛS is

ΛS = qZn. (15)

The modulo-ΛS operation of the shaping lattice is simplified into a one-dimensional symbol-by-symbol

modulo-q operation. The above is also referred to as “Construction A” of lattice codes [25].

The presented RCM yields 2m-PAM signaling, which is in line with a wide range of practical systems.

Compared to Gaussian signaling that is of interest in information theory, 2m-PAM signaling enjoys easier

treatment and low peak-to-average power ratio (PAPR), which are of high preference in practical uplink

systems. This paper will devote no efforts to shaping (to achieve the shaping gain of at most 1.53 dB).

In current uplink MA systems, power efficiency rather than spectral efficiency may be of a higher priority,

thus BPSK (or QPSK) signaling is primarily used. In such a case, RCM boils down to conventional binary

coding with BPSK(or QPSK). Yet, even for BPSK, the processing of binary coded LCMA is over the

extended codebook (the lattice) and exploited the integer additive property. This is strikingly different from

conventional NOMA schemes that operate over the soft information of the binary digits only. For future MA

systems, it is envisaged that high spectral efficiency may also be required for the uplink, then RCM with

q > 2 is required in LCMA in general. For downlink systems featuring adaptive coding and modulation,

RCM with q > 2 is indispensable to LCMA. This will be reported in a separate paper [34].

IV. LATTICE-CODE BASED MULTIPLE ACCESS (LCMA)

This section presents an uplink LCMA system. Following the convention in studying uplink MA, we

consider an open-loop system where there is no feedback link to the transmitter to deliver the CSI or index

of adaptive coding and modulation (ACM). Each user transmits at a target (symmetric) information rate R0.

A. Transmitter Architecture

Fig. 2. Block diagram of the transmitters of a K-user LCMA system. All users utilize the same 2m-ary RCM. No interleaver is implemented.
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The transmitter architecture is depicted in Fig. 2. K users encode their messages with the same6 2m-ary

code as in (11). Each user’s encoded digits are one-to-one mapped to 2m-PAM symbols as in (12), yielding its

symbol-level signal sequence xTi . The symbol-level signal of user i is multiplied with its designated spreading-

signature sequence si, yielding the chip-level signal. Then all users’ signals are transmitted simultaneously.

The signal model was given in (2), repeated below

Y =
K∑
i=1

√
ρhix

T
i + Z =

√
ρHX + Z.

Comparing to existing NOMA schemes, the distinguishing features of LCMA transmitter involve: 2m-ary

lattice code/ring code, a one-to-one 2m-PAM mapping, and no symbol-level or chip-level interleaver. For

LCMA with q = 2 and BPSK (or QPSK) signaling, any conventional binary codes can be utilized.

Remark 4: The spreading module may be removed if the number of receive antenna NR is sufficiently large

to support K users. For scenarios where the spreading module is utilized, this paper confines the discussion

to that the entries of si are obtained from {0,+1,−1}, while si is subject to a power normalization, i.e.,

‖si‖2 = 1. This is in line with the spreading sequence structure of the SCMA system with the real-valued

model, and is in line with that of the IDMA system if the portion of 0-entries in si is set to zero. Any

existing spreading signature sequences of SCMA can be used in LCMA. For high system loads that are

out of the capability of SCMA, a pragmatic method for generating the spreading sequences is presented in

Appendix, Algorithm 2. We note that the generation of si is carried out offline.

B. Receiver Architecture

Fig. 3. Block diagram of the receiver of a K-user LCMA system with a singel-stage parallel processing.

6The extension to the asymmetric rate setup is straightforward. A low rate user’ message, whose length is smaller than k, are zero-padded to

form a length k message sequence. Then, the same channel code encoder can be utilize to encode all users’ messages.
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The receiver is set to compute L streams of linear combinations of the K users’ messages over the integer

ring Zq, as shown in Fig. 3. These L streams of “linear message combinations” are defined as

uTl ,mod

(
K∑
i=1

al,ib
T
i , q

)
= aTl ⊗qB, l = 1, · · · , L, (16)

where aTl = [al,1, · · · , al,K ] with entries in Zq denotes the coefficient vector w.r.t. the l-th stream, B =

[b1, · · · ,bK ]T stacks up all users’ message sequences. Let U = [u1, · · · ,uL]T , and let A = [a1, · · · , aK ]T

be referred to as the coefficient matrix, which is required to have a unique inverse A−1 in Zq. Then,

U = A⊗qB. (17)

For the MA setting with a common receiver considered in this paper, L = K. If all linear message

combinations, i.e., U, are reliably computed, all users’ messages are successfully recovered by multiplying

U with A−1 over Zq. For the clarity of physical meanings, we use L (rather than K) to denote the total

number of linear message combination streams in the sequel7.

There are two core tasks for the LCMA receiver: 1) with Y, computes the L linear message combinations

u1, · · · ,uL. 2) Identifies Aopt (based on the CSI of H) that minimizes the outage probability or FER of a

practical coded system. Now let us concentrate on the former task for a given coefficient matrix A.

1) Optimal Computation Rule: The optimal rule jointly computes p (U|Y), i.e., the a posteriori probability

(APP) matrix w.r.t. all L streams of linear message combinations. This is a formidable task even for K of

a small dimension, and simplified treatments are required.

2) Parallel Computation Rule: A suboptimal solution to p (U|Y) is to parallely compute the APP

sequences of the L streams of linear message combinations, given by

p (ul|Y) , l = 1, · · · , L. (18)

Such parallel processing decouples the computation of the L streams of the linear message combinations,

and can be implemented in a single-stage. This paper develops two practical methods for implementing the

computation in (18), in the next two subsections respectively.

C. The Linear PNC based Approach

Let C = [c1, · · · , cK ]T stacks up all users’ coded sequences generated by the q-ary ring code. Define

vTl , mod

(
K∑
i=1

al,ic
T
i , q

)
= aTl ⊗qC (19)

7For more general setups such as distributed MIMO, where distributed units (DUs) are connected to a central unit (CU), L of each DU may

be smaller than K, as long as all DUs can provide the CU with sufficient numbers of linear message combinations [25].
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as the l-th “linear coded-sequence combination”.

Property 2: With the generator matrix G in (11) and by applying Property 1, we have

vl = mod

(
K∑
i=1

al,iG⊗qbi, q

)
= G⊗q mod

(
K∑
i=1

al,ibi, q

)
= G⊗qul. (20)

That is, a linear coded-sequence combination vl and a linear message combination ul are also related by

the multiplication of G modulo-q.

Property 2 allows for the computation of (18) by implementing: 1) calculating the symbol-wise APPs of

vl over the extended constellation, to be detailed momentarily; 2) forward the resultant APP sequence to a

single-user decoder that exploits the structure of G to compute ul. We note that such treatment is impossible

for non-lattice code based MA schemes where Properties 1 and 2 do not hold.

1) Symbol-wise APP based on Algebraic Binning: For a given coefficient vector al, a specific “algebraic

binning” [25] structure is formed, explained below. Recall that each user’s symbol belongs to a q-PAM

constellation. The superposition of the K users’ symbols results in an extended constellation with qK

candidates. The candidates are partitioned in to q sets, also called “bins”. Those candidates whose underlying

value of the linear combination are identical (or non-identical), belong to the same (or different) bin. The

value of the linear combination, denoted by ω , is referred to as the “bin-index”. Such algebraic binning does

not apply in non-lattice code based MA schemes. The receiver computes the probabilities of the bin-indices.

Let vl [t] and y [t] denote the t-th column of vl and Y, respectively. The receiver calculates the symbol-wise

APPs of the linear coded-sequence combinations p (vl [t] |y [t]), i.e., the bin-indices. This is implemented in

parallel for l = 1, · · · , L. Using the Baye’s rule, we obtain

p (vl [t] = ω|y [t]) =
∑

x1[t],··· ,xK [t]:

aTl ⊗qc[t]=ω

p

(
y [t] |

K∑
i=1

√
ρhixi [t]

)
, ω = 0, · · · , q − 1. (21)

It equals to the sum of the likelihood functions of the q candidates in the bin with index ω. Here ci [t] =

xi [t] + q−1
2

in (12) is utilized. Note that the calculation is over an N -dimension receive signal space, which

generalizes the LPNC approach in [23] and is in contrast to integer-forcing (IF) [18].

2) List Sphere Decoding: The order of complexity is up to O
(
qK
)

if exhaustive search is adopted. To

make the complexity manageable, we resort to a list sphere decoding (LSD). Given the received signal vector
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y [t], LSD algorithm is used to form a candidates list L, containing the candidates that are are closed to y [t]

in Euclidean distance, detailed in Appendix, Algorithm 1. Then, (21) is revised into

p (vl [t] = ω|y [t]) =
∑

x1[t],··· ,xK [t]∈L:vl[t]=ω

p

(
y [t] |

K∑
i=1

√
ρhixi [t]

)

=
1

η

∑
x1[t],··· ,xK [t]∈L:aTl ⊗qc[t]=ω

exp

(
−
‖y[t]−

∑K
i=1
√
ρhixi[t]‖2

2

)
. (22)

The complexity now becomes O (|L|). With LSD algorithm, it was suggested the complexity can be made

polynomial to the number of users K and modulation size. Note that one is free to adjust the list size |L|

for a suitable performance-complexity tradeoff. In practice, |L| = 40 to 50 yields competitive performance.

3) Single-user Decoding: The resultant APP sequence of each stream obtained in (22) is forwarded to

a q-ary ring code decoder. Owing to Property 2, the standard single-user decoding operation for the point-

to-point channel applies in the decoding of the linear message combinations. The decoding w.r.t. the lth

stream yields the hard decision on the linear message combination, denoted by ûl, l = 1, · · · , L. Exactly L

single-user decoding operations are required, which are performed parallelly in a single-stage.

For q = 2, off-the-shelf decoding methods apply. For q = 2m,m = 1, 2, · · · , an iterative q-ary BP algorithm

is utilized for q-ary LDPC or irregular repeat-accumulate (IRA) ring codes [35].

4) Achievable Rate: Here we characterize the achievable rate of the LCMA scheme with a full list size

of |L| = qK . Let Xi and Vl denote the random variables (R.V.s) of user i’s transmitted signal and the l-th

linear combination, respectively. Let Y denote the R.V. of the received signal vector of dimension N .

Theorem 1: For a given coefficient matrix A of a unique inverse in Zq, an achievable rate region of K-user

LCMA with parallel processing is characterized by

R
(A)
i ≤ log2 q −max

l
{ϕ(al,i)H(Vl|Y )}

for i = 1, · · · , K, where

ϕ(a) =

 0, a = 0

1, a 6= 0
,

and H(•) denotes the entropy function.

Proof. From Property 2, the probability of Vl = ω is given by

p(Vl = ω) =
∑

al1j1⊕···⊕al,KjK=ω

K∏
i=1

p(Ci = ji) =
qK−1

qK
=

1

q
. (23)

Therefore, H(Vl) = H(Xi) = log(q). For given A, the achievable computation rate of the l-th linear

combination is given by [36], [37]

R
(A)
l,comp ≤ I(Y ;Vl), l = 1, · · · , L,
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where I(•) denotes the mutual information function. If al,i 6= 0, the l-th linear combination Vl includes the

message of user i, which implies that the rate of user i should be no greater than the achievable computation

rate of the l-th linear combination. Thus, the rate of user i satisfies

R
(A)
i ≤ min

l:al,i 6=0
{R(A)

l,comp} = min
l
{H (Vl)−H (Vl|Y ) |al,i 6= 0}

(a)
= H(Vl)−max

l
{H (Vl|Y ) |al,i 6= 0} = log2 q −max

l
{ϕ(al,i)H(Vl|Y )}

where step (a) follows from the fact that V1, · · · , VL are independently and uniformly distributed.

Corollary 1: A lower bound of the achievable symmetric rate of LCMA is given by

R(A)
sym < min

l
{log2 q − ϕ(al,i)H(Vl|Y )}, (24)

which is simply the smallest of the achievable computation rates of all linear message combinations.

In conventional MA, A is set to be I. With the lattice/ring codes, algebraic binning in LCMA enables the

relaxation to computing linear message combinations with any invertible A, resulting R(A)
sym ≥ R

(I)
sym.

D. The Linear Filtering based Approach

Unlike the LPNC approach, the linear filtering based approach is set to transform the received N -dimension

signal into L streams of single-dimension signal streams. Then, one linear message combination is computed

from one of these single-dimension streams.

1) Linear Filtering: Let W of size L-by-N denote a linear filter matrix, with real-valued entries. Let wT
l

denote the lth row of W,l = 1, · · · , L. We denote the filtered version of the received signal by

ỹTl = wT
l Y =

√
ρwT

l HX + (z′l)
T
. (25)

Let ψTl = wT
l H. For a given coefficient vector aTl , we re-arrange the t-th symbol of rTl , t = 1, · · · , n into

ỹl[t] =
∑

i:al,i 6=0

√
ρψl,ixi[t] +

∑
i:al,i=0

√
ρψl,ixi[t] + z′l[t]. (26)

Here, we deem the term
∑

i:al,i 6=0

√
ρψl,ixi[t] as the useful signal part, which contains the signals of the

users whose corresponding coefficients are non-zero. Meanwhile, we deem the term
∑

i:al,i=0

√
ρψl,ixi[t] as

the interference, which contains the signals of the users whose corresponding coefficients are zero. These

are irrelevant in computing the linear message combination. We treat the term
∑

i:al,i=0

√
ρψl,ixi[t] + z′l[t] as

the interference-plus-noise. For moderate-to-large K, it is empirically found that the cardinality of the set
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{i : al,i = 0} is usually not very small. According to the central limit theorem, the interference-plus-noise

term is regarded as following a Gaussian distribution with zero mean and variance

σ̃2
l = ρ

∑
i:al,i=0

ψ2
l,i + 1. (27)

With the above arrangement, the symbol-wise APP is calculated by

p (vl [t] = ω|ỹl[t]) =
∑

xi[t],i:al,i=0:vl[t]=ω

p

ỹl [t] | ∑
i:αl,i 6=0

√
ρψl,ixi [t]



=
1

η

∑
xi[t],i:αl,i=0:aT

l ⊗qc[t]=ω

exp(−

∣∣∣∣∣∣∣ỹl[t]−
∑

i:al,i 6=0

√
ρψl,ixi[t]

∣∣∣∣∣∣∣
2

2σ̃2
l

), (28)

evaluated over the one-dimension lattice. The resultant APP sequence of each stream is forwarded to a q-ary

ring code decoder, with the same implementation as that in the LPNC based approach.

We note that a well-designed linear filter W features that the aggregation of the magnitudes of ψl,i, i :

αl,i = 0 is much less than that of ψl,i, i : αl,i 6= 0. For example, in the exact IF [18], W is chosen such that

ψl,i = 0 for i : αl,i 6= 0. Comparing (22) and (28), it is clear that the LPNC approach directly calculates the

symbol-wise APP in the N -dimension signals space, while linear filtering based approach first projects the

N -dimension signal, forming a single-dimension signal. Then it calculates the symbol-wise APP. The first

approach is subject to a loss due to the reduced list size in LSD, while the second approach is subject to a

loss due to the projection operation, relative to the exact optimal solution.

Remark 5: The idea with linear filtering was previously investigated in [18], [19] from an information-

theoretic aspect. To the best of our knowledge, the algorithms for a practical coded system that we presented

in the above was not reported in the literature. Moreover, our treatment applies to any choice of linear filter,

not just confined to the exact IF and regularized IF in [18].

2) Achievable Rate: Let Ỹl denote the R.V. of the l-th stream after the above linear filtering.

Corollary 2: For a given coefficient matrix A, by applying Theorem 1,a lower bound of the achievable

symmetric rate is given by

R(A)
sym < min

l
{log2 q − ϕ(al,i)H(Vl|Ỹl)}. (29)

Due to data processing inequality [38], H(Vl|Ỹl) ≥ H(Vl|Y ), hence the symmetric rate of the linear

filtering based approach is smaller than or equal to that of the LPNC based approach (with a full list size).

E. On the Optimal Choice of Coefficient Matrix A

For q-PAM signaling in this paper, there is no close-form representation of the entropy. The involvement

of the N dimension receive signal space makes the calculation of the multi-dimension entropy even more
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difficult. As such, the identification of the exact rate maximizing coefficient matrix A needs to evaluate

the entropy for all possible coefficient vectors, which is prohibitive. This paper devotes no effort to find

the exact optimal solution. Instead, we will utilize a suboptimal choice given by solving a “shortest lattice

point” problem [18]. To make this article self-contained, it is briefly presented below.

Let the eigen-decomposition of the matrix ρHTH + IK be written as

ρHTH + IK = ΨΣΨT . (30)

Then, Ã with entries in Z is given by

arg min
Ã

max
l

∥∥Σ−1/2ΨT ãl
∥∥2

(31)

s.t. rank(Ã) = L. The solution to (31) can be efficiently implemented using an Lenstra-Lenstra-Lovasz (LLL)

or Hermite-Korkine-Zolotareff (HKZ) algorithm [39]. The complexity of LLL algorithm, that will be used

in the simulation section, is polynomial to the number of streams L. The resultant suboptimal coefficient

matrix will be used in the numerical result section.

Remark 6: We note that LCMA is different from lattice-reduction based MIMO processing methods. To

be specific, LCMA utilizes n-dimension lattice codes or RCM as the underly coding-modulation, where the

lattice is characterized by the code generator matrix G. Lattice-reduction based MIMO processing is dealing

with the lattice generated by the N -by-K channel matrix H.

Remark 7 (Hints on LCMA for Grant-free Random Access (GFRA)): LCMA can be applied to GFRA, which

is known for its benefits for the massive access scenarios. The spreading sequence can be replaced by random

replicas as in the coded slotted aloha (CSA) framework. At the receiver side, active user identification is

performed using algorithms such as approximate message passing (AMP) or orthogonal AMP [10]. Then, the

linear message combinations can be computed in each slots. Upon sufficient numbers of linear combinations

are computed, a subset of the messages can be recovered. The details are not presented due to space limitation.

V. MULTI-STAGE LCMA RECEIVER

Previously, we presented LCMA system with parallel processing, where the receiver computes L = K

linear message combinations in a single-stage. If some of these linear message combinations are not correctly

computed, decoding errors are incurred. This approach generally suffers from a performance loss relative to

the joint processing. It is demonstrated that the loss is not significant for moderate-to-low system loads, but

becomes obvious for high system loads. Motivated by this, this section proposes a new multi-stage LCMA

receiver, whose block diagram is shown in Fig. 4. The idea is briefly illustrated below:
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Fig. 4. Block diagram of the multi-stage LCMA receiver.

Consider that L(1) < K linear message combinations are set to be computed in the first stage. Such task

is “easier” than computing the entire K linear message combinations, e.g., the decoding SNR threshold

becomes lower. We introduce generalized matrix inversion (GMI), which recovers a subset of all users’

messages from the L(1) linear message combinations. Next, these messages are re-encoded and modulated,

forming the signal sequences which are cancelled from the received signal Y. Then, the original K-user MA

problem reduces to a K(1)-user MA problem with K(1) < K, for processing in the next stage. The above

process continues for a number of stages until no further improvement can be achieved.

A. Generalized Matrix Inversion

As the GMI operates over the messages sequences, it is safe to omit the position index for the clarity of

presentation. That is, the t-th position of bTi = [bi [1] , · · · , bi [k]] is denoted by bi in the sequel. All K users’

messages are denoted by b = [b1, · · · , bK ]T . The L(τ) linear message combinations computed in Stage τ are:

u(τ)=A(τ) ⊗q b. (32)

Here we show how to extract a subset of messages in b. Denote by ei a K-by-1 unit vector whose i-th

entry is 1 and the other entries are zero. If there exist ai with entries in {0, · · · , q − 1} such that

ai
T ⊗q A(τ) = eTi , (33)

then from (32) one can write:

bi = eTi ⊗qb = αi
T ⊗q A(τ)⊗qb = ai

T ⊗q u(τ), (34)

i.e., user i’s message is recovered by multiplying ai
T with u(τ). The problem at this point is to identify all

ai satisfying (33). To this end, the step-by-step procedures of GMI are given below:

Algorithm of GMI:
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Step 1. Apply Gaussian elimination in GF(q) over A(τ). The row transformation yields

Qrow ⊗q A(τ) =

 I θ

0 0

 . (35)

The column transformation is given by, given by

Qrow ⊗q A(τ) ⊗q Qcol=

 I 0

0 0

 . (36)

Step 2. Compute the {1}-inverse of A(τ) given by [40]

A
{1}
(τ) = Qcol ⊗

 I 0

0 Ψ

⊗Qrow. (37)

Here, I is an identity matrix of the same size as that in (36), Ψ is a randomly chosen matrix in GF(q). The

non-unique Ψ will not hinder us from identifying the α vectors.

Step 3. Locate the rows of A
{1}
(τ) A(τ) that are unit vectors. Let k(τ) collect the indices of these rows.

Step 4. All vectors satisfying (33) are given by the i-th rows of A
{1}
(τ) , i ∈ k(τ). Then, by implementing

(34), the users’ messages with indices in k(τ) are recovered.

B. Signal-level Cancellation

At the end of the first stage, the successfully recovered messages of users, with indices in k(1), are re-

encoded and modulated, generating xTi , i ∈ k(1). They are cancelled from the original signal. The original

K-user MA problem now reduces to a K(1)-user MA problem with K(1) =
∣∣∣kc(1)

∣∣∣ < K, for processing in

the next stage. Note that the coefficient matrix is required to be selected in each stage of the processing.

The general expression for the τ -th stage is8

Y(τ) = Y(τ−1)−
∑
i∈k(τ)

hi
√
ρxTi . (38)

The proposed multi-stage LCMA receiver is different from successive IF (SIF) [41]. In SIF, the previously

computed linear combination is used as a side-information in computing subsequent linear combinations,

via direct cancellation in the n-dimension lattice. To date, there is no practical coding that can realize such

lattice-level cancellation. In contrast, by introducing GMI, exact signal sequences is yielded for signal-level

cancellation in multi-stage LCMA receiver. The optimized coefficient matrix A in SIF remains difficult to

solve, while the LLL based algorithm applies to the multi-stage LCMA receiver.

8Note that there is a rearrangement of the user-indices at the end of each stage, which is not presented for a better readability.
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TABLE I

THE ORDER OF COMPLEXITIES OF LCMA, IDMA AND SCMA SYSTEMS

Detection Decoding Coefficient Identification Interleaver&De-interleaver

LCMA O(K · |L| · n) O(q − 1)n Between O(K3) and O(K4) not required

IDMA O(Q ·K · logq2 ·NS · n) O(Q · logq2 · n) not required O(2Q ·NS · n)

SCMA O(Q ·K2 · logq2 · n) O(Q · logq2 · n) not required O(2Q · n)

C. On the Complexities of LCMA Receivers

The computation burden is primarily in 1) the channel-code decoding operations and 2) multi-user detector.

For the former, it is clear that LCMA requires only K single-user decoding operations while IDMA/SCMA

requires Q ·K decoding operations, where the typical value of Q is between 4 to 10. For the latter, LCMA

needs to compute K streams of APP-sequences, while IDMA/SCMA requires to compute Q · K streams

of APP-sequences. In particular, if the linear filtering based approach is utilized, the per-symbol detection

complexity of each stream amounts to q to the power of the number of non-zero positions of the coefficient

vector. The additional complexity is not significant for small q and moderate system loads. Recall that LCMA

requires to identify a coefficient matrix A for each block, imposing an extra overhead9. Since A is chosen

only once per block, for a moderate-to-long block length (such as k ≥ 256), the overhead is not significant.

We emphasize that off-the-shelf binary codes in various standards can be directly used in LCMA for any

load K
N

. In contrast, as the load K
N

varies, IDMA and SCMA have to adopt different codes. Otherwise, the

convergence of iterative detection and decoding may not be achieved, leading to overwhelmingly impaired

performance or even failed functionality. The orders of complexity are shown in Table. I

It is interesting to note that, albeit a much superior performance of the multi-stage LCMA receiver, its

complexity is not necessarily higher than that of the single-stage receiver. The multi-stage receiver involves

serial processing, which leads to a higher processing delay, but requires a smaller memory size.

VI. NUMERICAL RESULTS

This section presents numerical results of LCMA. Following the convention of open-loop uplink MA

system, the CSI is available to the receiver but not to the transmitters, and there is no feedback link for

adaptive coding and modulation or resource allocation. Equal power among the users is applied. No attempts

are made to adjust the power/code profile for optimizing the performance. For comparison purpose, we also

present the performance of IDMA and SCMA. As open-loop uplink MA system is considered where rate

allocation cannot be implemented, rate-splitting MA (RSMA) [9] is not included in the comparison.

9With the LLL algorithm, the complexity for this is about cubic to K.



22

TABLE II

SPREADING SEQUENCE OF LCMA K=10, NS=4.

1 1 1 0 1 1 1 1 1 1

1 0 -1 -1 1 -1 1 1 1 -1

1 -1 1 -1 1 1 1 -1 0 -1

1 0 -1 0 -1 1 0 1 -1 -1

A. AWGN Multiple-access Channel

Fig. 5. BER of LCMA with K = 10 users and spreading sequence of length NS = 4 in AWGN MA channel.BPSK and rate 1/2 IRA channel

codes are used. The sum-rate is 5 bits per channel-use. Multi-stage LCMA receiver with the linear filtering based approach is used.

In the simulations, for the LPNC based approach, the list size of LSD is set to 50. For the linear filtering

based approach, the filter matrix W under consideration is given by

W =ÃHT
(
ϑHHT+IN

)−1

where Ã has entries in Z and A = mod
(
Ã, q

)
. Here, ϑ is adjusted according to SNR and mutual information

of q-PAM signaling, which is slightly different to that in specified [18].

Fig. 5 shows the BER of LCMA for AWGN MA channel where K = 10 and the spreading sequence

length NS = 4. The system load is K/NS = 250%. The spreading matrix of LCMA is given in Table II,

obtained using Algorithm 2 given in Appendix. The capacity limit with the given spreading matrix is also

shown, which provides an performance upper bound. For the purpose of comparison to the capacity limit,

a channel code with long block-size is required. Here we use an irregular repeat accumulate (IRA) code of

long block-size of 50000 as in [42]. Note that this code is optimized for the single-user AWGN channel,

not for MA channel. At the BER of 10−5, LCMA performs within 1 dB the capacity limit of the AWGN

MA channel. This suggests that a good single-user channel code also works well in LCMA.
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We also present the BER of a baseline IDMA system, with standard chip-level interleaving and iterative

ESE detection [3]. We note that at this system load of 250%, the IDMA system with an off-the-shelf capacity

approaching channel code does not converge, as the EXIT curves of the inner detector and outer decoder

intersect at a low mutual information. Instead, a weak code such as a convolutional code with generator

polynomials [5, 7]8 yields the best performance of IDMA, which is shown in Fig. 5. LCMA exhibits a 1.4

dB performance advantage over IDMA with a sufficiently large number or receiver iterations (Q = 15). Note

that LCMA does not involve receiver iteration, and approximately K single-user decoding operations are

required. In contrast, IDMA involves QK single-user decoding operations.

Fig. 6. BER performance of LCMA with K = 10 users and spreading sequence of length NS = 4 in AWGN MA channel. BPSK and

length-2048 LTE turbo code of rate 1/2 is used for all schemes. Multi-stage LCMA receiver with the linear filtering based approach is used.

Fig. 6 shows the BER performance of LCMA with a length-2048 turbo code in the LTE standard, with

the same setup as in Fig. 5. The BER of 10−5 is achieved at 7.2 dB by LCMA. In contrast, both IDMA

and SCMA lose functionality at this system load of 250%, due to the mismatch between their multi-user

detectors and the LTE turbo code decoder. Owing to the iterative receivers in IDMA and SCMA, the outer

channel code needs to adapt to the inner ESE or BP detectors, so as to guarantee the convergence. This issue

becomes more critical for as the system load becomes relatively high, where strong channel codes tend to

fail working. In contrast, LCMA does not involve receiver iteration. Hence it is not subject to such issue

and any off-the-shelf channel code can be utilized.

Fig. 7 shows the FER performance of LCMA with various system loads, where K = 8, 10, 12 and NS = 4.

A rate 1/2 length-960 LDPC code in the 5G NR standard is used. Here we consider LCMA with parallel

processing where the multistage LCMA receiver is not implemented. It is observed that LCMA with parallel

processing can support all system loads under consideration. In contrast, IDMA fails for system load greater
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Fig. 7. FER of LCMA with K = 10 users and spreading sequence of length NS = 4 in AWGN MA channel, with single-stage parallel

processing. BPSK and a length-960 5G NR LDPC code of rate 1/2 is used for LCMA and IDMA. IDMA fails for system load greater than

200%. LCMA with LSD exhibits a 1.5 dB gain over that with the linear filtering for K = 10.

than 200%, again due to the poor adaptation of the NR LDPC code with the ESE detector in the iterative

receiver. Here we also compared the performance of LCMA based on LSD processing and that based on

linear filtering. We observe that LCMA with LSD exhibits a 1.5 dB gain over that with the linear filtering for

K = 10. Note that with both methods, exactly K single-user decoding operations are required and carried

out in parallel. The LSD method is flexible in terms of performance-complexity trade-off, by adjusting the

list size in calculating the symbol-wise APPs. The linear filtering method may enjoy easier implementation

due to the single-dimension processing.

B. Fading Multiple-access Channel

We next consider block fading MA channel where the channel coefficients follows Rayleigh distribution.

Fig. 8 shows the FER of LCMA with various system loads, where K = 10, 14, 16 and NS = 4. A rate

1/2 length-320 LDPC code in the 5G NR standard is used. The spreading sequences of LCMA are given in

Table II. Thanks to the discrepancy of the effective channel gains among users brought by fading, all MA

schemes under consideration can support a higher system load relative to the AWGN MA setup. The FER

of LCMA, SCMA and IDMA are plotted. Q = 10 receiver iterations are implemented in IDMA and SCMA.

It is apparent that LCMA outperforms other baseline schemes in terms of the supported system load as well

as in FER for the same system load. IDMA and SCMA fail to support K = 16 users, while they can hardly

achieve FER below 10−1 or 10−2 for K = 14 users and K = 10 users, respectively.
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Fig. 8. FER of LCMA with various system loads in Rayleigh fading MA channel, with single-stage parallel processing. LCMA outperforms

other baseline schemes in terms of the supported system load as well as in FER performance.

C. Uplink MU-MIMO

We next consider the MU-MIMO setup where the receiver is equipped with NR antennas. We neglect

the spreading process, and the spatial signatures of the receive antenna array play the role of the spreading

sequences. In this setup, the iterative ESE or BP algorithms are implemented in the form of an iterative

linear MMSE soft cancellation algorithm: the signal of each received antenna can be viewed as a chip-

level signal in IDMA/SCMA; the chip-level cancellation with elementary extrinsic information feedback is

conducted;the linear MMSE filtering combines all N received antennas signals. Fig. 9 shows the FER of

Fig. 9. FER of LCMA with various loads in multi-user MIMO of four receive antennas, using single-stage parallel processing. LCMA can

support a system load of no less than 350%, while the baseline scheme with iterative receiver cannot support a load greater than 250%.

LCMA with various system loads, where K = 10, 12, 14 and NR = 4. BPSK and a length-320 5G NR

LDPC code of rate 1/2 is utilized. Q = 10 receiver iterations are implemented in the baseline scheme with
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MMSE soft cancellation. It is clear that even with parallel processing, LCMA can support a system load of

no less than 350%, while the baseline scheme with iterative receiver cannot support a system load greater

than 200% where the FER curve flats out. It is also observed that LCMA achieves the full receive diversity

of the multi-user MIMO channel for all system loads evaluated.

Fig. 10. FER of LCMA with various system loads in MU-MIMO with six receive antennas. LCMA with multistage receiver exhibits a gain

more than 4 dB over single-stage parallel processing. The performance gap to the capacity limit is small at FER=10−3 for K = 15 and K = 18.

Fig. 10 shows the FER of LCMA in MU-MIMO setup with various system loads, where K = 15, 18 and

NR = 6. BPSK and a length-240 5G NR LDPC code of rate 1/2 is utilized. Q = 10 receiver iterations are

implemented in the baseline scheme with MMSE soft cancellation. Again, even with parallel processing,

LCMA can support a system load of no less than 350% (the K = 21 curve is not shown due to limited space

of the figure), while the baseline scheme with iterative receiver cannot support a system load greater than

200%. We also include the FER with the multistage LCMA receiver, and compare to the outage probability

lower bound derived from the capacity region of the MU-MIMO channel. We observe that LCMA with the

multistage receiver exhibits a gain more than 4 dB over LCMA with parallel processing. The performance

gap to the capacity limit is quite small at FER=10−3 for K = 15 and K = 18. In practice, LCMA with

single-stage parallel processing enjoys lower complexity and low processing latency, but requires a greater

memory size. LCMA with multistage receiver enjoys significantly improved performance and requires a

smaller memory size, at the cost of higher complexity and higher processing latency, where the complexity

is much lower than the baseline scheme with iterative receiver.

Previously, we presented numerical results with BPSK/QPSK signaling with q = 2. At present, BPSK or

QPSK signaling is often used in the uplink MA system owing to its power efficiency, while spectral efficiency

is not of a high priority. For future application scenarios that require high spectral efficiency uplink, such
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Fig. 11. FER of LCMA with 4-PAM in MU-MIMO, NR = 4, with LSD and parallel processing. The list size of LSD is set to 50. For 4-PAM,

LCMA with single-stage parallel processing can support a system load of at least 200%, while SCMA and IDMA lose functionality.

as 4-PAM/16-QAM signaling, q-ary ring codes are required in LCMA. Fig. 11 shows the FER of LCMA in

the MU-MIMO setup with K = 8, NR = 4, where each user has 4-PAM signaling. The information rate is 8

bits per channel-use per real dimension. Here we utilize a doubly irregular repeat accumulate (D-IRA) code

over integer ring 0, 1, 2, 3 with coding rate 1/2 in the LCMA system [35]. LSD based algorithm with parallel

processing is applied to generate the q-ary APP sequences, which are forwarded to the ring code decoders

that compute the linear message combinations. It is demonstrated that, with a higher level modulation,

LCMA with parallel processing can support a system load of at least 200%. In contrast, SCMA and IDMA

with 4-PAM lose functionality at this system load. We note that to achieve such load and performance

advantage in the system with 4-PAM signlling, a q-ary ring code is required. Existing binary code based

coded-modulation schemes such BICM, TCM and SCM do not have the structural property of lattice codes

and hence the LCMA processing does not apply therein. The details on the design of q-ary ring codes for

q-PAM signaling is beyond the scope of this paper, and interested readers may refer to [35].

VII. CONCLUSIONS

This paper studied a LCMA framework. We developed a package of processing techniques that help with

its practical implementation, including the symbol-wise APP calculation for computing the linear message

combination with list sphere detection and linear filtering, the multistage LCMA receiver via generalized

matrix inversion and etc.. Significant system load and error probability performance enhancement were

demonstrated over existing schemes without using outer loop receiver iteration, with lower complexity and

processing delay. Off-the-shelf binary codes such as 5G NR LDPC codes can be directly used in LCMA for

any system load, avoiding the issue of adaptation of channel-code and multi-user detector in existing code-
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domain NOMA schemes. A system load of 350% was witnessed by LCMA, and near-capacity performance

was demonstrated for the MU-MIMO scenario. At this stage, there are still many open problems along this

research direction, such as the identification of the optimal coefficient matrix, the general design methodology

of q-ary ring codes and etc. Furthermore, the notion of lattice-code based MA can be exploited for the

downlink scenario, which will be studied in the near future.
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APPENDIX

Algorithm 1 List Sphere Decoding (LSD) for computing the symbol-wise APPs
Input: Receive signal vector y, channel matrix H, noise variance σ2 = 1, parameters N , K

Output: List L

x = zeros(K), x̂ = (HTH)−1HTy

UTU = QR(HTH), where QR(·) represents QR decomposition function, and U is a upper triangular matrix

r2 = 2− yT (I−H(HTH)−1HT )y

Search all the points which satisfy (39) below and are in the ball with center x̂ and radius r. Then put them in L′.x̂i −
√
r2 − Φ

|uii|
−

M∑
j=i+1

uij
uii

(xj − x̂j)

 ≤ xi ≤
x̂i +

√
r2 − Φ

|uii|
−

M∑
j=i+1

uij
uii

(xj − x̂j)


where Φ is independent of xi and known from the calculation of xi+1, · · · , xM .

L=SortFront(L′,Ω), where SortFront() is a front-sort function that returns Ω closest points in L′

return L

Algorithm 2 Spreading Sequence Generation
Input: K,N

Output: si, i = 1, · · · K

1: Generate a Hadamard matrix S∗ of size K-by-K

2: Randomly truncate S∗ into a N -by-K matrix

3: Randomly set the elements into 0 according to a certain degree distribution

4: Normalize the magnitude of each column of the matrix, yielding si, i = 1, · · · K

5: Use Eq.(24) to calculate the symmetric rate

6: while Rsym ≤ R0 do

7: return to Step 2

8: end while

9: return si, i = 1, · · · K


